
Filomat 37:16 (2023), 5455–5467
https://doi.org/10.2298/FIL2316455R

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we define interpolative enriched contractions of Kannan type, Hardy-Rogers type
and Matkowski type, by enriching existing interpolative contractions, in the setting of convex metric space.
For these newly introduced contractions, we prove existence of fixed points and approximation results
using Krasnoselskij iteration. Examples are also given to indicate the relevance of our results in comparison
to some of the existing ones in the literature.

1. Introduction

Banach developed the Banach contraction principle [6], a fundamental consequence of fixed point
theory on metric spaces, in 1922. This approach has been developed and extended in numerous ways as a
result of its applications in diverse domains of nonlinear analysis and applied mathematical analysis. As
the map following the Banach contraction principle is a continuous map, it was logical to ask whether a
discontinuous map with similar contractive criteria has a fixed point or not. Kannan [17] gave an affirmative
answer to this question by defining a contractive condition for a discontinuous map T as follows:

d(Tx,Ty) ≤ c[d(x,Tx) + d(y,Ty)],

for all x, y ∈ X and c ∈ [0, 1
2 ). Moreover, he proved the existence and uniqueness of fixed points in the

setting of complete metric spaces.
Takahashi [37] defined a convex structure in a metric space and referred to it as a convex metric space.

He also investigated numerous features of this space to verify the presence of a fixed point for nonexpansive
mappings in the context of convex metric space. Introducing convexity provides a basic tool for the building
of different fixed point iterative algorithms ([2],[7]-[9],[32]-[36],[38]). Recently, Berinde [11] incorporated
enrichment to contractive type mappings in the setting of Banach spaces in order to generalize the literature.
A self-mapping T on X is called an enriched contraction or (b, θ)-enriched contraction if there exist two
constants, b ∈ [0,∞) and θ ∈ [0, b + 1) such that for all x, y ∈ X

||b(x − y) + Tx − Ty|| ≤ θ||x − y||.
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The fact that enriched contraction is an extension of the Banach contraction class has supported the idea
that in the context of a Banach space, Hilbert space and a convex metric space, a fixed point x∗ will exist
and Krasnoselskij iteration can approximate that point [10, 12, 13].

In 2018, Karapinar [18] used the technique of interpolation to revisit the Kannan type contraction.
However, prior to Karapinar, interpolative theory was a vital technique in functional analysis. In 1982,
Krein et al. [27] defined the notion of interpolative triples in the following way. Two Banach spaces A and B
are known as a Banach couple denoted as (A,B), when they are algebraically and topologically embedded
in different topological linear space. If the embedding A ∩ B ⊂ E ⊂ A + B holds, the Banach space E is said
to be an intermediate for the spaces of the Banach pair (A,B). Let (A,B) and (C,D) be two Banach couples.
If the limitations of T to the spaces A and B are, respectively bounded operators from A to C and B to D,
then the linear mapping T operating from the space A + B to C + D is referred to as a bounded operator
from (A,B) to (C,D). The linear space of all bounded operators from (A,B) to (C,D) is denoted by L(AB,CD).
This is a Banach space in the norm ||T||L(AB,CD) = max{||T||A→B, ||T||C→D}. Let (A,B) and (C,D) be two Banach
couples, and E (respectively F) be an intermediate for the spaces of the Banach couple (A,B) (respectively
(C,D)). The triple (A,B,E) is called an interpolation triple, relative to (C,D,F), if every bounded operator
from (A,B) to (C,D) maps E to F. A triple (A,B,E) is said to be an interpolation triple of type α (0 ≤ α ≤ 1),
relative to (C,D,F), if it is an interpolation triple and the following inequality holds: ||T||E→F ≤ c||T||α.||T||1−α.
Karapinar defined the interpolative Kannan type contraction as follows:

d(Tx,Ty) ≤ λ([d(x,Tx)]α.[d(y,Ty)]1−α),

for all x, y ∈ X\Fix(T), where Fix(T) = {x ∈ X,Tx = x} and λ ∈ [0, 1). Some recent works in the direction
of interpolative Ćirić-Reich-Rus type contraction [4, 5, 31], Meir-Keeler type contraction [20, 25] may be
reffered to. Many authors followed this new dimension in the study of fixed point theory [1, 3, 14–16, 19, 22–
24, 26, 30, 39].

Motivated by the recent results, in this paper, we define interpolative enriched contractions of Kannan
type, Hardy-Rogers type and Matkowski type to prove existence of fixed points and approximation results
using Krasnoselskij iteration in a convex metric space. Examples are also given in order to indicate the
relevance of our newly obtained results in comparison to some of the existing ones in the literature.

2. Preliminaries

Definition 2.1. [18] Let (X, d) be a metric space. A mapping T : X → X is said to be an interpolative Kannan
contraction mapping if there exist some c ∈ [0, 1) and α ∈ (0, 1) such that

d(Tx,Ty) ≤ c[d(x,Tx)]α.[d(y,Ty)]1−α

for all x, y ∈ X with x , Tx.

The main result in [18] is the following.

Theorem 2.2. [18] Let (X, d) be a complete metric space and T be an interpolative Kannan type contraction. Then T
has a unique fixed point in X.

Karapınar, Agarwal and Aydi [21] gave a counter-example to Theorem 2.2, showing that the fixed point
may be not unique. The revised version of Theorem 2.2 is the following.

Theorem 2.3. [21] Let (X, d) be a complete metric space. Let T : X→ X be a given mapping such that

d(Tx,Ty) ≤ c[d(x,Tx)]α.[d(y,Ty)]1−α,

for all x, y ∈ X\Fix(T). Then T has a fixed point in X.
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Definition 2.4. [22] Let (X, d) be a metric space. We say that the self-mapping T : X → X is an interpolative
Hardy-Rogers type contraction if there exist c ∈ [0, 1) and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d(Tx,Ty) ≤ c[d(x, y)]β.[d(x,Tx)]α.[d(y,Ty)]γ.[
1
2

(d(x,Ty) + d(y,Tx))]1−α−β−γ,

for all x, y ∈ X\Fix(T).

Theorem 2.5. [22] Let (X, d) be a complete metric space and T be an interpolative Hardy-Rogers type contraction.
Then, T has a fixed point in X.

Definition 2.6. [28] Let Φ be a set of functions, ϕ : [0,∞)→ [0,∞) such that
(i) ϕ is non decreasing,
(ii) lim

n→∞
ϕn(t) = 0 for each t > 0.

Lemma 2.7. [29] Let ϕ ∈ Φ, then ϕ(t) < t for all t > 0 and ϕ(0) = 0.

Definition 2.8. [23] Let (X, d) be a metric space. We say that the self mapping T : X → X is an interpolative
Matkowski type contraction, if there exist exist α, β, γ ∈ (0, 1) and ϕ ∈ Φ such that

d(Tx,Ty) ≤ ϕ([d(x, y)]β.[d(x,Tx)]α.[d(y,Ty)]γ.[
1
2

(d(x,Ty) + d(y,Tx))]1−α−β−γ),

for all x, y ∈ X\Fix(T).

Theorem 2.9. [23] Let (X, d) be a complete metric space and T be an interpolative Matkowski type contraction. Then
T has a fixed point in X.

Now, we give some basic preliminaries regarding convex metric spaces.

Definition 2.10. [37] Let X be a metric space. A continuous function W : X ×X × [0, 1]→ X is said to be a convex
structure on X, if for all x, y ∈ X and λ ∈ [0, 1] the following inequality holds

d(u,W(x, y;λ)) ≤ λd(u, x) + (1 − λ)d(u, y), for any u ∈ X. (1)

A metric space X endowed with a convex structure W is called a Takahashi convex metric space or simply a convex
metric space and is usually denoted by (X, d,W).

Example 2.11. [37] Let I be the unit interval [0, 1] and X be the family of closed intervals [ai, bi], such that
0 ≤ ai ≤ bi ≤ 1. For Ii = [ai, bi], I j = [a j, b j] and λ(0 ≤ λ ≤ 1), we define a mapping W by W(Ii, I j;λ) =
[λai + (1 − λ)a j, λbi + (1 − λ)b j] and define a metric d on X by the Hausdorff distance, i.e.

d(Ii, I j) = sup
a∈I
{| inf

b∈Ii

{|a − b|} − inf
c∈I j
{|a − c|}|}.

(X, d,W) is a convex metric space.

The next lemmas present some fundamental properties of a convex metric space.

Lemma 2.12. [37] Let (X, d,W) be a convex metric space. For all x, y ∈ X and any λ ∈ [0, 1], we have

d(x, y) = d(x,W(x, y;λ)) + d(W(x, y;λ), y).

Lemma 2.13. [37] Let (X, d,W) be a convex metric space. For all x, y ∈ X and any λ ∈ [0, 1], we have

d(x,W(x, y;λ)) = (1 − λ)d(x, y) and d(W(x, y;λ), y) = λd(x, y).
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Lemma 2.14. [2] Let (X, d,W) be a convex metric space. For each x, y ∈ X and λ, λ1, λ2 ∈ [0, 1], we have the
following:

1. W(x, x;λ) = x; W(x, y; 0) = y and W(x, y; 1) = x.
2. |λ1 − λ2|d(x, y) ≤ d(W(x, y;λ1),W(x, y;λ2)).

Lemma 2.15. [2] Let (X, d,W) be a convex metric space and T : X → X be a self mapping. Define the mapping
Tλ : X→ X by

Tλx =W(x,Tx;λ), x ∈ X. (2)

Then, for any λ ∈ [0, 1), we have Fix(T) = Fix(Tλ).

In 2021, Berinde and Păcurar [13] introduced the notion of enriched contraction in convex metric spaces
and proved some fixed point results.

Definition 2.16. [13] Let (X, d,W) be a convex metric space. A mapping T : X → X is said to be an enriched
contraction if there exist c ∈ [0, 1) and λ ∈ [0, 1) such that

d(W(x,Tx;λ),W(y,Ty;λ)) ≤ cd(x, y),

for all x, y ∈ X.

Theorem 2.17. [13] Let (X, d,W) be a complete convex metric space and let T : X→ X be an enriched contraction.
Then,

1. Fix(T) = {p} for some p ∈ X.
2. The sequence {xn}

∞

n=0 obtained from the iterative process

xn+1 =W(xn,Txn;λ)→ p, for any x0 ∈ X and n ≥ 0. (3)

3. The following estimate holds

d(xn+i−1, p) ≤
ci

1 − c
.d(xn, xn−1), n = 1, 2, ...; i = 1, 2, .... (4)

3. Main results

We enrich the interpolative Kannan type contraction as follows:

Definition 3.1. Let (X,d,W) be a convex metric space. A self-mapping T : X → X is an interpolative enriched
Kannan type contraction if there exist λ ∈ [0, 1), c ∈ [0, 1) and α ∈ (0, 1), such that

d(W(x,Tx;λ),W(y,Ty;λ)) ≤ c[d(x,W(x,Tx;λ))]α.[d(y,W(y,Ty;λ))]1−α (5)

for all x, y ∈ X\Fix(T). We also call T an interpolative (λ, k)-enriched Kannan type contraction.

It is easily seen that an interpolative (0, k)-enriched Kannan type contraction is a usual interpolative Kannan
type contraction.

Theorem 3.2. Let (X, d,W) be a complete convex metric space. T : X → X be a continuous interpolative enriched
Kannan type contraction. Then,

1. Fix(T) , ϕ.
2. The following estimate holds

d(xn+i−1, p) ≤
ci

1 − c
.d(xn, xn−1), n = 1, 2, ...; i = 1, 2, .... (6)
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Proof. Using the interpolative enriched Kannan type contraction condition (5), the mapping Tλ : X → X
defined by (2) satisfies

d(Tλx,Tλy) ≤ c[d(x,Tλx)]α.[d(y,Tλy)]1−α (7)

that is, Tλ is an interpolative Kannan type contraction. The Picard iteration associated with Tλ is actually
the Krasnoselskij iterative process {xn}

∞

n=0 associated to T, which is defined by xn+1 =W(xn,Txn;λ), i.e.,

xn+1 = Tλxn, n ≥ 0. (8)

Without loss of generality, we assume that xn , xn+1 for each nonnegative integer n. Indeed, if there exists
a nonnegative integer n0, such that xn0 = xn0+1 = Tλxn0 . Then xn0 is a fixed point. Thus, we have

d(xn,Tλxn) = d(xn, xn+1) > 0, for each nonnegative integer n.

Taking x = xn and y = xn−1 in (7), we obtain

d(xn+1, xn) ≤ c[d(xn, xn+1)]α.[d(xn−1, xn)]1−α,

which further gives

[d(xn, xn+1)]1−α
≤ c[d(xn−1, xn)]1−α.

We deduce that

d(xn, xn+1) ≤ cd(xn−1, xn) ≤ cnd(x0, x1). (9)

Since, c < 1 and letting n→∞ in the above inequality, we get d(xn, xn+1)→ 0. Now, we will prove that {xn}

is a Cauchy sequence. Using the triangular inequality, we obtain

d(xn, xn+r) ≤ d(xn, xn+1) + ... + d(xn+r−1, xn+r)

≤ cnd(x0, x1) + ... + cn+r−1d(x0, x1)

≤
cn

1 − c
(1 − cr)d(x0, x1). (10)

Letting n→∞ in the above inequality, we get that {xn} is a Cauchy sequence. Since, (X, d,W) is a complete
convex metric space, there exists a x∗ ∈ X such that lim

n→∞
d(xn, x∗) = 0.

On substituting x = xn and y = x∗ in (7), we obtain

d(Tλxn,Tλx∗) ≤ c[d(xn,Tλxn)]α.[d(x∗,Tλx∗)1−α].

Letting n→∞, we obtain Tλx∗ = x∗, i.e., x∗ ∈ Fix(Tλ).
To prove the last statement of our theorem, we first deduce the following result from (9),

d(xn+r, xn) ≤
c

1 − c
d(xn, xn−1). (11)

Now, letting r→∞ in (10) and (11), we get

d(xn, x∗) ≤
cn

1 − c
d(x0, x1),n ≥ 1, (12)

and

d(xn, x∗) ≤
c

1 − c
d(xn, xn−1),n ≥ 1, (13)

respectively. From (12) and (13), we get the unifying error estimate (6).
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Example 3.3. Let X = [0, 5] and define the distance function d : X × X → [0,∞) as d(x, y) = |x − y|, for any
x, y ∈ X. The mapping W : X × X × [0, 1] → X is defined as W(x, y;λ) = λx + (1 − λ)y, for all x, y ∈ X and let
T : X→ X be given by

Tx =
5 − x

9
. (14)

For any x, y, z ∈ X, we have

d(z,W(x, y, λ)) = |λ(z − x) + (1 − λ)(z − y)|
≤ λ|z − x| + (1 − λ)|z − y|
= λd(z, x) + (1 − λ)d(z, y).

Hence, (X, d,W) is a convex metric space. Also, for λ = 1
10

W(x,Tx;λ) = Tλx =
1
2
. (15)

So, we have d(Tλx,Tλy) = 0, where x, y ∈ [0, 5]\Fix(T). Therefore, for any α ∈ (0, 1), T is an interpolative enriched
Kannan type contraction. Thus, by Theorem 3.2, T has a fixed point. In this case, Fix(T) = { 12 }.

Corollary 3.4. Let (X, d) be a complete metric space and T be an interpolative Kannan type contraction. Then T has
a fixed point in X.

Proof. Taking λ = 0 in the above theorem, the result holds.

Now, we obtain fixed point results by enriching the interpolative Hardy-Rogers type contraction as
given in the following definition.

Definition 3.5. Let (X,d,W) be a convex metric space. A self-mapping T : X → X is an interpolative enriched
Hardy-Rogers type contraction if there exist λ ∈ [0, 1), c ∈ [0, 1) and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d(W(x,Tx;λ),W(y,Ty;λ)) ≤ c[d(x, y)]β.[d(x,W(x,Tx;λ))]α.[d(y,W(y,Ty;λ))]γ

.[
1
2

(d(x,W(y,Ty;λ)) + d(y,W(x,Tx;λ)))]1−α−β−γ (16)

for all x, y ∈ X\Fix(T). We also call T an interpolative (λ, k)-enriched Hardy-Rogers type contraction.

It is easily seen that an interpolative (0, k)-enriched Hardy-Rogers type contraction is a usual interpolative
Hardy-Rogers type contraction.

Theorem 3.6. Let (X, d,W) be a complete convex metric space. T : X → X be a continuous interpolative enriched
Hardy-Rogers type contraction. Then,

1. Fix(T) , ϕ.
2. The following estimate holds

d(xn+i−1, p) ≤
ci

1 − c
.d(xn, xn−1), n = 1, 2, ...; i = 1, 2, .... (17)

Proof. Using the interpolative enriched Hardy-Rogers type contraction condition (16), we have that the
mapping Tλ : X→ X defined by (2) satisfies

d(Tλx,Tλy) ≤ c[d(x, y)]β.[d(x,Tλx)]α.[d(y,Tλy)]γ.[
1
2

(d(x,Tλy) + d(y,Tλx))]1−α−β−γ, (18)
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that is, Tλ is an interpolative Hardy-Rogers type contraction. The Picard iteration associated with Tλ is
actually the Krasnoselskij iterative process {xn}

∞

n=0 associated to T, which is defined by xn+1 =W(xn,Txn;λ),
i.e.,

xn+1 = Tλxn, n ≥ 0. (19)

Without loss of generality, we assume that xn , xn+1 for each nonnegative integer n. Indeed, if there exist a
nonnegative integer n0, such that xn0 = xn0+1 = Tλxn0 . Then xn0 is a fixed point. Thus, we have

d(xn,Tλxn) = d(xn, xn+1) > 0, for each nonnegative integer n.

Taking x = xn and y = xn−1 in (18), we obtain

d(xn+1, xn) ≤ c[d(xn, xn−1)]β.[d(xn,Tλxn)]α.[d(xn−1,Tλxn−1)]γ.[
1
2

(d(xn,Tλxn−1) + d(xn−1,Tλxn))]1−α−β−γ

≤ c[d(xn, xn−1)]β.[d(xn, xn+1)]α.[d(xn−1, xn)]γ.[
1
2

(d(xn, xn) + d(xn−1, xn+1))]1−α−β−γ

≤ c[d(xn, xn−1)]β.[d(xn, xn+1)]α.[d(xn−1, xn)]γ.[
1
2

(d(xn−1, xn) + d(xn, xn+1))]1−α−β−γ. (20)

Suppose that d(xn−1, xn) < d(xn, xn+1) for some n ≥ 1. Thus,

1
2

(d(xn−1, xn) + d(xn, xn+1)) ≤ d(xn, xn+1).

Consequently, the inequality (20) yields that

[d(xn, xn+1)]β+γ ≤ c[d(xn−1, xn)]β+γ,

which implies that

d(xn, xn+1) ≤ d(xn−1, xn),

which is a contradiction. Thus, we have d(xn, xn+1) ≤ d(xn−1, xn) for all n ≥ 1. Hence, {d(xn−1, xn)} is a
non-increasing sequence with positive terms. Set l = lim

n→∞
d(xn−1, xn). We have

1
2

(d(xn−1, xn) + d(xn, xn+1)) ≤ d(xn, xn+1), for all n ≥ 1.

By a simple elimination, the inequality (20) implies that

[d(xn, xn+1)]1−α
≤ c[d(xn−1, xn)]1−α, for all n ≥ 1.

We deduce that

d(xn, xn+1) ≤ cd(xn−1, xn) ≤ cnd(x0, x1). (21)

Since, c < 1 and letting n → ∞ in the above inequality, we get l = 0. Now, we will prove that {xn} is a
Cauchy sequence. Using the triangular inequality, we obtain

d(xn, xn+r) ≤ d(xn, xn+1) + ... + d(xn+r−1, xn+r)

≤ cnd(x0, x1) + ... + cn+r−1d(x0, x1)

≤
cn

1 − c
(1 − cr)d(x0, x1). (22)
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Letting n→∞ in the above inequality, we get that {xn} is a Cauchy sequence. Since, (X, d,W) is a complete
convex metric space, there exists a x∗ ∈ X such that lim

n→∞
d(xn, x∗) = 0.

On substituting x = xn and y = x∗ in (18), we obtain

d(Tλxn,Tλx∗) ≤ c[d(xn, x∗)]β.[d(xn,Tλxn)]α.[d(x∗,Tλx∗)]γ.[
1
2

(d(xn,Tλx∗) + d(x∗,Tλxn))]1−α−β−γ.

Letting n→∞, we obtain d(x∗,Tλx∗) = 0, i.e., x∗ ∈ Fix(Tλ).
To prove the last statement of our theorem, we first deduce the following result from (21),

d(xn+r, xn) ≤
c

1 − c
d(xn, xn−1). (23)

Now, letting r→∞ in (22) and (23), we get

d(xn, x∗) ≤
cn

1 − c
d(x0, x1),n ≥ 1, (24)

and

d(xn, x∗) ≤
c

1 − c
d(xn, xn−1),n ≥ 1, (25)

respectively. From (24) and (25) we get the unifying error estimate (17).

Example 3.7. Let X = [−1, 2] and define the distance function d : X × X → [0,∞) as d(x, y) = |x − y|, for any
x, y ∈ X. The mapping W : X × X × [0, 1] → X is defined as W(x, y;λ) = λx + (1 − λ)y, for all x, y ∈ X and let
T : X→ X be given by

Tx =
{

35−2x
38 if x ∈ [−1, 0),

35
38 if x ∈ [0, 2]. (26)

For any x, y, z ∈ X, we have

d(z,W(x, y, λ)) = |λ(z − x) + (1 − λ)(z − y)|
≤ λ|z − x| + (1 − λ)|z − y|
= λd(z, x) + (1 − λ)d(z, y).

Hence, (X, d,W) is a convex metric space. Also, for λ = 1
20

W(x,Tx;λ) = Tλx =
{

7
8 if x ∈ [−1, 0),
x

20 +
7
8 if x ∈ [0, 2]. (27)

Choose c = 1
2 , α = 1

3 , β =
1
2 and γ = 1

7 . Then, we have to check that (16) holds.

Case-I: For x, y ∈ [−1, 0), we obtain d(Tλx,Tλy) = 0. Thus, (16) holds.

Case-II: For x ∈ [−1, 0) and y ∈ [0, 2], the left hand side of equation (16) becomes

d(Tλx,Tλy) = d
(7

8
,

y
20
+

7
8

)
=
∣∣∣∣ y
20

∣∣∣∣ ≤ 1
10
,

where the maximum value on the left is attained for y = 2. Thus, for y = 2, the right hand side of the equation is

c.[d(x, y)]
1
2 .[d(x,Tλx)]

1
3 .[d(y,Tλy)]

1
7 .[

1
2

(d(x,Tλy) + d(y,Tλx))]
1
42 >

1
2
.(2)

1
2 .
(7

8

) 1
3

.
(82

80

) 1
7

.
[1
2

(78
80
+

9
8

)] 1
42

= (0.5).(2)
1
2 .(0.875)

1
3 .(1.025)

1
7 .(1.05)

1
42

= 0.679502 >
1

10
.
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Therefore, (16) holds.

Case-III: For x, y ∈ [0, 2], the left hand side of equation (16) becomes

d(Tλx,Tλy) = d
( x

20
+

7
8
,

y
20
+

7
8

)
=

∣∣∣∣∣x − y
20

∣∣∣∣∣ ≤ 1
10
,

where the maximum value on the left is attained when x = 0 and y = 2 or when x = 2 and y = 0. Thus, for x = 0 and
y = 2, the right hand side of the equation is

c.[d(x, y)]
1
2 .[d(x,Tλx)]

1
3 .[d(y,Tλy)]

1
7 .[

1
2

(d(x,Tλy) + d(y,Tλx))]
1
42 >

1
2
.(2)

1
2 .
(7

8

) 1
3

.
(82

80

) 1
7

.
[1
2

(78
80
+

9
8

)] 1
42

= (0.5).(2)
1
2 .(0.875)

1
3 .(1.025)

1
7 .(1.05)

1
42

= 0.679502 >
1

10
.

Similarly, when x = 2 and y = 0, the above equation holds. Thus, in both the possibilities, (16) holds.

From all the above three cases, we obtain that T is an interpolative enriched Hardy-Rogers type contraction. Thus,
by Theorem 3.6, T has a fixed point which is 35

38 .

Corollary 3.8. Let (X, d) be a complete metric space and T be an interpolative Hardy-Rogers type contraction. Then
T has a fixed point in X.

Proof. Taking λ = 0 in the above theorem, the result holds.

Now, we obtain fixed point results by enriching the interpolative Matkowski type contraction as follows.

Definition 3.9. Let (X, d,W) be a convex metric space. A self mapping T : X → X is an interpolative enriched
Matkowski type contraction if there exist λ ∈ [0, 1), ϕ ∈ Φ and α, β, γ ∈ (0, 1) such that

d(W(x,Tx;λ),W(y,Ty;λ)) ≤ ϕ([d(x, y)]β.[d(x,W(x,Tx;λ))]α.[d(y,W(y,Ty;λ))]γ

[
1
2

(d(x,W(y,Ty;λ)) + d(y,W(x,Tx;λ)))]1−α−β−γ) (28)

It is easily seen that an interpolative (0, k)-enriched Matkowski type contraction is a usual interpolative
Matkowski type contraction.

Theorem 3.10. Let (X, d,W) be a complete convex metric space. T : X → X be a continuous interpolative enriched
Matkowski type contraction. Then T has a fixed point in X.

Proof. Using the interpolative enriched Matkowski type contraction condition (28), we have that the map-
ping Tλ : X→ X defined by (2) satisfies

d(Tλx,Tλy) ≤ ϕ([d(x, y)]β.[d(x,Tλx)]α.[d(y,Tλy)]γ.[
1
2

(d(x,Tλy) + d(y,Tλx))]1−α−β−γ), (29)

that is, Tλ is an interpolative Matkowski type contraction. The Picard iteration associated with Tλ is actually
the Krasnoselskij iterative process {xn}

∞

n=0 associated to T, which is defined by xn+1 =W(xn,Txn;λ), i.e.

xn+1 = Tλxn,n ≥ 0. (30)

Without loss of generality, we assume that xn , xn+1 for each nonnegative integer n. Indeed, if there exist a
nonnegative integer n0, such that xn0 = xn0+1 = Tλx0. Then xn0 is a fixed point. Thus, we have

d(xn,Tλxn) = d(xn, xn+1) > 0, for each nonnegative integer n.
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Taking x = xn and y = xn−1 in (29), we obtain

d(xn+1, xn) ≤ϕ([d(xn, xn−1)]β.[d(xn,Tλxn)]α.[d(xn−1,Tλxn−1)]γ.[
1
2

(d(xn,Tλxn−1) + d(xn−1,Tλxn))]1−α−β−γ)

=ϕ([d(xn, xn−1)]β.[d(xn, xn+1)]α.[d(xn−1, xn)]γ.[
1
2

(d(xn, xn) + d(xn−1, xn+1))]1−α−β−γ)

≤ϕ([d(xn, xn−1)]β.[d(xn, xn+1)]α.[d(xn−1, xn)]γ.[
1
2

(d(xn−1, xn) + d(xn, xn+1))]1−α−β−γ). (31)

Suppose that

d(xn−1, xn) < d(xn, xn+1), for some n ≥ 1.

Then

1
2

(d(xn−1, xn) + d(xn, xn+1)) ≤ d(xn, xn+1).

Consequently, the inequality (31) yields that

0 < d(xn, xn+1) ≤ ϕ([d(xn, xn−1)]β+γ.[d(xn, xn+1)]1−β−γ) ≤ [d(xn, xn−1)]β+γ.[d(xn, xn+1)]1−β−γ, (32)

which implies that

d(xn, xn+1) ≤ d(xn, xn−1),

which is a contradiction. Thus we have d(xn, xn+1) ≤ d(xn, xn−1), for all n ≥ 1. Hence, {d(xn, xn−1)} is a
non-increasing sequence of positive terms. Using (32), we have

d(xn, xn+1) ≤ ϕ([d(xn, xn−1)]β+γ[d(xn, xn+1)]1−β−γ) ≤ ϕ(d(xn−1, xn)).

On repeating the same argument, we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)) ≤ · · · ≤ ϕn(d(x0, x1)). (33)

As ϕ ∈ Φ, we have lim
n→∞

ϕn(d(x0, x1)) = 0. Therefore, (33) implies that lim
n→∞

d(xn, xn+1) = 0. Now, we shall
show that sequence {xn} is Cauchy. For any ϵ > 0, there exists some n0 ∈N, such that for n ≥ n0

ϕn(d(x0, x1)) < ϵ − ϕ(ϵ).

From (33), we have

0 < d(xn, xn+1) < ϵ − ϕ(ϵ). (34)

We claim that

0 < d(xn, xm) < ϵ, for all m ≥ n ≥ n0. (35)

We prove the above inequality by mathematical induction. Since ϵ − ϕ(ϵ) < ϵ, from (34), we conclude that
(35) holds for m = n + 1. Now, suppose that (35) holds for m = k. For m = k + 1, we have

d(xn, xk+1) ≤d(xn, xn+1) + d(xn+1, xk+1)
≤ϵ − ϕ(ϵ) + d(Tλxn,Tλxk)

≤ϵ − ϕ(ϵ) + ϕ([d(xn, xk)]β.[d(xn,Tλxn)]α.[d(xk,Tλxk)]γ.[
1
2

(d(xn,Tλxk) + d(xk,Tλxn))]1−α−β−γ).
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Since k ≥ n ≥ n0, we have

[d(xn, xk)]β.[d(xn,Tλxn)]α.[d(xk,Tλxk)]γ.[
1
2

(d(xn,Tλxk) + d(xk,Tλxn))]1−α−β−γ
≤ ϵ.

Thus, we have

d(xn, xk+1) ≤ ϵ − ϕ(ϵ) + ϕ(ϵ) = ϵ.

So, (35) holds for m = k + 1, which implies that the sequence {xn} is Cauchy. Therefore, there exists x∗ ∈ X,
such that lim

n→∞
d(xn, x∗) = 0. Suppose that x∗ , Tλx∗. Since xn , Tλxn for each n, by (29), we have

d(xn+1,Tλx∗) = d(Tλxn,Tλx∗) ≤ ϕ([d(xn, x∗)]β.[d(xn,Tλxn)]α.[d(x∗,Tλx∗)]γ.[
1
2

(d(xn,Tλx∗)+d(x∗,Tλxn+1))]1−α−β−γ).

(36)

It is obvious that there exists N ∈N, such that for each n ≥ N,

[d(xn, x∗)]β.[d(xn,Tλxn)]α.[d(x∗,Tλx∗)]γ.[
1
2

(d(xn,Tλx∗) + d(x∗,Tλxn+1))]1−α−β−γ < d(x∗,Tλx∗).

Since ϕ is non decreasing, by insertion of inequality (36), we have

d(xn+1,Tλx∗) ≤ ϕ(d(x∗,Tλx∗)), for all n ≥ N. (37)

Letting n→∞, we obtain that

0 < d(x∗,Tλx∗) ≤ ϕ(d(x∗,Tλx∗)),

which is a contradiction. Thus x∗ = Tλx∗. So from Lemma 2.15, T has a fixed point.

The following example justifies the previous theorem.

Example 3.11. Let X = [−1, 1] and define the distance function d : X × X → [0,∞) as d(x, y) = |x − y|, for any
x, y ∈ X. The mapping W : X × X × [0, 1] → X is defined as W(x, y;λ) = λx + (1 − λ)y, for all x, y ∈ X and let
T : X→ X be given by

Tx =
{
−x if x ∈ [−1, 0),
x if x ∈ [0, 1]. (38)

For any x, y, z ∈ X, we have

d(z,W(x, y, λ)) = |λ(z − x) + (1 − λ)(z − y)|
≤ λ|z − x| + (1 − λ)|z − y|
= λd(z, x) + (1 − λ)d(z, y)

Hence, (X, d,W) is a convex metric space. Also, for λ = 1
2

W(x,Tx;λ) = Tλx =
{

0 if x ∈ [−1, 0),
x if x ∈ [0, 1]. (39)

So, we have d(Tλx,Tλy) = 0, where x, y ∈ [−1, 1]\Fix(T). Therefore, for any ϕ ∈ Φ and any α, β, γ ∈ (0, 1), T
is an interpolative enriched Matkowski type contraction. Thus, by Theorem 3.10, T has a fixed point. In this case,
Fix(T) = [0, 1], i.e. T has infinitely many fixed point.

Corollary 3.12. Let (X, d) be a complete metric space and T be an interpolative Matkowski type contraction. Then T
has a fixed point in X.

Proof. Taking λ = 0 in the above theorem, the result holds.
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4. Conclusion

In this paper, we introduced larger classes of contractive mappings, namely, interpolative enriched Kan-
nan type contraction, interpolative enriched Hardy-Rogers type contraction and interpolative enriched
Matkowski type contraction, by enriching usual interpolative Kannan type contraction, interpolative
Hardy-Rogers type contraction and interpolative Matkowski type contraction, respectively, in the Taka-
hashi convex metric space setting. For the given contractions, we proved existence of fixed points and
approximation results using Krasnoselskij iteration. Our results generalized the results presented in [18],
[22], [23] and some other results in the existing literature. Examples are also given for validating the use-
fulness of our results. The results presented in this paper will enlighten the way for researchers to enrich
the results given in [5], [19]-[21] and [24]-[26].

References

[1] M. Abbas, R. Anjum, S. Riasat, A new type of fixed point theorem via interpolation of operators with application in homotopy
theory, Arab. J. Math. (2022) 1-12.

[2] R. P. Agarwal, D. O’Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with application, Topological Fixed
Point Theory and Its Applications, Springer: New York, USA, (2009) p.6.

[3] M. U. Ali, H. Aydi, M. Alansari, New generalizations of set valued interpolative Hardy–Rogers type contractions in b-metric
spaces, J. Funct. Spaces (2021) Article ID 6641342.
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