On Sendov's conjecture

Luminiţa-Ioana Cotîrlăa ${ }^{\text {a }}$, Róbert Szász ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Technical University of Cluj-Napoca, România
${ }^{b}$ Department of Mathematics and Informatics, Sapientia Hungarian University of Transylvania, România

Abstract

We will give some sufficient conditions, which imply the conjecture of Sendov. We use convexity methods in order to prove the main result.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ be the closed unit disk in \mathbb{C}. Let $\mathbb{C}[z]$ denote the set of polynomials $P(z)=a_{0} z^{n}+a_{1} z^{n-1}+a_{2} z^{n-3}+a_{n-1} z+a_{n}$, where $a_{k} \in \mathbb{C}, k \in\{0,1,2, \ldots, n\}$ and $n \in \mathbb{N}^{*}$.
We will prove sufficient conditions regarding the roots of a polynomial $P \in \mathbb{C}[z]$ which imply the following conjecture, attributed to the bulgarian mathematician Blagovest Sendov.

Conjecture 1.1. If all the roots of a polynomial $P \in \mathbb{C}[z]$ lie in \mathbb{D} and z^{*} is an arbitrary root of the polynomial P then the disk $\left\{z \in \mathbb{C}:\left|z-z^{*}\right| \leq 1\right\}$ contains at least one root of P^{\prime}.

In [6] it is proved the Conjecture 1.1 holds for sufficiently high degree polynomials. This result turns back our attention to the particular cases.
In [5] the author proved the following results:
Theorem 1.2. Let $P \in \mathbb{C}[z], P(z)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$. If $P\left(z_{1}\right)=0$ and $\left|P^{\prime}\left(z_{1}\right)\right|<n$, then the disk $\left|z-z_{1}\right|<1$ contains at last one critical point of P.

Theorem 1.3. Let $P(z)$ be a polynomial whose zeros $z_{1}, z_{2}, z_{3}, \ldots, z_{n}(n>2)$ lie in $|z| \leq 1$ such that $\left|z_{1}\right|=1$. Then the disk $\left|z-z_{1}\right|<1$ always contains a zero of $P^{\prime}(z)=0$.

This theorems imply the following interesting corollary.
Corollary 1.4. Let $z_{k}, k \in\{1,2,3, \ldots, n-1\}$ be the affixes of the vertices of a regular n gone inscribed the unit circle $|z|=1$.
If z_{0} is an arbitrary point in \mathbb{D}, then in case of polynomial $Q(z)=\left(z-z_{0}\right) \prod_{k=1}^{n-1}\left(z-z_{k}\right)$ the Sendov conjecture holds.

[^0]Proof. Indeed, in case of $z_{k}, k \in\{1,2, \ldots, n-1\}$ we have $\left|z_{k}\right|=1$ and consequently Theorem 1.3 implies the assertion.
In case of $z_{0} \in \mathbb{D}$ we have $\left|z_{0}\right|<1$. Let z^{*} be the affixum of the n-th vertice of the regular n gon. Then the complex numbers $\overline{z^{*}} z_{1}, \overline{z^{*}} z_{2}, \overline{z^{*}} z_{3}, \ldots, \overline{z^{*}} z_{n-1}$ are the roots of the equation

$$
z^{n-1}+z^{n-2}+z^{n-3}+\ldots+z+1=0
$$

Since $\left|z^{*}\right|=1$, we get

$$
\begin{array}{r}
\left|Q^{\prime}\left(z_{0}\right)\right|=\prod_{k=1}^{n-1}\left|z_{0}-z_{k}\right|=\prod_{k=1}^{n-1}\left|\overline{z^{*}} z_{0}-z_{k} \overline{z^{*}}\right|=\left|\prod_{k=1}^{n-1}\left(\overline{z^{*}} z_{0}-z_{k} \overline{z^{*}}\right)\right|= \\
\left|\left(\overline{z^{*}} z_{0}\right)^{n-1}+\left(\overline{z^{*}} z_{0}\right)^{n-2}+\ldots+\overline{z^{*}} z_{0}+1\right| \leq \\
\left|\overline{z^{*}} z_{0}\right|^{n-1}+\left|\overline{z^{*}} z_{0}\right|^{n-2}+\ldots+\left|\overline{z^{*}} z_{0}\right|+1= \\
\left|z_{0}\right|^{n-1}+\left|z_{0}\right|^{n-2}+\ldots+\left|z_{0}\right|+1<n . \tag{1}
\end{array}
$$

Thus Sendov's conjecture holds in case of the root z_{0} too.
Interesting results about Sendov conjecture are also obtained by Kumar, see [7].
The aim of this paper is to deduce new conditions regarding the roots of a polynomial P which imply the conjecture of Sendov like the previous theorems and corollary.
In order to prove the main result we need the following lemmas.

2. Preliminaries

Lemma 2.1 (Krein-Milman). A compact convex subset of a Hausdorff locally convex topological vector space is equal to the closed convex hull of its extreme points.

Lemma 2.2 (Gauss-Lucas). If P is a (nonconstant) polynomial with complex coefficients, then all the zeros of the derivative P^{\prime} belong to the convex hull of the zeros of P.

3. The Main Result

Theorem 3.1. Let $P \in \mathbb{C}[z], P(z)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$ be a complex polynomial. Suppose that all the roots of the polynomial P are in the unit disk \mathbb{D}. Suppose that z^{*} is a root of P and the circle $\left|z-z^{*}\right|=1$ intersects $\partial \mathbb{D}$ at the points A and B. Let the closed set \mathcal{K} be limited by the arc 5.0pt $A B$ of the circle $\left|z-z^{*}\right|=1$, which does not belong to \mathbb{D} and the line segment $[A B]$ and let the set Ω be defined by $\Omega=\mathbb{D} \backslash \mathcal{K}$.
If in case of a fixed $k \in\{1,2,3, \ldots, n-1\}$ the equation $P^{(k)}(z)=0$ has a root in \mathcal{K}, then the $\left|z-z^{*}\right|<1$ disk contains a root of $P^{\prime}(z)=0$.

Proof. Let denote the closed convex hull of the roots of $P^{(k)}(z)=0$ by $C(k)$. The Gauss-Lucas theorem implies the inclusions:

$$
\begin{equation*}
C(n-1) \subset C(n-2) \subset \ldots \subset C(k) \subset \ldots \subset C(1) \subset C(0) . \tag{2}
\end{equation*}
$$

The sets \mathcal{K} and Ω are convex.
According to the conditions of the theorem, we have $C(k) \cup \mathcal{K} \neq \emptyset$ for some $k \in\{1,2,3, \ldots, n-1\}$.

$$
\begin{equation*}
\text { The inclusions (2) imply } C(1) \cap \mathcal{K} \neq \emptyset \tag{3}
\end{equation*}
$$

The extreme points of $C(1)$ are between the roots of $P^{\prime}(z)=0$. Suppose all the extreme points are elements of Ω, then the convexity of Ω and the Krein-Milman theorem would imply $C(1) \subset \Omega$ and this contradicts (3). This contradiction shows that \mathcal{K} contains extreme points of $C(1)$ and these extreme points are roots of $P^{\prime}(z)=0$.

Taking particular cases of the proved result, we get interesting conditions regarding to the roots of a polynomial which imply the Sendov's conjecture.
Corollary 3.2. Suppose that the degree of the polynomial $Q \in \mathbb{C}[z]$ is less than $n-2$ and all the roots of the polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+Q(z)
$$

are in the unit disk \mathbb{D}. If z^{*} is a root of the polynomial P which satisfies one of the following two inequalities

$$
\begin{equation*}
\left|\frac{-a_{1}+\sqrt{a_{1}^{2}-\frac{2 n}{n-1} a_{2}}}{n}-z^{*}\right|<\frac{\left|z^{*}\right|}{2} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\frac{-a_{1}-\sqrt{a_{1}^{2}-\frac{2 n}{n-1} a_{2}}}{n}-z^{*}\right|<\frac{\left|z^{*}\right|}{2} \tag{5}
\end{equation*}
$$

then the Sendov's conjecture holds in case of z^{*}, that is the disc $\left|z-z^{*}\right|<1$ contains a critical point.
Proof. We have $P^{(n-2)}(z)=0 \Leftrightarrow n(n-1) z^{2}+2(n-1) a_{1} z+2 a_{2}=0$.
The conditions (4) and (5) imply that

$$
C(n-2) \cap \mathcal{K} \neq \emptyset .
$$

Thus the derivative of order $n-2$ of P has a root in \mathcal{K} and Theorem 1.3 implies Sendov's conjecture in case of the root z^{*}.

Corollary 3.3. Suppose that the degree of the polynomial $Q \in \mathbb{C}[z]$ is less than $n-1$ and all the roots of the polynomial $P(z)=z^{n}-n \alpha z^{n-1}+Q(z)$ are in the unit disk \mathbb{D}. If z^{*} is a root of the polynomial P which satisfies $\left|\alpha-z^{*}\right|<\frac{\left|z^{*}\right|}{2}$, then the Sendov's conjecture holds in case of z^{*}, that is the disc $\left|z-z^{*}\right|<1$ contains a critical point.
Proof. We have $P^{(n-1)}(z)=n(n-1)(n-2) \ldots 2 z-n!\alpha$ with the root $z_{0}=\alpha$. The inequality $\left|\alpha-z^{*}\right|<\frac{\left|z^{*}\right|}{2}$, is equivalent to $\left|z_{0}-z^{*}\right|<\frac{\left|z^{*}\right|}{2}$, which implies $z_{0} \in \mathcal{K}$. Thus the derivative of order $n-1$ of P has a root in \mathcal{K} and Theorem 1.3 implies Sendov's conjecture in case of the root z^{*}.

Example 3.4. Let $P(z)=z^{3}+a_{1} z^{2}+a_{2} z+a_{3}$ be the monic polynomial with the roots $z_{1}=\frac{1}{2}+i \frac{1}{3}, z_{2}=\frac{1}{3}+i \frac{1}{2}, z_{3}=$ $\frac{5}{6}+i \frac{1}{10}$.
We use the notations of Corollary 1.4: $\alpha=\frac{z_{1}+z_{2}+z_{3}}{3}=\frac{5}{6}+i \frac{14}{45}$ and $z^{*}=\frac{5}{6}+i \frac{1}{10}$. We have $\left|\alpha-z^{*}\right|=\frac{19}{90}<\frac{1}{2} \sqrt{\frac{143}{180}}=\frac{\left|z^{*}\right|}{2}$, and consequently the conjecture of Sendov holds in case of $z^{*}=z_{3}$.
A simple calculation shows that $3>\left|P\left(z_{1}\right)\right|$ and $3>\left|P\left(z_{2}\right)\right|$, thus according to Theorem 1.2 Sendov's conjecture holds in case of z_{1} and z_{2}.

References

[1] B. Bojanov, Q. Rahman, J. Szynal, On a conjecture of Sendov about the critical points of a polynomial. Math. Z. 190, (1985), 281-285
[2] I. Borcea, On the Sendov conjecture for polynomials with at most six distinct roots. J. Math. Anal. Appl. 200, (1996), p.182-206
[3] J. Dégot, Sendov's conjecture for high degree polynomials Proc. Amer. Math. Soc. 142 (4), (2014), p.1337-1349
[4] M. Miller, Maximal Polynomials and the Illieff-Sendov Conjecture. Trans. Am. Math. Soc. 321 (1), (1990), p.285-303
[5] Z. Rubenstein, On a problem of Ilyeff. Pacific J. of Math. 26 (1), (1968), p.159-161
[6] T. Tao, Sendov's conjecture for sufficiently high degree polynomials arXiv:2012.04125 [math.CV]
[7] P. Kumar, A remark on Sendov conjecture. Comptes rendus de l'Academie Bulgare des Sciences, 71, (2018), p.731-734

[^0]: 2020 Mathematics Subject Classification. Primary 33C10; Secondary 30C45.
 Keywords. Polynomial, critical points, Sendov's conjecture.
 Received: 28 September; Accepted: 12 January 2023
 Communicated by Miodrag Mateljević
 Email addresses: Luminita.Cotirla@math.utcluj.ro (Luminiţa-Ioana Cotîrlă), rszasz@ms.sapientia.ro (Róbert Szász)

