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Abstract. In the current paper, we investigate the existence and regularity of weak solutions to a class of
non-uniformly elliptic equations with degenerate coercivity and non-polynomial growth. The model case
is given as follows:

div
(exp(1 + |Du|)

(1 + |u|)2 Du
)
+

M(|Du|)
(1 + |u|)2 .u = f in ω.

An L∞- estimate of solutions is also obtained for an L1-datum f .

1. Introduction

Let ω be a bounded open set in Rd that satisfies the segment property, (d ≥ 2). The goal of the current
research is to prove the existence and L∞− estimates of weak solutions to the nonlinear and non-degenerate
equations with non-polynomial growth equations:

{
−div(Γ(x,u,Du)) + B(x,u,Du) = f on ω,
u = 0 on ∂ω.

(1)

Here, Γ : ω ×R ×Rd
→ Rd is a Carathéodory function that satisfies the assumptions below:

for a.e. x ∈ ω and for all s ∈ R, ξ, ξ∗ ∈ Rd, ξ , ξ∗, there exist two N-functions M and P (See Definition below)
such that:

Γ(x, s, ξ).ξ ≥ 1(|s|)M(|ξ|), (2)

where 1 : R+ → R+∗ is a continuous decreasing function with 1(0) = 1, and set the primitive G(s) =
∫ s

0

1
1(t)

dt.

|Γ(x, s, ξ)| ≤ ν(a0(x) +M
−1

P(k1|s|)) +M
−1

M(k2|ξ|)), (3)
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where ν > 0, k1 > 0, k2 > 0, a0(.) ∈ EM(Ω).

(Γ(x, s, ξ) − Γ(x, s, ξ∗))(ξ − ξ∗) > 0, (4)

and B : ω ×R ×Rd
→ R is a Carathéodory function such that

|B(x, s, ξ)| ≤ h(s)M(|ξ|), (5)

where h : R→ R+ is a continuous function,

B(x, s, ξ).s ≥ 0, (6)

We suppose that t 7→ h(t)
1(|t|) belongs to L1(R) and defining ψ(r) =

∫ r

0

h(t)
1(|t|)

dt for all r ∈ R, this implies that,

ψ is bounded. (7)

and

f ∈ L1(ω) and
∫ +∞

r

( t
M(t)

)p
dt < ∞, with p =

1
d − 1

and r > 0. (8)

In the case of uniform ellipticity, i.e., 1(s) = const, the existence of bounded solutions of equation (1)
has been the subject of several papers in functional frameworks of classical Sobolev spaces, as well as in
general functional frameworks, see for example [1–3, 6, 13–15, 21], and their references. However, due to
assumption 2, the operator degenerates as soon as the solution u is unbounded. Indeed, for large values
of the solution u, a slow but steady diffusion effect can occur. The function Γ(x, s, ξ) strongly degenerates
when |s| grows to infinity because when |s| is large, 1(|s|) vanishes. This lack of coercivity prohibits us from
using classical approaches.
For the results dealing with the non-coercivity case, we give the following overview of the pioneering work
of Boccardo L. et al. in [9, 17], who studied (1) with Γ(x,u,Du) ≥ 1

(1+|u|)θ Du, B = 0 and f ∈ Lm(ω) with m ≥ 1
and θ ∈]0; 1]. After that, Croce G. in [29] introduced the term B(x,u,∇u) = |u|p−1u, which has a regulating
effect on the solution u. In the case of weighted Sobolev spaces W1,p

0 (ω, ν), Ammar K. in [10] established
the existence of a renormalized solution in the L1

−frame under the condition Γ(x, s, ξ)ξ ≥ 1ν(x)|ξ|p and B
satisfies the sign condition. Aharouch L. et al. [7] investigated problem (1) in the presence of an obstacle,

where the right-hand side f ∈ L1(ω) and the lower-order term B satisfies |B(x, s, ξ)| ≤ γ(s)+ 1(s)
N∑

i=1

νi(x) |ξi|
p.

Later, in [11], the authors showed the same results using the following conditions:

Γ(x, s, ξ) · ξ ≥ b(s)p−1
N∑

i=1

νi(x) |ξi|
p ,

∫ +∞

−∞

b(s)ds < +∞ and B = 0.

For further results, we suggest that the reader consult [3, 4, 8, 9, 13, 16, 25] and the references therein.

This research intends to generalize the previous results (See also [1, 2, 18–20, 26, 27] ) in the framework
of Orlicz spaces. Moreover, to prove the existence and L∞−estimates of the solutions of (1) by assuming the
coercivity condition (2). Therefore, we use rearrangement techniques to surmount this task, approximate
problems, and choose suitable test functions.

The paper’s layout is as follows. Section 2 gives some preliminaries and technical lemmas in Orlicz
Spaces. In Section 3, we prove the existence of weak solutions. In the appendix, we establish an L∞−estimate
of the solution to (1).
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2. Auxiliary Outcomes and Mathematical Context

This section shows the notation, goes over some basic definitions, and collects the propositions and facts
we need to show our main result.

Definition 2.1. [2] Let M : R+ → R+ be an N-function, that is, M is continuous, convex, with M(s) > 0 for

s > 0,
M(s)

s
→ 0 as s → 0, and

M(s)
s
→ +∞ as s → +∞. The N-function M conjugate to M is defined by

M(s) = sup
t>0

(st −M(t)).

We will extend these N-functions into even functions on all R.

Let P and Q be two N-functions. P≪ Q means that P grows essentially less rapidly than Q, that is, for

each ε > 0, lim
s→+∞

P(s)
Q(εs)

= 0.

Definition 2.2. [4] We define the Orlicz class KM(ω) (resp. the Orlicz space LM(ω) as the set of (equivalence classes
of) real valued measurable functions u on ω such that∫

Ω

M(v(x))dx < +∞ (resp.
∫
ω

M(
v(x)
α

)dx < +∞ for some α > 0).

The set LM(ω) is Banach space under the norm

∥v∥M,ω = inf
{
α > 0 :

∫
Ω

M(
v(x)
α

)dx ≤ 1
}
,

and KM(ω) is a convex subset of LM(ω).

• The closure in LM(ω) of the set of bounded measurable functions with compact support in ω is
denoted by EM(ω).

• The dual EM(ω) can be identified with LM(ω) by means of the pairing
∫
ω

uvdx and the dual norm of

LM(ω) is equivalent to ∥v∥M,ω.

• The Orlicz-Sobolev space, W1LM(ω) (resp. W1EM(ω) ) is the space of all functions v such that v and
its distributional derivatives up to order 1 lie in LM(ω) (resp. EM(ω) ). It is a Banach space under the
norm

∥v∥1,M =
∑
|α|≤1

∥Dαv∥M,ω.

• Thus, W1LM(ω) and W1EM(ω) can be identified with subspaces of product of N + 1 copies of LM(ω).
Denoting this product by ΠLM. We will use the weak topologies σ(ΠLM,ΠEM) and σ(ΠLM,ΠLM).

Definition 2.3. [6] We define the space W1
0EM(ω) as the (norm) closure of the Schwartz space D(ω) in W1EM(ω)

and the space W1
0LM(ω) as the σ(ΠLM,ΠEM) closure ofD(ω) in W1LM(ω).

We denote by W−1LM(ω) (resp. W−1EM(ω) ) the space of distributions onωwhich can be written as sums
of derivatives of order ≤ 1 of functions in LM(ω) (resp. EM(ω)). It is also a Banach space under the usual
quotient norm. For more details, we refer the reader to [6].
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2.1. Rearrangement
Denote by |ω| the Lebesgue measure of ω. Assume that ν is a measurable function from ω into R. The

distribution function µν of ν is defined as follows:

µν(t) = |{x ∈ ω; |ν(x)| > t}| , t ≥ 0.

The decreasing rearrangement ν∗ of ν defined on ]0, |ω|[ by

ν∗(s) = inf{t ≥ 0;µν(t) ≤ s}

ν∗(0) = ess sup|ν|. (9)

Furthermore, for all t ≥ 0, we have

ν∗(µν(t)) ≤ t. (10)

Finally, let Θ(t) = teσt2
, σ > 0. It’s obvious that when σ = (λ1

λ2
)2, λ1 > 0, λ2 > 0, one has

Θ′(t) −
λ1

λ2
|Θ(t)| ≥

1
2

for all t ∈ R. (11)

3. Main results

In what follows, we will assume that M and P are two N-functions such that H(s) =
M(s)

s
is a convex

function.

Definition 3.1. A measurable function u ∈ W1
0LM(ω) is called a weak solution to problem (1), if Γ(x,u,Du) ∈

(LM(ω))d and∫
ω
Γ(x,u,Du)∇φdx +

∫
ω

B(x,u,∇u)φdx =
∫
Ω

fφdx, ∀φ ∈ D(ω). (12)

Theorem 3.2. Assume that (3)-(5) hold. Given f ∈ L1(ω) with the condition (8), then there exists a bounded weak
solution u ∈W1

0LM(ω) ∩ L∞(ω) to problem (1).

Step 1: Approximate problems
For every n > 0, we define the following approximations:
Γn(x, s, ξ) = Γ(x,Tn(s), ξ), Bn(x, s, ξ) = B(x,s,ξ)

1+ 1
n |B(x,s,ξ)|

, a.e. x ∈ ω, for all s ∈ R and ξ ∈ Rd, where Tn(s) =
max(−n,min(n, s)).
Denoting by ( fn)n the sequence of smooth functions such that fn → f strongly in L1(ω), and

∥ fn∥L1(ω) ≤ ∥ f ∥L1(ω). (13)

and consider the approximated equations∫
ω
Γn(x,Tn(un),Dun)∇φdx +

∫
ω

Bn(x,un,Dun)φdx =
∫
ω

fnφdx, ∀φ ∈W1
0LM(ω) (14)

Now, since 1(.) is decreasing and by (2), we have

Γn(x,Tn(s), ξ).ξ ≥ 1(|Tn(s)|)M(|ξ|) ≥ 1(n)M(|ξ|).
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We have also |Bn(x, s, ξ)| ≤ |B(x, s, ξ)|, |Bn(x, s, ξ)| ≤ n and Bn(x, s, ξ)s ≥ 0.
As a consequence of the [23], since Γn(x, s, ξ) + Bn(x, s, ξ) verify the assumption (A4) of Proposition 5,

there exists un ∈W1
0LM(ω) solution of the problem (14).

Step 2: A priori Estimates
According to (13) and (43) (see appendix), there exists a constant still denoted c0 such that

∥un∥L∞(ω) ≤ c0. (15)

Let n > c0, then Tn(un) = un. Choosing φ = Θ(un) as a test function of (14), by (2) and (5), we have∫
ω
1(|un|)M(|∇un|)Θ′(un)dx ≤

∫
ω

h(un)M(|∇un|)|Θ(un)|dx +
∫
ω
| fn||Θ(un)|dx,

using (13) and Dominated Convergence Theorem, we have∫
ω

(
1(|un|)Θ′(un) − h(un)|Θ(un)|

)
M(|∇un|)dx ≤ Θ(c0)∥ fn∥L1(ω),

using (11) with σ =
(

h(un)
1(|un |)

)2
, we obtain∫

ω
M(|∇un|)dx ≤

2Θ(c0)
1(c0)

∥ f ∥L1(ω). (16)

As a result, one has {un}n is bounded in W1
0LM(ω). If required, we go to a subsequence and suppose that

un
weakly
⇀ u in W1

0LM(ω) for σ(ΠLM,ΠEM) , strongly in EM(ω), and a.e. inω. (17)

and usnig the compact embedding of W1
0LM(ω) in EM(ω), we have also

un −→ u strongly in EM(ω) and a.e. inω. (18)

We will demonstrate that {Γ(x,Tn(un),Dun)}n is bounded in
(
LM(ω)

)d
.

For this, we take ν ∈ (EM(ω))d, and by (4) we get,

(Γ(x,Tn(un),Dun) − Γ(x,Tn(un),
ν
k2

))(Dun −
ν
k2

) > 0,

then ∫
ω
Γ(x,Tn(un),Dun)dx ≤ I + J,

where

I = k2

∫
ω
Γ(x,Tn(un),Dun)∇undx,

and

J =
∫
ω
Γ(x,Tn(un),

ν
k2

)νdx − k2

∫
ω
Γ(x,Tn(un),

ν
k2

)Dundx.

From (2), (14) and using the same previous techniques to establish that∫
ω
Γ(x,Tn(un),Dun)Dundx ≤ 2|Θ(c0)|∥ f ∥L1(ω), (19)

and then,

I ≤ CI, (20)
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where CI is a positive constant independent of n.
By (3), the convexity of M, and the fact that P << M, we have∫

ω
M(

A(x,Tn(un), νk2
)

3ν
)dx ≤

1
3

∫
ω

(
M(a0(x)) +M(k1|Tn(un)|) +M(|ν|)

)
dx + C,

thus {Γ(x,Tn(un), νk2
)}n is bounded in (LM(ω))d.

Returning to J, we have

J ≤ 2∥Γ(x,Tn(un),
ν
k2

)∥M,ω∥ν∥M,ω + 2k2∥Γ(x,Tn(un),
ν
k2

)∥M,ω∥Dun∥M,ω,

and by (16), we obtain
J ≤ CJ,

where CJ is a positive constant independent of n.
So, ∫

ω
Γ(x,Tn(un),Dun)wdx ≤ C, (21)

with C is a positive constant that is independent of n.
Finally, according to the Banach-Steinhaus Theorem, {Γ(x,Tn(un),Dun)}n remains bounded in (LM(ω))d.
Hence

Γn(x,Tn(un),Dun)
weakly
⇀ ξ, in (LM(ω))d, (22)

for σ(ΠLM,ΠEM).

Step 3 : Almost everywhere convergence of Dun

Let v j ∈ D(ω) modular
→ u, in W1

0LM(Ω) (cf. [24]). Let W j
n = un − v j and W j = u − v j.

Plug the test function Θ(W j
n) in (14), we get,∫

ω
Γ(x,un,Dun).DΘ(W j

n)dx +
∫
ω

Bn(x,un,Dun)Θ(W j
n)dx =

∫
ω

fnΘ(W j
n)dx. (23)

For i ≥ 1, we denote by εi(n, j) the various sequences of real numbers which satisfy

lim
j→+∞

lim
n→+∞

εi(n, j) = 0.

The first term in (23) is written as follows∫
ω
Γ(x,un,Dun).DΘ(W j

n)dx =

∫
ω

[Γ(x,un,Dun) − Γ(x,un,Dv jχ
s
j)]

×[Dun −Dv jχs
j)]Θ

′(W j
n)dx

+

∫
ω
Γ(x,un,Dv jχ

s
j).[Dun −Dv jχ

s
j)]Θ

′(W j
n)dx

−

∫
ω\ωs

j

Γ(x,un,Dun).Dv jΘ(W j
n)′dx,

where χs
j denotes the characteristic function of the subset ωs

j = {x ∈ ω : |Dv j| ≤ s}.
Starting with the third term, since Dv jχω\ωs

j
∈ (EM(ω))d, (17) and (22), we have∫

ω\ωs
j

Γ(x,un,Dun).Dv jΘ
′(W j

n)dx→
∫
ω\ωs

j

ξ.Dv jΘ
′(W j)dx as n→∞,
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using the modular convergence of {v j}, we get∫
ω\ωs

j

ξ.Dv jΘ
′(W j)dx→

∫
ω\ωs

j

ξ.Dud x as j→∞,

it will allow us to write∫
ω\ωs

j

Γ(x,un,Dun).Dv jΘ
′(W j

n)dx =
∫
ω\ωs

j

ξ.Dud x + ε1(n, j). (24)

For the second term of (23), remark that∫
ω
Γ(x,un,Γv jχ

s
j).[Dun −Dv jχ

s
j)]Θ

′(W j
n)dx

→

∫
ω
Γ(x,u,Dv jχ

s
j).[Du −Dv jχ

s
j)]Θ

′(W j)dx

as n→ +∞, since Γ(x,un,Dv jχs
j)Θ
′(W j

n)→ Γ(x,u,Dv jχs
j)Θ
′(W j) strongly in (EM(ω))d as n→∞ (becauses of

lemma 1, page 405 in [12], and (18)), while Dun → Du weakly in (LM(ω))d.
We have also, Dv jχs

j → Duχs strongly in (EM(ω))d as j→ +∞ , then it is easy to see that∫
ω
Γ(x,u,Dv jχ

s
j).[Du −Dv jχ

s
j)]Θ

′(W j)dx→ 0 as j→∞,

and ∫
ω
Γ(x,un,Dv jχ

s
j).[Dun −Dv jχ

s
j)]Θ

′(W j
n)dx = ε2(n, j), (25)

where ωs = {x ∈ ω : |Du| ≤ s}.
Now combing (23), (24) and (25), we obtain∫
ω
Γ(x,un,Dun).DΘ(W j

n)dx = ε3(n, j) −
∫
ω\ωs

ξk.Dudx

+

∫
ω

[Γ(x,un,Dun) − Γ(x,un,Dv jχ
s
j)].[Dun −Dv jχ

s
j)]Θ

′(W j
n)dx. (26)

Returning to the second term on the left-hand side of (23). We have∣∣∣∣ ∫
ω

Bn(x,un,Dun)Θ(W j
n)dx

∣∣∣∣ ≤ ∫
ω

h(un)M(|Dun|)|Θ(W j
n)|dx

≤

∫
ω

h(un)
1(|un|)

Γ(x,un,Dun).Dun|Θ(W j
n)|dx

≤
∥h(un)∥L∞
1(c0)

∫
ω
Γ(x,un,Dun).Dun|Θ(W j

n)|dx

≤ 10

∫
ω

[Γ(x,un,Dun) − Γ(x,un,Dv jχ
s
j)]

×[Dun −Dv jχs
j]|Θ(W j

n)|dx

+10

∫
ω
Γ(x,un,Dun).Dv jχ

s
j|Θ(W j

n)|dx

+10

∫
ω
Γ(x,un,Dv jχ

s
j)].[Dun −Dv jχ

s
j]|Θ(W j

n)|dx,

(27)
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where 10 =
∥h(un)∥L∞
1(c0)

.

In a similar way as above, we have

10

∫
ω
Γ(x,un,Dun).Dv jχ

s
j|Θ(W j

n)|dx = ε4(n, j),

10

∫
ω
Γ(x,un,Dv jχ

s
j)].[Dun −Dv jχ

s
j]|Θ(W j

n)|dx = ε5(n, j).

Hence ∣∣∣∣ ∫
ω

Bn(x,un,DunΘ(W j
n)dx

∣∣∣∣ ≤ 10

∫
ω

[Γ(x,un,Dun) − Γ(x,un,Dv jχs
j)]

×[Dun −Dv jχs
j]|Θ(W j

n)|dx + ε6(n, j).
(28)

Regarding the term on the right side of (23), since Θ(W j
n)

weakly∗
→ Θ(W j), in L∞(ω) for σ(L∞,L1) as n→∞, one

has ∫
ω

fnΘ(W j
n)dx→

∫
ω

fΘ(W j)dx,

we have also v j
weakly∗
→ u, in L∞(ω) for σ(L∞,L1) as j→∞, we get∫

ω
fnΘ(W j

n)dx = ε7(n, j). (29)

Finally, by (23), (26), (28) and (29), we obtain∫
ω

[Θ′(W j
n) − 10|Θ(W j

n)|][a(x,un,∇un) − a(x,un,∇v jχ
s
j)].[∇un − ∇v jχ

s
j]dx

≤

∫
ω\ωs

ξ.∇udx + ϵ8(n, j),

and then ∫
ω

[Γ(x,un,Dun) − Γ(x,un,Dv jχ
s
j)].[Dun −Dv jχ

s
j]dx ≤ 2

∫
ω\ωs

ξ.Dudx + 2ε8(n, j).

On the other hand∫
ω

[Γ(x,un,Dun)− Γ(x,un,Duχs)][Dun −Du)χs]dx

=

∫
ω

[Γ(x,un,Dun) − Γ(x,un,Dv jχ
s
j)][Dun −Dv jχ

s
j]dx

+

∫
ω
Γ(x,un,Dun).[Dv jχ

s
j −Duχs]dx

−

∫
ω
Γ(x,un,Duχs).[Dun −Duχs]dx

+

∫
ω
Γ(x,un,Dv jχ

s
j).[Dun −Dv jχ

s
j]dx.

(30)

We will pass to the limit in n and j in the last three terms on the right side of the above equality. Tools
similar to those in (24) give ∫

ω
Γ(x,un,Dun).[Dv jχ

s
j −Duχs]dx = ε9(n, j),
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∫
ω
Γ(x,un,Duχs).[Dun −Duχs]dx = ε10(n, j),

and ∫
ω
Γ(x,un,Dv jχ

s
j).[Dun −Dv jχ

s
j]dx = ε11(n, j), (31)

which imply that∫
ω

[Γ(x,un,Dun) − Γ(x,un,Duχs)].[Dun −Duχs]dx ≤ 2
∫
ω\ωs

ξDudx + 2ε12(n, j).

For r ≤ s, one has

0 ≤
∫
ωr

[Γ(x,un,Dun) − Γ(x,un,Du)].[Dun −Du]dx

=

∫
ωs

[Γ(x,un,Dun) − Γ(x,un,Duχs)].[Dun −Duχs]dx

≤

∫
ω

[Γ(x,un,Dun) − Γ(x,un,Duχs)].[Dun −Duχs]dx

≤ 2
∫
ω\ωs

ξ.Dud x + ε13(n, j).

Using the fact that ξ.Du ∈ L1(ω) and |ω\ωs| → 0 as s→ +∞, we get∫
ωr

[Γ(x,un,Dun) − Γ(x,un,Du)].[Dun −Du]dx→ 0 as n→ +∞.

As a result, we conclude that there exists a subsequence still denoted by un such that

[Γ(x,un,Dun) − Γ(x,un,Du)].[Dun −Du]→ 0 a.e. in ωr.

On the other hand, for every x ∈ ωr
\Z with |Z| = 0, one has by (3) and (2),

[Γ(x,un,Dun) − Γ(x,un,Du)].[Dun −Du] ≥ 1(c0)M(|Dun|)
−Γ(x,un,Dun).Du − Γ(x,un,Du).Dun
≥ 1(c0)M(|Dun|)

−C
(
1 + |Dun| +M

−1
M(|Dun|

)
),

(32)

where C is a constant not depend on n.
Following all the previous results, {Dun} is bounded in RN, and for a subsequence of un, there exists ξ ∈ Rd

such that
∇un → ξ in Rd,

and
[Γ(x,u, ξ) − Γ(x,u,∇u)].[ξ −Du] = 0.

Thus ξ = Du and Dun → Du a.e. in ωr.
Since r is arbitrary, we construct a subsequence such that

Dun → Du a.e. in ω. (33)

From (22), (17), and (33), it follows that

Γ(x,Tn(un),Dun)
weakly
⇀ Γ(x,u,Du) ∈ (LM(ω))d, for σ (ΠLM̄,ΠEM) (34)
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Step 4: Dun
modular
−→ Du

Let n > c0, by (4), we obtain∫
ω
Γ(x,un,Dun).Dundx ≤

∫
ω
Γ(x,un,Dun).Dv jχ

s
jdx

+

∫
ω
Γ(x,un,Dv jχ

s
j).[Dun −Dv jχ

s
j]dx

+2
∫
ω\ωs
Γ(x,u,Du).Dud x + 2ε8(n, j).

(35)

We return to (31) to have∫
ω
Γ(x,un,Dun).Dundx ≤

∫
ω
Γ(x,un,Dun).Dv jχ

s
jdx

+2
∫
ω\ωs
Γ(x,u,Du).Dud x + ε15(n, j),

(36)

letting n→∞ and j→∞, we get

lim sup
n→∞

∫
ω
Γ(x,un,Dun).Dundx ≤

∫
ω
Γ(x,u,Du).Duχsd x

+2
∫
ω\ωs
Γ(x,u,Du).Dudx.

(37)

Passing to the limit as s→∞, we get

lim sup
n→∞

∫
ω
Γ(x,un,Dun).Dundx ≤

∫
ω
Γ(x,u,Du).Dudx,

and by Fatou’s Lemma, we deduce that

lim
n→∞

∫
ω
Γ(x,un,Dun).Dundx =

∫
ω
Γ(x,u,Du).Dudx.

Using Lemma 4 page 164 in [22], we get

Γ(x,un,Dun).Dun → Γ(x,u,Du).Du strongly in L1(ω). (38)

On the other hand, since 1(c0) ≤ 1(|un|) and using Young inequality, one has

M(
|Dun −Du|

2
) ≤

1(|un |)
21(c0) M(|Dun|) +

1(|u|)
21(c0) M(|Du|)

≤
1

21(c0)
Γ(x,un,Dun).Dun +

1
21(c0)

Γ(x,u,Du).Du.
(39)

As a result of (33) and Lebesgue Theorem, we reach to our result. Hence, according to (33) and Dominated
Convergence Theorem, we deduce our result.
Step 5: Equi-integrability of {B(x,un,Dun)}n
We aim to establish that

B(x,un,Dun)→ B(x,u,Du) strongly in L1(ω). (40)

Indeed, by (17) and (33), one gets B(x,un,Dun) → B(x,u,Du) a.e. in ω. However, because un is bounded
and h is continuous, choosing h0 = ∥h(un)∥L∞(ω), and by (5), we have

|B(x,un,Dun)| ≤ h(|un|)M(|Dun|) ≤ h0M(|Dun|).
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Now, let E ⊂ ω, then ∫
E
|B(x,un,Dun)|dx ≤

h0

1(c0)

∫
E
Γ(x,un,Dun).Dundx

As we have (38), we can apply the equi-integrability of {Γ(x,un,Dun)}n and finish our proof with Vitali’s
theorem.

Remark 3.3. we can find the same result if we replaced (8) by

f ∈ Lr(ω) sucth that r =
pd

p + 1
and p >

1
d − 1

.

Step 6: Passing to the limit.
Taking v ∈ D(ω) as a test function in (14) yields

∫
ω
Γn (x,un,Dun) ·Dvdx +

∫
ω

Bn (x,un,Dun) vdx =
∫
ω

fnvdx. (41)

By (34), (40) and (42) respectively, we get∫
ω
Γn (x,un,Dun) ·Dvdx→

∫
ω
Γ(x,u,Du) ·Dvdx.∫

ω
Bn (x,un,Dun) vdx→

∫
ω

B (x,u,Du) vdx

and ∫
ω

fnvdx→
∫
ω

f vdx

This complets the proof.

Appendix

Theorem 3.4. Assume that (3) - (7) hold. Given f ∈ L1(ω) with the condition (8), then any weak solution u to
problem (1) (in the sense of Definition 3.1) satisfied

∥u∥L∞(ω) ≤ c0, (42)

where c0 is a constant depending only on d.

Proof of Theorem 3.4

We define a decreasing and convex function K(.) as K(s) = 1
H−1(s) where H−1(s) = sup{r ≥ 0,H(r) ≤ s}.

Using Jensen’s inequality, the definition of H and the fact that 1(.) is decreasing function such that 1(0) = 1,
we have

K
( ∫
{t≤|u|≤t+h}

1(|u|)M(|∇u|)∫
{t≤|u|≤t+h}

|∇u|ds
ds

)
= K

( ∫
{t≤|u|≤t+h}

1(|u|)H(|∇u|)|∇u|∫
{t≤|u|≤t+h}

|∇u|ds
ds

)

≤

∫
{t≤|u|≤t+h}

K
(
1(|u|)H(|∇u|)

)
|∇u|∫

{t≤|u|≤t+h}
|∇u|ds

ds

≤
1(|t|)(µ(t) − µ(t + h))∫

{t≤|u|≤t+h}
|∇u|ds

.
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Letting h→ 0, we get

K
(
−

d
dt

∫
{|u|>t}

1(|u|)M(|∇u|)

−
d
dt

∫
{|u|>t}

|∇u|ds
ds

)
≤

−1(|t|)µ′(t)

−
d
dt

∫
{|u|>t}

|∇u|ds
.

From Lemma (See [24], Lemma 2, page 72), we have

−
d
dt

∫
{|u|>t}

|∇u|dx ≥ dC
1
d
d µ(t)1− 1

d ,

where Cd is the measure of the unit ball of Rd. By the same arguments in Lemma 3.3 in [5] we have

1
1(|t|)

≤
−µ′(t)

dC
1
d
d µ(t)1− 1

d

H−1
(− d

dt

∫
{|u|>t}

1(|u|)M(|∇u|)ds

dC
1
d
d µ(t)1− 1

d

)

≤
−µ′(t)

dC
1
d
d µ(t)1− 1

d

H−1

(c1

∫
|u|>t
| f |ds

dC
1
d
d µ(t)1− 1

d

)
.

By integrating between 0 and r, we obtain

G(r) ≤
1

dC1/d
d

∫ r

0

−µ′(t)

µ(t)1− 1
d

H−1

 c1∥ f ∥L1(ω)

dC1/d
d µ(t)1− 1

d

 dt,

a change of variables gives

G(r) ≤
1

dC1/d
d

∫
|ω|

µ(r)
H−1

 c1∥ f ∥L1(ω)

dC1/d
d s1− 1

d

 ds

s1− 1
d

,

as above, taking r = u∗(t) gives

G (u∗(t)) ≤
1

dC1/d
d

∫
|ω|

t
H−1

 c1∥ f ∥L1(ω)

dC1/d
d s1− 1

d

 ds

s1− 1
d

.

Then, we have

G (∥u∥∞) ≤
1

dC1/d
d

∫
|ω|

0
H−1

c1
∥ f ∥L1(ω)

dC1/d
d s1− 1

d

 ds

s1− 1
d

,

a change of variables gives

G (∥u∥∞) ≤

(
c1∥ f ∥L1(ω)

)p

dpC
p+1

d
d

∫ +∞

c0

pt−p−1H−1(t)dt,

where c0 =
c1∥ f ∥L1(ω)

dC1/d
d |ω|

1− 1
d
. And using integration by parts we get

G
(
∥u∥L∞(ω)

)
≤

(
c1∥ f ∥L1(ω)

)p

dpC
p+1

d
d

H−1 (c0)
cp

0

+

∫ +∞

H−1(c0)

(
r

M(r)

)p

dr

 .
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Thus

∥u∥L∞(ω) ≤ G−1


(
c1∥ f ∥L1(ω)

)p

dpC
p+1

d
d

H−1 (c0)
cp

0

+

∫ +∞

H−1(c0)

(
r

M(r)

)p

dr


 . (43)

Then, we get the L∞-estimates of u.

Example 3.5. Taking M(t) = t2 exp(t), and 1(u) = 1
(1+|u|)2 .

Γ(x,u,Du) =
exp(1 + |Du|)

(1 + |u|)2 Du; B(x,u,Du) = 1(u).M(|Du|).
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