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Abstract. The main goal of this article is to present new inequalities for (p, h)-convex and (p, h) log-convex
functions for a non-negative super-multiplicative and super-additive function /. Our first main result will

v (h(1 =) f(a) + h(v) f(b))* — f* [((1 - o) + vbp)rl’] 1—o
b Lot
(11 = (@) + ) FB) = £ [(1 = war + )’ |

T-p

for the positive (p, h)-convex function f, when A > 1,p € R\{0} and 0 < v < u < 1. This gives a generalization

of an important result due to M. Sababheh [Linear Algebra Appl. 506 (2016), 588-602]. As applications
of our results, we present many inequalities for the trace, and the symmetric norms for T-measurable
operators.

1. Introduction and preliminaries

Convex functions and their inequalities have played a major role in the study of various topics in

Mathematics; including applied Mathematics, Mathematical Analysis, and Mathematical Physics. Recall
that a function f : I — R is said to be convex on the interval I if

(1 =v)a+ovb) <(1—-0v)f(a)+vf(),

1)
foralla,b € I and v € [0, 1]. If this inequality is reversed, then f is said to be concave.

Recent studies of this topic have investigated possible refinements of the above inequality, where adding
a positive term to the left side becomes possible. This idea has been treated in [3, 13-19], where not only
refinements have been investigated, but reversed versions and much more have been discussed.

For example M. Sababheh in [13], presents the following nice result about the convexity, which presents
a generalized refinement and reversed of the inequality (1).
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Theorem 1.1. Let f : [a,b] — [0, 00) be convex. Then

(g)A . (A -0f@+of®) - A -va+ob) (1 o )A
pl (A= wf@+pfO) = A - wa+pb) ~\1-p
forA>land0<v<pu<l

Whena, b > 0, the functions f(x) = aflb := a'™*b* and f(x) = alyb := (1—x)a ! +xb7!)~!, are convex functions-
on [0, 1]. Applying Theorem 1.1 using these functions implies the results in [1] and [12].

The notion of convexity has been expanded and generalized in numerous ways utilizing new and modern
methods in recent years. Before starting our analysis, let us recall the definitions of some special classes of

functions. Let I be a p-convex subset of R (That means, [(1 — v)a” + pr]?l’ e€lforalla,belandv€|[0,1]).
Definition 1.2 ([23]). A function f : I — IR is said to be a p-convex or belongs to the class PC(I), if

F(10 - 0)e” + vbp]%) < (1-0v)f(a) +vf(b) 3)
foralla,bel,peR\{0}and v e[0,1].

Definition 1.3 ([21]). Leth : | — R be a non-negative and non-zero function. We say that f : I — R is an h-convex
function or that f belongs to the class SX(I), if f is non-negative and for all a,b € I and v € [0, 1] we have

f((1 =v)a+ob) <h(l-0)f(a) + h(@)f(b). 4)
If this inequality is reversed, then f is said to be h-concave.

Definition 1.4 ([6]). Let h : | — R be a non-negative and non-zero function. We say that f : I — R is a
(p, h)-convex function or that f belongs to the class ghx(h,p,I), if f is non-negative and

F(I1 =) +0b17) < h(1 - 0)f(a) + h(v) f(b) (5)

foralla,b € I, v € [0,1] and p € R\{0}. Similarly, if the inequality sign in (5) is reversed, then f is said to be a
(p, h)-concave function or belong to the class ghv(h, p, I).

Definition 1.5 ([9]). Let I : | — R be a non-negative and non-zero function. We say that f : I — Ris a (p,h)
log-convex function, if f is non-negative and

f ([(1 - U)ﬂp + Z)bp]%l’) < f(g)h(l—v)f(b)h(v) (6)

foralla,b el,ve[0,1]and p € R\{0}. Similarly, if this inequality is reversed, then f is said to be a (p, h) log-concave
function.

Definition 1.6. Let /i : | — R be a non-negative and non-zero function. We say that f : I — R is a (G-A)-h-convex
function if f is non-negative and

£ (@) < 11— (@) + Ko 0) !

foralla,b eI, and v € [0,1]. Similarly, if the inequality sign in (7) is reversed, then f is said to be a (G-A) h-concave
function.

Example 1.7. Let h : [0,1] — R* be a non-negative and non-zero function such that h(t) > t for all t € [0, 1]. Then
the function In(t) is (G-A)-h-convex on (0, +00).
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Definition 1.8. Let h : | — R be a non-negative and non-zero function. We say that f : I — R is a (G-G)-h-convex
function if f is non-negative and

f(a"770%) < f14@) f1O ) ®)

foralla,b eI, and v € [0,1]. Similarly, if the inequality sign in (8) is reversed, then f is said to be a (G-G) h-concave
Sfunction.

Example 1.9. Let h : [0,1] — R* be a non-negative and non-zero function such that h(t) > t for all t € [0,1]. Then
the function exp(t) is (G-G)-h-convex on (0, +00).

Definition 1.10 ([7]). Leth: ] — R. If forall x, y € ], we have
h(x)h(y) < h(xy) )

then h is said to be a super-multiplicative function. If the inequality (9) is reversed, then h is said to be a sub-
multiplicative function. If the equality holds in (9), then h is said to be a multiplicative function.

Definition 1.11 ([7]). Leth: | — R. If for all x, y € ], we have
h(x) + h(y) < h(x +y), (10)

then h is said to be a super-additive function. If inequality (10) is reversed, we say that h is a sub-additive function.
If the equality (10) holds, we say that h is an additive function.

Example 1.12. Let h : I — (0, 00) be given by h(x) = x*,x > 0. Then h is

(1) additive ifk =1,
(2) sub-additive if k € (—o0, —1] U [0, 1),
(3) super-additive if k € (—1,0) U (1, o).

Let h[1, +00) > R* be given by h(x) = x> — x? + x. We have

(4) h(xy) —h(h(y) = xy(x + )1 -x)(1-y) 20
(5) hix+y)—h(x)—h(y) =xy(x+y+(x-1)+(@y—-1)) > 0.

Then h is a super-multiplicative and super-additive function.

(6) Let h be a convex function with h(0) = 0. Then h is a super-additive function. In particular the following
function h(x) = exp(x*) — 1 for k > 0 is super-additive.

The purposes of this paper are manifold. First, we develop new techniques in order to extend Theorem
1.1 to the notion of the (p, h)-convex and (G-A)-h-convex functions for a non-negative super-multiplicative
and super-additive function k. In other word, we drive some new refinements and reversed of the (p, h)
log-convex and (G-G)-h-convex functions. Second, we further extended our presented refinements via the
operator (p, h)-convex functions of several variables on the von Neumann algebra. At the end of this paper,
we give some application using the new refinement established in the previous sections to the trace, and
the symmetric norms for t-measurable operators.

2. New inequalities for (p, h)-convex functions

In the following theorem, we state our first main result concerning (p, h)-convex functions, which
presents one refining term of the inequality (5).
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Theorem 2.1. Let h be a non-negative super-multiplicative and super-additive function on J, f be a positive (p, h)-
convex function on [a,b] and 0 <v < p < 1. Then

W1 -0)f@ + h@)fE) > f[(1-0)a +0b")]
o (2[00 - 050+ 0 0 - £ (@ = e+ |
Proof. Since h is super-multiplicative and super-additive, we have

HL-0f@ + HEFE)
()11 - 6@+ s - 1 - o + )

(h(l —v)—h (g) H(1 - u)) fla)+ (h(v) —h (Z)h(u))f(b)

+ h(%)f[((l — )t + ub”)*l’]
> h(l—E)f(ﬂ)+h(£)f[((1_“)”p+“bp);]
>

-

f [((1 —v)af + vb”)%] ,

where the last inequality follows by the (p, h)-convexity of the function f. [

As a consequence of Theorem 2.1, we have the following corollary about the (G-A)-h-convex functions,
which gives one refining term of (7).

Corollary 2.2. Let h be a non-negative super-multiplicative and super-additive function on J, f be a positive (G-A)-
h-convex function on [a,b] and 0 < v < u < 1. Then

(1 -0)f(@@) +h(@)f(b) = f(a )
+ h (ﬁ) [1(1 = ) f(@) + h() fb) - f (a"4D+)].

Proof. First, we prove that f : I € (0, 0) — Ris (G-A) h-convexon ] & f oexp : InI — Ris h-convex on
the interval InI = {Inx | x € I}.

(=) Suppose that the function f is (G-A)-h-convex function on I. Then, we get

(f oexp) (1 -v)Ina + vInb) = f o exp (In(a'*5"))
— f(al—vbv)

< (1 - 0)f(@) + h(0) ()
=h(1 -v)f oexp(Ina) + h(v)f o exp(Inb)

Therefore, the function f o exp : InI — R is h-convex function on InI.
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(&) Let foexp:InI — R, be an h-convex function on InI. Then, we have
f (al—vbv) — f (e(l—v) Ina+vin b)
=(foexp)(1-v)Ina+vinb)
<h(l-v)f (elr‘”) +h(v) f (eh‘b)
= h(1 - 0)f(@) + h(©)f(b).

Hence, the function f : I C (0, ) — Ris (G-A)-h-convex on I. Now, using Theorem 2.1 for p = 1, we get the
desired result. [J

Our second main result is the following theorem, which presents a reverse of Theorem 2.1.

Theorem 2.3. Let h be a non-negative multiplicative and super-additive function on ], f be a positive (p, h)-convex
function on [a,b] and 0 < v < u < 1. Then

h(1-0)f@@) + h@fE)< (1) +ob)]

1- 1
+ h (1 — Z) [0 = ) f(@) + () fb) - F[(@ - wa? + pb)r]].
Proof. Since h is multiplicative and super-additive, we have
h(1 —v) h(v)
H(1-wf@) + h(fb) - = f(@) -~ f(b)
n(i5) wE)

+-;Lﬂmﬂw+wﬂ

n(i5)

(1l —
- - h(l—u))f(a)+(h(u) h(( i )))f()

+4iﬂﬂmwwwmﬂ

[\

hb,_%_ﬁ)fw)+h( ‘jf{«l—va+vw)]

|
= fl@-wa +pb)r].

Multiplying the last inequality by & ( ) the desired inequality is obtained. [J

v

As a consequence of Theorem 2.3, we have the following corollary, which gives a reverse of Corollary 2.2.

Corollary 2.4. Let h be a non-negative multiplicative and super-additive function on ], f be a positive (G-A)-h-convex
function on [a,b]l and 0 < v < u < 1. Then

h1-0v)f@ + h@)f®) < f(ar)
+ h ( ) [0 = ) f(@) + h(u) f&) - £ (a"0¥)].
The method used in [13] to prove Theorem 1.1 has a differential calculus approach, that we cannot use her to

prove the general case. To prove the general case for the (p, )-convex functions we will need the following
lemma, which will enable use it here to prove a more general results for the (p, h)-convex functions.



M. A. Ighachane, M. Bouchangour / Filomat 37:16 (2023), 5259-5271 5264

Lemma 2.5 ([2]). Let ¢ be a strictly increasing convex function defined on an interval K. If x, y, z and w are points
in K such that
Z-w<x-Y

wherew <z < xand y < x, then
0<) @)~ Pw) < (x) = P(y)-
By combining the preceding results with Lemma 2.5, we get the following theorem.

Theorem 2.6. Let ¢ be a strictly increasing convex function defined on an interval K, f be a positive (p, h)-convex
function on [a,bland 0 <v <y < 1.

1. If h is a non-negative super-multiplicative and super-additive function, then

¢ (h (;) (h(1 = ) f(a) + h(u)f(b))) -9 [h (;)f (@ - e + ubﬁ)é]]
< (1 - 0) f(a) + () f(B) — P o F[((1 — )a” + b7 ].

2. If his a non-negative multiplicative and super-additive function, then

$(h(1 — 0)f(a) + h(v)f(B) — o F[((1 — v)a? +0b7)? |

<o (n(1=2) 0 - wr s nso)
- [h (L;Z)f[((l — wa’ + #b”)f’]] :
Proof. Let
x = h(1 - 0)f(@) + h@)fB), y=f((1-v)a" +0b")7),
z=h (E) (h(1 = p)f@) + h( fB), w= h(ﬁ)f(((l - wa + ub”)”),
2 =h (} - Z) (h(1 = 1) f(@) + h( f®))
and

e A (- mwa + b”)’l’
Based on Theorems 2.1 and 2.3, we have
z-—w<x—-y<z -w.

The first and the second inequalities in Theorem 2.6 follows directly by applying Lemma 2.5, to the
inequalitiesz—w < x—y, withw <z<x,y<xandx -y <z —w withy < x <z, w' <z, respectively.
This completes the proof.

O

Replacing f by log f, we obtain the following inequalities for (p, 1) log-convex functions.

Theorem 2.7. Let f be a (p, h)-convex function on [a,b] and let 0 <v < pu < 1.

1. If h is a non-negative super-multiplicative and super-additive function, then

& (log (fh(l—p)(a)fh(y)(b))h(ﬁ)) _¢ [logfh(ﬁ) [((1 — wa’ + pr)%]]
< ¢ (log (f" @ ")) - ¢ [log £ [((1 ~ 0)a” +00)7]]. ()
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2. If his a non-negative multiplicative and super-additive function, then
¢ (log ('@ " ®))) - ¢ [log £[((1 = v)a” + vb?)? ]|
< o 1o (#0010 ) - o [og #) [ - o+ )]
Now by selecting ¢(x) = x* for A > 1, in Theorem 2.6, we get the following corollary.

Corollary 2.8. Let f be a (p, h)-convex function on [a,b], 0 <v<u<land A > 1.

1. If h is a non-negative super-multiplicative and super-additive function, then

h%2)<(m1—mﬂm+h@ywnﬂ—ﬁﬂ«1—mﬂ+vwﬁ]
) (h(1 = ) f(@) + R FO)N = (= wyap + pbv)? ]

2. If his a non-negative multiplicative and super-additive function, then

(11 = 0)f @ + hE)FB) — [ -0 +ob)] hA(l —v)
(h(1 = @ + h) fO) = F (@ = war +pbrys] L=

5265

(12)

(13)

(14)

Remark 2.9. Notice that, if we take h(x) = x and p = 1, in Corollary 2.8. Then we recapture Theorem 2.1 in [13].

Now, by selecting ¢(x) = exp(x), in Theorem 2.6, we get the following new and important refinement

and reverse for (p, h) log-convex functions.
Theorem 2.10. Let f be a positive (p, h) log-convex function on [a,b] and 0 <v < p < 1.

1. If h is a non-negative super-multiplicative and super-additive function, then
n-w oy i oV E) () [er v .
(M@ @) = fO( - e + by |
< (F19@) f1O®B)) - £[((1 = v)a” + o7 ]
2. If his a non-negative multiplicative and super-additive function, then
(7109 1 b)) - F[((1 = v)a” + 077
< (Fro@p ) ) - A (- e + ],

In the following theorem we present a new generalized refinement and reversed inequality for the (G-A)-

h-convex functions.

Theorem 2.11. Let ¢ be a strictly increasing convex function defined on an interval K, f be a positive(G-A)-h-convex

function on [a,bland 0 <v < pu < 1.

1. If h is a non-negative super-multiplicative and super-additive function, then

¢ (h (;) (h(1 = ) f(@) + h(u)f(b))) - ¢ [h (%)f(al‘“b“)]
< G(h(1 - 0)f(@) + h(©)f () - ¢ o f (a'°b°).
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2. If his a non-negative multiplicative and super-additive function, then
$(h(1L - v)f(@) + h(@) f(B) — ¢ o f (' 1)
1- 1-
<¢ (h (ﬁ) (h(1 = wf(a) + h(u)f(b))) ¢ [h(1 - Z)f (al‘*‘b*‘)] :

Proof. Let
x = h(1 - v)f(@) + h@) (), y = f(a'°),

z= h(%) (h(1 = (@) + h) fB), w=h (%)f(al‘“b“),

1- 1-
7z = h(l _Z)(h(l —wf(a)+h(u)f(b)), and w’ = h(1 _Z)f(al‘ﬂbﬂ).

Based on Corollaries 2.2 and 2.4, we have

z—w<x-y<z -w.

The first and the second inequalities in Theorem 2.11 follows directly by applying Lemma 2.5, to the
inequalitiesz—w < x—y, withw <z<x,y<xandx -y <z —w withy < x <z, w’ <z, respectively.
This completes the proof.

O

Now by selecting ¢(x) = x* for A > 1, in Theorem 2.11, we get the following corollary.

Corollary 2.12. Let f be a (G-A)-h-convex function on [2,b],0<v<u<land A > 1.

1. If h is a non-negative super-multiplicative and super-additive function, then

W (2) < (h(1 = v)f(a) + h(v) f(b))* — f* (al—vbv)
i) = W= 0f@) + W FO) = F @)

2. If his a non-negative multiplicative and super-additive function, then

(1= 0f @ + HOfO) = M aF) ( = ) -
(1= wf@ +h ) - fr @+~ \T-p)"

Remark 2.13. Notice that, if we take f(x) = h(x) = x and p = 1, in Corollary 2.12. Then we recapture Theorem 2.1
in[1].

(15)

Now, by selecting ¢(x) = exp(x), in Theorem 2.11 we get the following new and important refinement and
reversed for (G-G)-h-convex functions.

Theorem 2.14. Let f be a(G-G)-h-convex function on [a,b],and 0 <v < u < 1.
1. If h is a non-negative super-multiplicative and super-additive function, then
( 0-(g) fh(u)(b))h(ﬁ) _ f"( £) (al‘ﬂbﬂ)
< (fh(l—v)(a)fh(v)(b)) —f (al—vbv) .
2. If his a non-negative multiplicative and super-additive function, then
(fh(l—v)(a)fh(v)(b)) —f (al—vbv)
< (fh(l—#)(a)fh(u)(b))h(ﬁ) - f”(ﬁ) (al—#bu)_
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3. New inequalities for T-measurable operators

Let M c B(H) be a finite von Neumann algebra on the separable Hilbert space H, namely, M is a
+-sub-algebra of B(H) containing the identity I, which is closed for the weak operator topology. A trace t
on the von Neumann algebra Mis a map 7 : M* — [0, +c0) which is additive, positively homogeneous and
unitarily invariant, that is, 7(A) = ©(U*AU) for all A € M* and unitary U € M, where M* ={A e M, A > 0}.
A trace 7 is called

faithful if for all A € M*, t(A) = 0 implies that A =0,

semi-finite if for every A € M*, with 7(A4) > 0, there exists 0 < B < A, such that 0 < 7(B) < oo,
normal if A; T; A € M, implies that 7(4;) Ti T(A),

finite if 7(I) < co.

.

We say that an operator A : D(A) — H is T-measurable if A affiliated with M (that is AU = UA for all
unitary U € M) and there exists 6 > 0 such that 7(e"!(5, o)) < 0.

For 0 < p < +o0, L,(M, 7) is defined as the set of all T-measurable operators A affiliated with M such
that

IAll, = T(JAF)? < +oo.

Note that L,(M, 7) is a Banach space under ||.||, for 1 < p < +oo, see [11] for more information. From now
on, we denote by E a symmetric Banach space on (0, o). In the following we consider the non-commutative
symmetric Banach space (E(M), ||.llzm)) (see [22]), defined by

E(M) :={A € Lo(M) : u(A) € E} and [|Allgpty = llu(A)lE,

where (A) is the function ¢ - inf{6 > 0 : 7(e!!(5, )) < #} called the decreasing rearrangement of A (cf.
[5]). As known (L,(M),|l.llp), 0 < p < oo becomes a special case of the previous construction and the same
for Loo(M) = M. Moreover, for 0 < r < oo, define

1
EM)? = {A € Lo(M) : Al € E} and |Allgvgn = AT 1z -

We know from [4, Proposition 3.1], that if E is a symetric (quasi) Banach space, then it is the same for E(M)®".
Recall that a norm ||.]| on M is symmetric if [UAV]| = ||Al| for all A € M and all unitary U, V € M.

3.1. Operator (p,h)-convex function inequalities for T-measurable operators

We define operator (p, h)-convex functions of several variables, which generalize the known definition
of the operator (p, h)-convexity. In the following we suppose that [; c R* fori=1,...,nand p > 0.

Definition 3.1. Let Ay, Ay, ..., Ay € M* and By, By, ..., B, € M* be 2n t-measurable operators where n > 1 is
an integer. Let p € R\ {0}, v € [0,1] and h : ] — R be a non-negative and non-zero function. A real function
fihx--xI, > Rwitho(A;) Uo(B;) C 1 fori=1,...,nis said operator (p, h)-convex function of order n if
1 1
A@=0)AT +0B)7, ..., (1 - 0)A, + 0B})7)
<h(l1-v)f(A1,...,As) +h(®)f(By,...,By).

By taking n = 1,p = 1 and h = I we get the classical notion of operator convexity and by taking n = 1 and
p = 1 we get the notion of operator h-convexity.

Definition 3.2. Let A1, A, ..., A, € MY be n T-measurable positive operators where n > 1 is an integer. A real
function f : I X - x I, = Rwitho(A;) Uo(B;) C I fori =1,...,n is said operator positive of order 2n if

F(Ar,...,Ay) > 0.
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Theorem 3.3. Let A1, Ay, ..., Ay € M* and By,B,,...,B, € M* be 2n t-measurable operators where n > 1 is
an integer. Let h be a non-negative super-multiplicative and super-additive function on |, f be positive operator
(p, h)-convex function on I X --- X I, such that 0(A;) U o(B;) C I foralli € (1,...,n}and 0 < v < u < 1. Then we
have

W1 -0)f(A1,...,A) + h@)f(By,...,By)
> fl(@-vA, + 0B, ... (1 - 0)A], +B))|
+ h(%)[h(l —0)f(Ay,..., A) + h(©)f(By, ..., By)

Fl@-o)A +oB),..., (1 -0)AL + 0B}y ] |

Proof. By hypothesis & is super-multiplicative and super-additive. Let Ajy,...,A, and By,...,B, be 2n
T-measurable operators, we have

h(1=0)f(Ar,...,As) + h@)F(By,...,B)
_h(g)[m —f(A1,..., Aw) + (u)(By, ..., By)]

[ = AT+ B (O = AL+ Bl

= (h(1-0) - h(%)h(l ~W)f(As, ..., Ay)

+(h(v) - h(g)h(y)) f(Bi, ..., B

()= AT+ Bl (= AL+ Bl

> (1 - z)f(Al,...,An)

+h(£)f[((1 ~ A + B, (1 =AY + pB)) |

> f[((l - E)A’l’ + 2(1 — A + vB’l’)’l',...,((l - E)Aﬁ + E(l — WAL+ UBﬁ);]

1 1
= fl(@ - WA, + uBl)r, ..., (1= A} + uB)? |,
The proof is thus completed. O

Theorem 3.4. Let A1, Ay, ..., Ay € M* and By,B,,...,B, € M* be 2n t-measurable operators where n > 1 is
an integer. Let h be a non-negative multiplicative and super-additive function on | and f be a positive operator
(p, h)-convex function on I X - - X I, such that 6(A;) Uo(B;) C I forallie€ {1,...,n} and 0 < v < u < 1. Then we
have

h(1-0)f(A1,...,As) + h@)fBi,...,By)
< fl(@-vAl + 0B, (1 - v)A] +0B))F
+ h(1 U)[h(l_F‘)f(Allu-,An)+h(u)f(B1,...,Bn)

@@= wAy + By, (@ - AL + uB) |-



M. A. Ighachane, M. Bouchangour / Filomat 37:16 (2023), 5259-5271 5269

Proof. Since, I is multiplicative and super-additive and f be a positive operator function, we have

h(1-wf(As,...,A) + h(uf(Bi,...,Bn)

h(1- (o)
f( 1s-- f( 1, --/
h(l u) h(l u)
N fl@-o)A” + 0By, (1 - 0)A] +0B)7)]
(i)

- (h(1—y)—h(1—u))f(A1,..-,A )
(<) h( ))f(Bl,

+h( )f[((l - U)Ap + Z)BP)% (= v)AZ " T)BZ)%]

zh(1——)f(31, ~,By)

+h( )f[((l - U)Ap + Z)Bp)v (= Z))Ap + va)ll]]

> f((1- _“)B§’+(1 “)((1—U)A”+UB”))

1-v

(1= 22598+ (=)@ - 00 + oB) ]

= (@ - WAL + uB)), .., (1 = WA, + uB))F |

At the end, it suffice to multiply the last inequality by h ( ) this end the proof. [

3.2. Holder’s type inequalities for T-measurable operators

In this part of the paper, by selecting some appropriate log-convex functions, we obtain refinement and
reverse of some Holder’s type inequalities for 7-measurable operators.
The celebrated Holder’s inequality for 7-measurable operators is as follows. For r > 0,A,B € M* X €
EM)? and 0 < v < 1, we have

A" XBY|| por < IAX g IXBIE - "

E(M)®
It is known that when A, B € M* and X € E(M)" the function
f(@) = 1A XB a0

is log-convex on [0, 1], (see [20]) for any symmetric norm ||| r0. By using Theorem 2.10, for h(x) = x
and p = 1, we have the following theorem which presents a refinement and reversed of the corresponding
Holder’s type inequality (17) for T-measurable operators.

Theorem 3.5. Letr > 0,A,B € M* and X € ECM)?. Then, forO<v<u<1,

1-p 1-
(AL B, ) A
< A 0 I XBllg = 1AXBY g p g0
1=
17
1— ;
< (XL IXBIE ) AT xBH 5 (18)
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In particular, if M is a finite von Neumann algebra, then

(z(Ay-He(B))" - < (A1-+BY)

IA

T(A)’1(B)' - T (A"B')

1-v
1=

(T(A)l_”T(B)“)}%Z — 1 (ATHBH).

IA

Also, it is known that when A, B € M* and X € E(M)"” the function f(v) = ||A°XB?|| Emyo 18 log-convex on
[0,1], (see [20]) for any symmetric norm ||.|[g ¢ . In view of Theorem 2.10, for h(x) = x and p = 1, we have
the following theorem.

Theorem 3.6. Letr > 0,A,B € M*and X € ECM)V. Then, for 0 < v < u<l,

v

1-p z b Ly R ¥

(15X BAXBIE ) = IASXBI
< XIS o MAXBIR g — IAVXB v

1-u u ll%f‘ u u ﬁ
< (I BAXBIE ) = IARXBEILG, (19)

In particular, if X = I, we get

u z "
(1B ) = 1A#B 1 0
< JABIR 0 ~ IA°Bllzrg

H %ﬁ HRH 1—;&

< (I4BIE o)~ IAFBI, - (20)

For A,B € M* and X € E(M)® the function
f(@) = 1A XB I ryo lA”XB g v

is log-convex on [0, 1], (see [20]) for any symmetric norm ||.[[gg¢ . Then by using Theorem 2.10, for h(x) = x
and p = 1, we have the following theorem.

Theorem 3.7. Let r > 0,A,B € M*and X € ECM)?. Then, for 0 < v < u < 1, we have

v

(IAX v IXBllrvyn ) = (IA*#XBH |l o |AL XB [l g0 )

< (IAX o IXBllgrn)* = (KA XB lppo A" XB g0 )

< (IAX1ergol XBllgrn)" = (AT XBH g0 1A XB  llgr0) - (21)
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