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Abstract. In this paper, the notion of cyclic Ricci semi-symmetric real hypersurfaces in the complex
hyperbolic quadric Qm∗ = SO0

2,m/SO2SOm is introduced. Under the assumption of singular normal vector
field N, we have two cases, that is, normal vector field N is either A-principal or A-isotropic. Even though,
in the case of A-principal, we proved that there does not exist a real hypersurface in the complex hyperbolic
quadric Qm∗ = SO0

2,m/SO2SOm satisfying the cyclic Ricci semi-symmetric. But on the other case, we proved
existence of real hypersurfaces with the same condition.

1. Introduction

About the latter part of twentieth century, many geometers have investigated some real hypersurfaces
in Hermitian symmetric spaces of rank 1 like the complex projective space CPm or the complex hyperbolic
space CHm. Some geometric characterizations of real hypersurfaces in the complex projective space CPm,
the complex hyperbolic space CHm, or in the quaternionic projective spaceHPm was obtained by Okumura
[16], Montiel and Romero [13], Martinez and Pérez [12] and Pérez and Suh [18] respectively. In particular
Okumura [16] proved that the Reeb flow on a real hypersurface inCPm = SUm+1/S(U1Um) is isometric if and
only if M is an open part of a tube around a totally geodesicCPk

⊂ CPm for some k ∈ {0, . . . ,m−1}. Moreover,
for the complex hyperbolic space CHm Montiel and Romero [13] have proved that a real hypersurface M
has an isometric Reeb flow if and only if M is an open part of a tube around a totally geodesic CHk

⊂ CHm

for some k ∈ {0, . . . ,m − 1} or a part of horosphere.

Now let us introduce the complex hyperbolic quadric Qm∗ = SOo
m,2/SO2SOm, which can be regarded as

a Hermitian symmetric space with rank 2 of noncompact type. Montiel and Romero [14] proved that the
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The first author was supported by grant Proj. No. NRF-2020-R1G1A1A01-003570, the second author by grant Proj. No. NRF-

2018-R1D1A1B-05040381 and the third by grant Proj. No. NRF-2020-R1A2C1A-01101518 from National Research Foundation of
Korea.

* Correspondng author: Changhwa Woo
Email addresses: hb2107@naver.com (Gyu Jong Kim), yjsuh@knu.ac.kr (Young Jin Suh), legalgwch@pknu.ac.kr (Changhwa

Woo)



G. J. Kim et al. / Filomat 37:17 (2023), 5671–5690 5672

complex hyperbolic quadric Qm∗ can be immersed in the indefinite complex hyperbolic space CHm+1
1 (−c),

c > 0, by interchanging the Kähler metric by its opposite. From now on, the subscript represents the
index of negative sign for the given manifold. Because, if we change the Kähler metric of CPm+1

m−s by its
opposite, we have that Qm

m−s endowed with its opposite metric 1′ = −1 is also an Einstein hypersurface of
CHm+1

s+1 (−c). When s = 0, we know that (Qm
m, 1

′ = −1) can be regarded as the complex hyperbolic quadric
Qm∗ = SOo

m,2/SO2SOm, which is immersed in the indefinite complex hyperbolic quadric CHm+1
1 (−c), c > 0 as

a complex Einstein hypersurface (see Reckziegel [21], Romero [22], [23], and Smyth [24]). Accordingly, the
complex hyperbolic quadric admits two important geometric structures a complex conjugation structure A
and a Kähler structure J, which anti-commute with each other, that is, AJ = −JA. Then for m≥2 the triple
(Qm∗, J, 1) for the complex hyperbolic quadric which is one of the Hermitian symmetric space of noncompact
type with rank 2 and its minimal sectional curvature is equal to −4 up to scaling(see Klein and Suh [5], and
Reckziegel [21]).

Among the study of Hermitian symmetric spaces with rank 2, the classification problems of real hy-
persurfaces in the complex 2-plane Grassmannian G2(Cm+2) with certain geometric conditions were mainly
discussed in Berndt and Suh [1], Suh [26] and [28]. So, the classification of contact hypersurfaces, parallel
Ricci tensor and harmonic curvature for real hypersurfaces in G2(Cm+2) were extensively studied. Moreover,
in [27] we have asserted that the Reeb flow on a real hypersurface in complex hyperbolic 2-plane Grass-
mannian SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around a totally geodesic
SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um). For real hypersurfaces in the complex hyperbolic quadric Qm∗, Suh
[30] proved the following theorem for isometric Reeb flow:

Theorem A. Let M be a real hypersurface of the complex hyperbolic quadric Qm∗, m ≥ 3. The Reeb flow
on M is isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally
geodesic CHk in the complex hyperbolic quadric Q2k∗, k≥2, or a horosphere in Q2k∗ whose center at infinity
is in the equivalence class of an A-isotropic singular geodesic in Q2k∗.

A nonzero tangent vector W ∈ T[z]Qm∗ is called singular if it is tangent to more than one maximal flat in
Qm∗. Since the complex hyperbolic quadric Qm∗ is a Hermitian symmetric space with rank 2, there are two
types of singular tangent vectors as follows:

(a) If there exists a conjugation A ∈ A such that W ∈ V(A) := {W |AW = W}, then W is singular. Such a
singular tangent vector is called A-principal.

(b) If there exist a conjugation A ∈ A and orthonormal vectors X,Y ∈ V(A) such that W/||W|| = (X+ JY)/
√

2,
then W is singular. Such a singular tangent vector is called A-isotropic.

Motivated by the researches mentioned above, many geometers have considered the notions of parallel
Ricci tensor∇Ric = 0, harmonic curvature (∇XRic)Y = (∇YRic)X or Killing Ricci tensorSX,Y,ZX,Y,Z1((∇XRic)Y,Z) =
0 for any vector fields X, Y and Z on M, where ∇ denotes the induced connection on M from the Levi-Civita
connection ∇̄ on a Kähler manifold M̄ (see Blair [2], Kimura [6], Lee and Suh [10], [11], Pérez [17], Pérez and
Suh [18], [19], [20], and Suh [31], Yano [34]). In particular, for real hypersurfaces in the complex projective
space CPm the notion of cyclic parallel Ricci tensor was considered by Kwon and Nakagawa [9] and in the
quaternionic projective space QPm by Pérez [17] respectively.

From such a view point, recently, in the complex quadric Qm, Woo, Kim and Suh [33] considered Hopf
real hypersurfaces with cyclic Ricci semi-symmetric operator defined by

SX,Y,Z(R(X,Y)Ric)(Z) = 0

for any X,Y and Z∈TzM, z∈M. It is a weaker notion than usual Ricci symmetric ∇Ric = 0, that is, parallel
Ricci tensor. They [33] proved the following:

Theorem B. Let M be a Hopf real hypersurface in the complex quadric Qm, m≥3, with A-principal unit
singular normal vector field. If it satisfies the cyclic Ricci semi-symmetric condition, then M is locally

congruent to a tube of radius r = 1
√

2
arctan

√
m−2

2 over the totally real and totally geodesic m-dimensional
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sphere Sm whose 3-distinct constant principal curvatures are given by α = −
√

m − 2, λ = 0, and µ = 2
√

m−2
with multiplicities 1, m − 1 and m − 1 respectively. Moreover, among them there exists a pseudo-Einstein
real hypersurface (S = a1 + bη⊗ξ) in Qm with a = 2m and b = −2m, with distributions [ξ]⊕Tλ = JV(A) and
Tµ⊕N = V(A), where TzQm = V(A)⊕JV(A), z∈Qm.

In the complex hyperboilc quadric Qm∗ with A-principal unit normal vector field, Berndt and Suh (see
[1]) recently introduced the following :

Theorem C. Let M be a connected orientable real hypersurface in the complex hyperbolic quadric Qm∗,
m ≥ 3. Then M is a contact hypersurface with constant mean curvature if and only if M is locally congruent
to one of the following hypersurfaces:

(i) a tube of radius r around the Hermitian symmetric space Q(m−1)∗ which is imbedded in Qm∗ as a totally
geodesic complex hypersurface,

(ii) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal geodesic in Qm∗,
(iii) a tube of radius r around the m-dimensional real hyperbolic space RHm which is embedded in Qm∗ as

a real space form of Qm∗.

Motivated by Theorem B in the complex quadric Qm and Theorem C for a Hopf real hypersurface
M in the complex hyperbolic quadric Qm∗, we introduce the notion of cyclic Ricci semi-symmetric real
hypersurfaces in the complex hyperbolic quadric Qm∗ defined by

SX,Y,Z(R(X,Y)Ric)(Z) = 0

for any X,Y and Z∈TzM, z∈M. This is a natural generalization of the Ricci semi-symmetric. Then by the
first Bianchi identity the cyclic Ricci semi-symmetric tensor can be given by

SX,Y,ZR(X,Y)Ric(Z) = 0.

The notion of cyclic Ricci semi-symmetric tensor on Riemanian manifolds and its physical meaning is due
to Chaubey, Suh and De [3]. As compared with the result in Theorem B, in the complex hyperbolic quadric
Qm∗ we give a non-existence result in the complex hyperbolic quadric Qm∗ as follows:

Main Theorem 1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m≥3, withA-
principal unit singular normal vector field. Then there does not exist a real hypersurface satisfying the cyclic
Ricci semi-symmetric. Moreover, among them there does not exist a pseudo-Einstein real hypersurface in
Qm∗.

Remark. In Suh [31], we have proved that there does not exists a Hopf pseudo-Einstein real hyper-
surface in the complex hyperbolic quadric Qm∗. But in the complex quadric Qm there exists a complete
classification of pseudo-Einstein real hypersurfaces such that a tube around Sm in Qm, with a = 2m and
b = −2m or a tube around CPk in Q2k with a = 4k and b = −4 + 2

k (see [29]).

Here it can be easily checked that the vector fields Aξ and AN are tangent to the space TzM, z ∈ M if
the unit normal vector field N becomes A-isotropic. Then by virtue of Theorem A, in this paper we give a
classification for Hopf real hypersurfaces in the complex hyperbolic quadric Qm∗with cyclic semi-symmetric
Ricci tensor and A-isotropic unit normal as follows:

Main Theorem 2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3, with
A-isotropic singular unit normal. If it satisfies the cyclic Ricci semi-symmetric, then M is locally congruent
to one of the following:

(1) a tube of radius r over the k-dimensional complex hyperbolic space CHk which can be immersed as a
totally geodesic in Q2k∗.

(2) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal geodesic in Qm∗,
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(3) M, m≥4, has 4-distinct constant principal curvatures such that

α, β = γ = 0, λ =
−α +

√
(2m − 5)α2 + 4(m − 3)

2(m − 3)

and

µ =
−α −

√
(2m − 5)α2 + 4(m − 3)

2(m − 3)

whose corresponding principal curvature spaces are ξ∈Tα, Aξ,AN∈Tβ=γ, Tλ and Tµ with multiplicities
1, 2, m − 1 and m − 1 respectively.

(4) M, m = 3, has 3-distinct principal curvatures given by

α = 0, β = γ = 0, λ =
h +
√

h2 + 4
2

, and µ =
h −
√

h2 + 4
2

with multiplicities 1, 2, 1 and 1 respectively.

This paper is composed as follows: In section 2 we give some basic material about the complex hyperbolic
quadric Qm∗, including its Riemannian curvature tensor and a description of its singular vectors for A-
principal or A-isotropic unit normal vector field. Apart from the complex structure J there is another
distinguished geometric structure on Qm∗, namely a parallel rank two vector bundle A which covers an
S1-bundle of real structures, that is, complex conjugations A on the tangent spaces of Qm∗. A maximal
A-invariant subbundle Q of the tangent bundle TM of a real hypersurface M in Qm∗ is determined by one
of these real structures A.

Accordingly, in section 3, we study the geometry of this subbundle Q for real hypersurfaces in Qm∗

and the equation of Codazzi from the curvature tensor of the complex hyperbolic quadric Qm∗ and some
important formulas from the complex conjugation A of M in Qm∗.

In section 4, we give a valuable Theorem 4.2 which asserts that the pseudo-Einstein real hypersurface with
S = a1+ bη⊗ξ satisfies cyclic Ricci semi-symmetric. This gives a strong motivation in the proof of our Main
Theorem 1 which includes the notion of pseudo-Einstein. Moreover, in section 4, in order to prove our Main
Theorem 1 for an A-principal normal vector field, the first step is to get the Ricci tensor from the equation
of Gauss for real hypersurfaces M in Qm∗, and next by using the assumption of cyclic Ricci semi-symmetric
for an A-principal normal vector field we will get some useful formulas and a remarkable Theorem 4.2.

By virtue of Theorem 4.2 and Proposition 4.4, we give a complete proof of a non-existence property in
our Main Theorem 1 that there does not exist a real hypersurface in Qm∗ with cyclic Ricci semi-symmetric.
Proposition 4.4 will play an important role in the proof of Main Theorem 1 and will be used to give a
characterization of contact hypersurfaces in the complex hyperbolic quadric Qm∗. Consequently, we have
proved that there does not exist a pseudo-Einstein real hypersurface in Qm∗.

In section 5, we give a complete classification of our Main Theorem 2. The first part of this proof is
to give some crucial equations from the cyclic semi-symmetric Ricci tensor for an A-isotropic unit normal
vector field. Then in the middle part of the proof we will concentrate ourselves on the study of valuable
formulas which can be obtained from the cyclic semi-symmetric Ricci tensor. In the proof of our Main
Theorem 2 we will use an important Lemma 5.1 frequently which assures that SAξ = 0 and SAN = 0 on the
distribution Q⊥ = Span {Aξ,AN} of TzQm∗, z ∈ Qm∗.

2. The complex hyperbolic quadric

In this section, we introduce the Riemanian hyperbolic structures of the complex hyperbolic quadric
Qm∗ in contrast to the complex quadric Qm. This section is due to Klein and Suh [5], and Suh [30].
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The m-dimensional complex hyperbolic quadric Qm∗ is the non-compact dual of the m-dimensional
complex quadric Qm, i.e. the simply connected Riemannian symmetric space whose curvature tensor is the
negative of the curvature tensor of Qm.

The complex hyperbolic quadric Qm∗ cannot be realized as a homogeneous complex hypersurface of the
complex hyperbolic space CHm+1. In fact, Smyth [24, Theorem 3(ii)] has shown that every homogeneous
complex hypersurface in CHm+1 is totally geodesic. This is in marked contrast to the situation for the
complex quadric Qm, which can be realized as a homogeneous complex hypersurface of the complex
projective space CPm+1 in such a way that the shape operator for any unit normal vector to Qm is a real
structure on the corresponding tangent space of Qm, see [5] and [21]. Another related result by Smyth, [25,
Theorem 1], which states that any complex hypersurface CHm+1 for which the square of the shape operator
has constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes the possibility of a
model of Qm∗ as a complex hypersurface of CHm+1 with the analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Qm∗ as the quotient manifold SO2,m/SO2SOm. As
Q1∗ is isomorphic to the real hyperbolic space RH2 = SO1,2/SO2, and Q2∗ is isomorphic to the Hermitian
product of complex hyperbolic spaces CH1

× CH1, we suppose m ≥ 3 in the sequel and throughout this
paper. Let G := SO2,m be the transvection group of Qm∗ and K := SO2SOm be the isotropy group of Qm∗ at
the “origin” p0 := eK ∈ Qm∗. Then

σ : G→ G, 1 7→ s1s−1 with s :=


−1
−1

1
1
. . .

1


is an involutive Lie group automorphism of G with Fix(σ)0 = K, and therefore Qm∗ = G/K is a Riemannian
symmetric space. The center of the isotropy group K is isomorphic to SO2, and therefore Qm∗ is in fact a
Hermitian symmetric space.

The Lie algebra g := so2,m of G is given by

g =
{
X ∈ gl(m + 2,R)

∣∣∣Xt
· s = −s · X

}
(see [7, p. 59]). In the sequel we will write members of g as block matrices with respect to the decomposition
Rm+2 = R2

⊕Rm, i.e. in the form
X =
(

X11 X12
X21 X22

)
,

where X11, X12, X21, X22 are real matrices of dimension 2 × 2, 2 ×m, m × 2 and m ×m, respectively. Then

g =
{ (

X11 X12
X21 X22

) ∣∣∣∣ Xt
11 = −X11, Xt

12 = X21, Xt
22 = −X22

}
.

The linearisation σL = Ad(s) : g → g of the involutive Lie group automorphism σ induces the Cartan
decomposition g = k ⊕m, where the Lie subalgebra

k =Eig(σ∗, 1) = {X ∈ g|sXs−1 = X}

=
{ (

X11 0
0 X22

) ∣∣∣∣ Xt
11 = −X11, Xt

22 = −X22

}
� so2 ⊕ som

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

m = Eig(σ∗,−1) = {X ∈ g|sXs−1 = −X} =
{ (

0 X12
X21 0

) ∣∣∣∣ Xt
12 = X21

}
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is canonically isomorphic to the tangent space Tp0 Qm∗. Under the identification Tp0 Qm∗ � m, the Riemannian
metric 1 of Qm∗ (where the constant factor of the metric is chosen so that the formulae become as simple as
possible) is given by

1(X,Y) = 1
2 tr(Yt

· X) = tr(Y12 · X21) for X,Y ∈ m .

1 is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant Riemannian metric on Qm∗.
The complex structure J of the Hermitian symmetric space is given by

JX = Ad( j)X for X ∈ m, where j :=


0 1
−1 0

1
1
. . .

1

 ∈ K .

As j is in the center of K, the orthogonal linear map J is Ad(K)-invariant, and thus defines an Ad(G)-
invariant Hermitian structure on Qm∗. By identifying the multiplication by the unit complex number i with
the application of the linear map J, the tangent spaces of Qm∗ thus become m-dimensional complex linear
spaces, and we will adopt this point of view in the sequel.

As for the complex quadric (again compare [10], [11], and [20] with [5] and [30]), there is another
important structure on the tangent bundle of the complex quadric besides the Riemannian metric and the
complex structure, namely an S1-bundle A of real structures. The situation here differs from that of the
complex quadric in that for Qm∗, the real structures in A cannot be interpreted as the shape operator of a
complex hypersurface in a complex space form, but as the following considerations will show, A still plays
a fundamental role in the description of the geometry of Qm∗.

Let

a0 :=


1
−1

1
1
. . .

1

 .
Note that we have a0 < K, but only a0 ∈ O2 SOm. However, Ad(a0) still leaves m invariant, and therefore
defines an R-linear map A0 on the tangent space m � Tp0 Qm∗. A0 turns out to be an involutive orthogonal
map with A0 ◦ J = −J ◦A0 (i.e. A0 is anti-linear with respect to the complex structure of Tp0 Qm∗), and hence
a real structure on Tp0 Qm∗. But A0 commutes with Ad(1) not for all 1 ∈ K, but only for 1 ∈ SOm ⊂ K. More
specifically, for 1 = (11, 12) ∈ K with 11 ∈ SO2 and 12 ∈ SOm, say 11 =

(
cos(t) − sin(t)
sin(t) cos(t)

)
with t ∈ Ric (so that

Ad(11) corresponds to multiplication with the complex number µ := eit), we have

A0 ◦Ad(1) = µ−2
·Ad(1) ◦ A0 .

This equation shows that the object which is Ad(K)-invariant and therefore geometrically relevant is not
the real structure A0 by itself, but rather the “circle of real structures”

Ap0 := {λA0|λ ∈ S1
} .

Ap0 is Ad(K)-invariant, and therefore generates an Ad(G)-invariant S1-subbundle A of the endomorphism
bundle End(TQm∗), consisting of real structures on the tangent spaces of Qm∗. For any A ∈ A, the tangent
line to the fibre of A through A is spanned by JA.

For any p ∈ Qm∗ and A ∈ Ap, the real structure A induces a splitting

TpQm∗ = V(A) ⊕ JV(A)

into two orthogonal, maximal totally real subspaces of the tangent space TpQm∗. Here V(A) resp. JV(A) are
the (+1)-eigenspace resp. the (−1)-eigenspace of A. For every unit vector Z ∈ TpQm∗ there exist t ∈ [0, π4 ],
A ∈ Ap and orthonormal vectors X,Y ∈ V(A) so that

Z = cos(t) · X + sin(t) · JY
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holds; see [21, Proposition 3]. Here t is uniquely determined by Z. The vector Z is singular, i.e. contained in
more than one Cartan subalgebra of m, if and only if either t = 0 or t = π4 holds. The vectors with t = 0 are
called A-principal, whereas the vectors with t = π4 are called A-isotropic. If Z is regular, i.e. 0 < t < π4 holds,
then also A and X,Y are uniquely determined by Z.

As for the complex quadric, the Riemannian curvature tensor R̄ of Qm∗ can be fully described in terms
of the “fundamental geometric structures” 1, J and A. In fact, under the correspondence Tp0 Qm∗ � m,
the curvature R̄(X,Y)Z corresponds to −[[X,Y],Z] for X,Y,Z ∈ m, see [8, Chapter XI, Theorem 3.2(1)]. By
evaluating the latter expression explicitly, one can show that one has

R̄(X,Y)Z = − 1(Y,Z)X + 1(X,Z)Y
− 1(JY,Z)JX + 1(JX,Z)JY + 21(JX,Y)JZ
− 1(AY,Z)AX + 1(AX,Z)AY
− 1(JAY,Z)JAX + 1(JAX,Z)JAY

(2.1)

for arbitrary A ∈ Ap0 . Therefore the curvature of Qm∗ is the negative of that of the complex quadric Qm,
compare [21, Theorem 1]. This confirms that the symmetric space Qm∗ which we have constructed here is
indeed the non-compact dual of the complex quadric.

It has been shown by Nomizu [15, Theorem 15.3] that there exists one and only one torsion-free covariant
derivative ∇̄ on Qm∗ so that the symmetric involutions sp : Qm∗

→ Qm∗ at p ∈ Qm∗ are all affine. Here ∇̄
denotes the canonical covariant derivative of Qm∗. Concerned with the derivative ∇̄, the action of any member
of G on Qm∗ is also affine. Moreover, ∇̄ is the Levi-Civita connection corresponding to the Riemannian
metric 1, and therefore 1 is parallel with respect to ∇̄. Moreover, the complex hyperbolic quadric Qm∗

becomes a Kähler manifold in this way, i.e. the complex structure J is also parallel. Since the S1-subbundle
A of the endomorphism bundle End(TQm∗) is Ad(G)-invariant, it is also parallel with respect to the same
covariant derivative ∇̄ induced by ∇̄ on End(TQm∗). Because the tangent line of the fiber of A through some
Ap ∈ A is spanned by JAp, this means precisely that for any section A of A there exists a real-valued 1-form
q : TQm∗

→ R so that

∇̄vA = q(v) · JAp holds for p ∈ Qm∗, v ∈ TpQm∗. (2.2)

3. The maximal A-invariant subbundle Q of TM

Let M be a real hypersurface in complex hyperbolic quadric Qm∗ and denote by (ϕ, ξ, η, 1) the induced
almost contact metric structure on M and by∇ the induced Riemannian connection on M. Note that ξ = −JN,
where N is a (local) unit normal vector field of M. The vector field ξ is known as the Reeb vector field of
M. If the integral curves of ξ are geodesics in M, the hypersurface M is called a Hopf hypersurface. The
integral curves of ξ are geodesics in M if and only if ξ is a principal curvature vector of M everywhere. The
tangent bundle TM of M splits orthogonally into TM = C ⊕ F , where C = ker(η) is the maximal complex
subbundle of TM and F = Rξ. The structure tensor field ϕ restricted to C coincides with the complex
structure J restricted to C, and we have ϕξ = 0. We denote by νM the normal bundle of M.

We first introduce some notations. For a fixed real structure A ∈ A[z] and X ∈ T[z]M we decompose AX
into its tangential and normal component, that is,

AX = BX + ρ(X)N

where BX is the tangential component of AX and

ρ(X) = 1(AX,N) = 1(X,AN) = 1(X,AJξ) = 1(JX,Aξ).
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Since JX = ϕX + η(X)N and Aξ = Bξ + ρ(ξ)N we also have

ρ(X) = 1(ϕX,Bξ) + η(X)ρ(ξ) = η(BϕX) + η(X)ρ(ξ).

We also define

δ = 1(N,AN) = 1(JN, JAN) = −1(JN,AJN) = −1(ξ,Aξ).

Now at each point z ∈M let us consider a maximal A-invariant subspace Qz of TzM, z∈M, defined by

Qz = {X ∈ Cz | AX ∈ TzM for all A ∈ Az}

of TzM, z∈M. Thus for a case where the unit normal vector field N isA-isotropic it can be easily checked that
the orthogonal complement Q⊥z = Cz⊖Qz, z∈M, of the distribution Q in the complex subbundle C, becomes
Q
⊥
z = Span[Aξ,AN]. Here it can be easily checked that the vector fields Aξ and AN belong to the tangent

space TzM, z∈M if the unit normal vector field N becomes A-isotropic. Then by using the same method for
real hypersurfaces in complex hyperbolic quadric Qm∗ as in Suh [31] we get the following

Lemma 3.1. Let M be a real hypersurface in complex hyperbolic quadric Qm∗. Then the following statements are
equivalent:

(i) The normal vector N[z] of M is A-principal,
(ii) Q[z] = C[z],

(iii) There exists a real structure A ∈ A[z] such that AN[z] ∈ Cν[z]M.

We now assume that M is a Hopf hypersurface. Then the Reeb vector field ξ becomes

Sξ = αξ

for the smooth Reeb function α = 1(Sξ, ξ) on M. The transformed vector field JX by the Kähler structure J
on Qm∗ for any vector field X on M in Qm∗ is given by

JX = ϕX + η(X)N

for a unit normal vector field N to M. Then the equation of Codazzi is given by

1((∇XS)Y − (∇YS)X,Z)
= −η(X)1(ϕY,Z) + η(Y)1(ϕX,Z) + 2η(Z)1(ϕX,Y) − 1(X,AN)1(AY,Z)
+ 1(Y,AN)1(AX,Z) − 1(X,Aξ)1(JAY,Z) + 1(Y,Aξ)1(JAX,Z).

From this, if we put Z = ξ, it follows that

1((∇XS)Y − (∇YS)X, ξ)
= 21(ϕX,Y) − 1(X,AN)1(Y,Aξ) + 1(Y,AN)1(X,Aξ)
+ 1(X,Aξ)1(JY,Aξ) − 1(Y,Aξ)1(JX,Aξ).

On the other hand, by differentiating Sξ = αξwe have

1((∇XS)Y − (∇YS)X, ξ)
= 1((∇XS)ξ,Y) − 1((∇YS)ξ,X)
= (Xα)η(Y) − (Yα)η(X) + α1((Sϕ + ϕS)X,Y) − 21(SϕSX,Y).

If we compare the previous two equations and putting X = ξ, we have the following

Yα = (ξα)η(Y) − 21(ξ,AN)1(Y,Aξ) + 21(Y,AN)1(ξ,Aξ). (3.1)
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Substituting (3.1) into the obtained equation implies

1((∇XS)Y − (∇YS)X, ξ)
= 21(ξ,AN)1(X,Aξ)η(Y) − 21(X,AN)1(ξ,Aξ)η(Y)
− 21(ξ,AN)1(Y,Aξ)η(X) + 21(Y,AN)1(ξ,Aξ)η(X)
+ α1((ϕS + Sϕ)X,Y) − 21(SϕSX,Y).

Summing up all the facts above, we have the following

0 = 21(SϕSX,Y) − α1((ϕS + Sϕ)X,Y) + 21(ϕX,Y)
− 1(X,AN)1(Y,Aξ) + 1(Y,AN)1(X,Aξ)
+ 1(X,Aξ)1(JY,Aξ) − 1(Y,Aξ)1(JX,Aξ)
− 21(ξ,AN)1(X,Aξ)η(Y) + 21(X,AN)1(ξ,Aξ)η(Y)
+ 21(ξ,AN)1(Y,Aξ)η(X) − 21(Y,AN)1(ξ,Aξ)η(X).

At each point z ∈M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1,Z2 ∈ V(A) and 0 ≤ t ≤ π
4 (see Proposition 3 in [21]). Note that t is a

function on M. First of all, since ξ = −JN, we have

ξ = sin(t)Z2 − cos(t)JZ1,

AN = cos(t)Z1 − sin(t)JZ2,

Aξ = sin(t)Z2 + cos(t)JZ1.

(3.2)

On the other hand, we have JAξ = −AJξ = −AN, and inserting this formula into the previous equation
implies

Lemma 3.2. Let M be a Hopf hypersurface in Qm∗ with (local) unit normal vector field N. For each point z ∈ M we
choose A ∈ Az such that Nz = cos(t)Z1 + sin(t)JZ2 holds for some orthonormal vectors Z1,Z2 ∈ V(A) and 0 ≤ t ≤ π4 .
Then

0 = 21(SϕSX,Y) − α1((ϕS + Sϕ)X,Y) + 21(ϕX,Y) − 21(X,AN)1(Y,Aξ)
+ 21(Y,AN)1(X,Aξ) − 21(ξ,Aξ){1(Y,AN)η(X) − 1(X,AN)η(Y)}

holds for all vector fields X and Y on M.

By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in Qm∗ induced
from the curvature tensor R̄ of Qm∗ can be described in terms of the complex structure J and the complex
conjugations A ∈ A as follows: for any tangent vector fields X, Y and Z on M in Qm∗

R(X,Y)Z = −1(Y,Z)X + 1(X,Z)Y − 1(JY,Z)(JX)T + 1(JX,Z)(JY)T

+ 21(JX,Y)(JZ)T
− 1(AY,Z)(AX)T + 1(AX,Z)(AY)T

− 1(JAY,Z)(JAX)T + 1(JAX,Z)(JAY)T

+ 1(SY,Z)SX − 1(SX,Z)SY,

(3.3)

where (· · · )T denotes the tangential component of the vector (· · · ) in Qm∗.

Let {e1, e2, · · · , e2m−1, e2m := N} be a basis of the tangent vector space TzQm∗ of Qm∗ at z ∈ Qm∗. By the
definition of the Ricci operator of M in Qm∗, it is given by Ric(X) = Σ2m−1

i=1 R(X, ei)ei. So from (3.3) it follows
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that

Ric(X) = −(2m − 1)X + 3η(X)ξ + 1(AN,N)(AX)T
− 1(AX,N)(AN)T

+ 1(JAN,N)(JAX)T
− 1(JAX,N)(JAN)T

+ (Tr S)SX − S2X,

(3.4)

where we have used some basic formulas induced from contracting of the curvature tensor in (3.3)(see also
Berndt and Suh [1]).

In this paper, we consider the notion of cyclic Ricci semi-symmetric

SX,Y,Z(R(X,Y)Ric)(Z) = 0,

which is weaker than Ricci semi-symmetric R(X,Y)Ric(Z) = 0 or Ricci parallel, ∇XRic = 0, where the
curvature tensor R(X,Y)Z is defined by

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z

for any vector fields X,Y and Z on M in the complex hyperbolic quadric Qm∗. Then by the Ricci formula and
the first Bianchi identity on Riemannan manifolds the cyclic Ricci semi-symmetricSX,Y,Z(R(X,Y)Ric)(Z) = 0
implies

SX,Y,ZR(X,Y)Ric(Z) =R(X,Y)Ric(Z) + R(Y,Z)Ric(X) + R(Z,X)Ric(Y)
=0

(3.5)

for any tangent vector fields X,Y and Z on M, where SX,Y,Z denotes the cyclic sum of the vector fields X,
Y and Z. Hereafter, unless otherwise stated the equation (3.5) is said to be cyclic Ricci semi-symmetric or
otherwise cyclic semi-parallel Ricci tensor of M in Qm∗.

On the other hand, for a real structure A of Qm∗ we decompose AX into its tangential and normal
components given by AX = BX + 1(AX,N)N. From this and the anti-commuting property between the
complex structure J and real structure A, we get

AN = AJξ = −JAξ = −ϕAξ − 1(Aξ, ξ)N. (3.6)

In addition, from the expression of the vector fields Aξ and N in (3.2) we obtain that 1(Aξ,N) = 0, which
means that the unit vector field Aξ is tangent to M.

Now let us use the equation of Gauss which is given by

∇̄XY = ∇XY + 1(SX,Y)N,

where S denotes the shape operator of M in Qm∗. Then we get the following

∇X(Aξ) =∇̄X(Aξ) − 1(SX,Aξ)N
=(∇̄XA)ξ + A(∇̄Xξ) − 1(SX,Aξ)N
=q(X)JAξ + A(∇Xξ + 1(SX, ξ)N) − 1(SX,Aξ)N
=q(X)JAξ + AϕSX + 1(SX, ξ)AN − 1(SX,Aξ)N
=q(X)ϕAξ + q(X)1(Aξ, ξ)N + BϕSX + 1(ϕSX,AN)N

− 1(SX, ξ)ϕAξ − 1(SX, ξ)1(Aξ, ξ)N − 1(SX,Aξ)N
=q(X)ϕAξ + q(X)1(Aξ, ξ)N + BϕSX
− 1(Aξ,SX)N + 1(Aξ, ξ)1(SX, ξ)N
− 1(SX, ξ)ϕAξ − 1(SX, ξ)1(Aξ, ξ)N − 1(SX,Aξ)N,

where we have used the formulas (∇̄XA)Y = q(X)JAY and (3.6). From this, by comparing the tangential and
normal parts of both sides, we can assert the following:



G. J. Kim et al. / Filomat 37:17 (2023), 5671–5690 5681

Lemma 3.3. Let M be a real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3. Then we obtain

∇X(Aξ) = q(X)ϕAξ + BϕSX − 1(SX, ξ)ϕAξ (3.7)

and

q(X)1(Aξ, ξ) = 21(SX,Aξ) (3.8)

for any tangent vector field X on M.

4. Proof of Main Theorem 1 with A-principal unit normal vector field

Now in this section we consider only an A-principal unit normal vector field N for a real hypersurface
M in Qm∗ with cyclic semi-symmetric Ricci tensor. As in section 2, we denote by ∇̄ the canonical covariant
derivative of Qm∗, and by ∇̄End the induced covariant derivative on the endomorphism bundle End(TQm∗).

Lemma 4.1. Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3, such that the normal
vector field N is A-principal everywhere. Let A be the section of the S1-bundle A so that AN = N holds. Then we
have the following:

(i) The Reeb curvature function α is constant.

(ii) If X∈C is a principal vector of M with principal curvature λ, then α = ±2, λ = ±1 for α = 2λ or ϕX is a principal
curvature vector with principal curvature µ = αλ−2

2λ−α for α,2λ.

(iii) ∇̄End
X A = 0 for any X∈C.

(iv) ASX = SX for any X∈C.

(v) The shape operator commutes with the complex conjugation, that is, AS = SA.

(vi) q(ξ) = 2α.

Proof. In Suh, Pérez and Woo [32] and Lemma 3.2, we know the following for any X∈Tλ

(2λ − α)SϕX = (αλ − 2)ϕX

when the unit normal vector field N is A-principal. From this, together with (3.1) and the method in [32], it
can be verified that (i) the Reeb function α is constant and (ii) holds on M.

Now let us prove (iii) and (iv). In order to do this we consider the real valued 1-form q : TQm∗
→ R on

the complex hyperbolic quadric Qm∗. Then by (2.2) we know that

∇̄
End
X A = q(X) · JA holds for every X ∈ TQm∗.

Now let us differentiate the equation 1(AN, JN) = 0 along any X∈TxM, x∈M. Thereby we obtain

0 =1((∇̄End
X A)N + A∇̄XN, JN) + 1(AN, (∇̄End

X J)N + J∇̄XN)
=q(X) − 1(ASX, JN) − 1(ξ,SX)

for the second equality it was used that ∇̄End J = 0 holds, because Qm∗ is Kählerian. This gives us for the
1-form q

q(X) = −1(ASX, ξ) + 1(ξ,SX) = 1(Sξ,X) + 1(ξ,SX) = 2αη(X), (4.1)

where we have used that Aξ = −AJN = JAN = JN = −ξ, because of N∈V(A). It follows from Equation (4.1)
that q(X) = 0 holds for any X∈C, whence (iii) follows.
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Second, we differentiate the formula AJN = −JAN = −JN along the distribution C. By applying
equation (4.1) and again ∇̄End J = 0, we obtain for X ∈ C

q(X)JAJN − AJSX = JSX.

Because of (4.1) for any X∈C, we have q(X) = 0, and therefore −AJSX = JSX, which implies ASX = SX,
completing the proof of (iv).

From the A-principal, let us differentiate AN = N. Then it follows that

−SX =∇̄XN = ∇̄X(AN)
=(∇̄XA)N + A∇̄XN = q(X)JAN − ASX
= − 2αη(X)ξ − ASX,

where in the final equality we have used the formula (4.2) and A-principal. Then it can be arranged again
as follows:

ASX = SX − 2αη(X)ξ

for any X∈TxM, x∈M. Then by the symmetric property of the above equation it becomes 1(ASX,Y) =
1(ASY,X) for any X,Y∈TxM, x∈M. That is, (v) holds on M.

Since Aξ∈TxM, x∈M, for M in Qm∗, by the equation of Gauss and (4.1) we know that

∇X(Aξ) =∇̄X(Aξ) − σ(X,Aξ)
=q(X)JAξ + A(∇Xξ) + 1(SX, ξ)AN − 1(SX,Aξ)N

for any X∈TM. From this, by taking the inner product with the unit normal N and using Aξ = −ξ for an
A-principal, we have

q(X) = 2αη(X),

which implies q(ξ) = 2α, which gives a complete proof of (vi).

On the other hand, from (3.8) and using AN = N, Aξ = −ξ and AX = BX for an A-principal unit normal
vector field, we have

Ric(X) = −(2m − 1)X + 2η(X)ξ + AX + hSX − S2X,

where the mean curvature h = Tr S is defined by the trace of the shape operator S of M in Qm∗. Now, let us
use the assumption of cyclic semi-symmetric Ricci tensor, that is,SX,Y,Z(R(X,Y)Ric)Z = 0. This is equivalent
to

SX,Y,ZR(X,Y)Ric(Z) = 0 (4.2)

for any vector fields X,Y and Z ∈ TzM, z ∈ M, where SX,Y,Z denotes the cyclic sum of the vector fields X,Y
and Z. Then in order to find some geometric structures of the cyclic semi-symmetric Ricci tensor (4.2), we
want to consider some formulas as follows:

By virtue of the expression of the curvature tensor R(X,Y)Z in (3.3), we calculate the term R(X,Y)ξ as
follows:

R(X,Y)ξ = − η(Y)X + η(X)Y − η(AY)(AX)T + η(AX)(AY)T

+ 1(AY,N)(JAX)T
− 1(AX,N)(JAY)T

+ α{η(Y)SX − η(X)SY}

= − η(Y)X + η(X)Y + η(Y)(AX)T
− η(X)(AY)T

+ α{η(Y)SX − η(X)SY}.

(4.3)
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On the other hand, it is known that a pseudo-Einstein real hypersurface M in Qm∗ is defined by

Ric(X) = aX + bη(X)ξ, (4.4)

where a and b are constant on M.

Now let us check that whether this kind of pseudo-Einstein real hypersurface satisfies the cyclic Ricci
semi-symmetric (4.2) or not. In order to do this, let us substitute (4.4) into (4.2) and use (4.3) in the obtained
equation. Then it follows that

SX,Y,Zη(Z)R(X,Y)ξ

=η(Z)
{
− η(Y)X + η(X)Y − η(AY)(AX)T + η(AX)(AY)T

+ 1(AY,N)(JAX)T
− 1(AX,N)(JAY)T + α{η(Y)SX − η(X)SY}

}
+ η(X)

{
− η(Z)Y + η(Y)Z − η(AZ)(AY)T + η(AY)(AZ)T

+ 1(AZ,N)(JAY)T
− 1(AY,N)(JAZ)T + α{η(Z)SY − η(Y)SZ}

}
+ η(Y)

{
− η(X)Z + η(Z)X − η(AX)(AZ)T + η(AZ)(AX)T

+ 1(AX,N)(JAZ)T
− 1(AZ,N)(JAX)T + α{η(X)SZ − η(Z)SX}

}
.

(4.5)

Since the unit normal vector field N is A-principal, we know that AN = N and Aξ = −ξ. So (4.5) implies
the following

SX,Y,Zη(Z)R(X,Y)ξ = η(Z)
{
η(Y)(AX)T

− η(X)(AY)T
}

+ η(X)
{
η(Z)(AY)T

− η(Y)(AZ)T
}
+ η(Y)

{
η(X)(AZ)T

− η(Z)(AX)T
}

= 0.

(4.6)

From this we can assert the following

Theorem 4.2. Let M be a pseudo-Einstein real hypersurface in the complex hyperbolic quadric Qm∗, m≥3. If the
unit normal vector field N is A-principal, then M satisfies the cyclic Ricci semi-symmetric, that is,

SX,Y,ZR(X,Y)Ric(Z) = 0, (4.7)

where SX,Y,Z denotes the cyclic sum of the vector fields X,Y and Z on M.

As a converse problem, we can assert the following theorem

Theorem 4.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m≥3, with A-principal
unit singular normal vector field. Then there does not exist a real hypersurface in Qm∗ satisfying the cyclic Ricci
semi-symmetric. In particular, there do not exist a Hopf pseudo-Einstein real hypersurface in Qm∗.

Proof. In order to prove this theorem, we need Lemma 4.1 and the following proposition.

By virtue of Lemma 4.1, some geometric properties of Hopf hypersurfaces in Qm are being investigated
when the unit normal vector field N is A-principal. Among them, as a new characterization of contact
hypersurfaces in the complex hyperbolic quadric Qm∗, we proved the following results:

Proposition 4.4. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3. Then M has an
A-principal singular normal vector field N if and only if M is locally congruent to one of the following:
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(i) the tube of radius r around the Hermitian symmetric space Q∗(m−1) which is imbedded in Qm∗ as a totally geodesic
complex hypersurface,

(ii) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal geodesic in Qm∗,

(iii) the tube of radius r around the m-dimensional real hyperbolic space RHm which is embedded in Qm∗ as a real
space form of Qm∗.

Proof. From items (iv) and (v) of Lemma 4.1 we see that SX = 0 for any X ∈ C ∩ JV(A), then by Lemma 3.2
it holds that SϕX = 2

αϕX. Thus, the expression of the shape operator S of M can be given by

S = diag(α, 0, 0, . . . , 0︸     ︷︷     ︸
(m−1)

,
2
α
,

2
α
, . . . ,

2
α︸        ︷︷        ︸

(m−1)

)

It follows that the shape operator S satisfies Sϕ + ϕS = 2
αϕ, and M is a contact real hypersurface. Then,

Proposition 4.4 follows directly from Theorem C.

Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗ with A-principal singular
normal vector field. Then from (4.1) the Ricci operator becomes

Ric(X) = −(2m − 1)X + 2η(X)ξ + AX +HX, (4.8)

where HX is given by HX = hSX − S2X for any vector field X on M. Then the Ricci cyclic semi-symmetric
(4.7) and the first Bianchi identity implies that

0 =SX,Y,ZR(X,Y)Ric(Z)
=SX,Y,ZR(X,Y){−(2m − 1)Z + 2η(Z)ξ + AZ +HZ}
= − (2m − 1)SX,Y,ZR(X,Y)Z + 2SX,Y,Zη(Z)R(X,Y)ξ
+SX,Y,ZR(X,Y)AZ +SX,Y,ZR(X,Y)HZ
=SX,Y,ZR(X,Y)AZ +SX,Y,ZR(X,Y)HZ.

This implies

SX,Y,ZR(X,Y)HZ = −SX,Y,ZR(X,Y)AZ, (4.9)

where the curvature tensor of the left side in (4.9) is given by

R(X,Y)HZ = − 1(Y,HZ)X + 1(X,HZ)Y − 1(JY,HZ)(JX)T

+ 1(JX,HZ)(JY)T + 21(JX,Y)(JHZ)T
− 1(AY,HZ)(AX)T

+ 1(AX,HZ)(AY)T
− 1(JAY,HZ)(JAX)T

+ 1(JAX,HZ)(JAY)T

+ 1(SY,HZ)SX − 1(SX,HZ)SY.

(4.10)

Now let us consider X,Y∈Tλ∩JV(A) in Lemma 4.1 and Proposition 4.4 with λ = 0 and µ = 2
α , because

M is contact in Proposition 4.4. Then it follows that SX = SY = 0, AX = −X and AY = −Y for the principal
curvature λ = 0. Then HX = hSX− S2X = 0, and HY = hSY− S2Y = 0. Moreover, for Z∈Tµ∩V(A) in Lemma
4.1 and Proposition 4.4 it implies that

SZ = µZ, µ =
2
α
, and HZ = hSZ − S2Z = (hµ − µ2)Z.
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Accordingly, from (4.9) and the 1st Bianchi identity, together with HX = 0 and HY = 0 mentioned above, it
satisfies that

SX,Y,ZR(X,Y)HZ =R(X,Y)HZ + R(Y,Z)HX + R(Z,X)HY

=(hµ − µ2)R(X,Y)Z.
(4.11)

On the other hand, from the right side of (4.9), together with AX = −X, AY = −Y, and AZ = Z, it follows
that

SX,Y,ZR(X,Y)AZ =R(X,Y)AZ + R(Y,Z)AX + R(Z,X)AY
=R(X,Y)Z − R(Y,Z)X − R(Z,X)Y
=R(X,Y)Z + R(X,Y)Z
=2R(X,Y)Z

(4.12)

Then (4.9), (4.11) and (4.12) imply
(hµ − µ2 + 2)R(X,Y)Z = 0.

But here the curvature tensor R(X,Y)Z never vanishing for X,Y∈Tλ∩JV(A) and
Z∈Tµ∩V(A).

In fact, by virtue of Theorem C, in Proposition 4.4 we know that M is contact and the principal curvature
µ is given by µ = 2

α and AX = −X, and AY = −Y and AZ = Z. Moreover, SX = SY = 0 and SZ = µZ. If the
curvature tensor R(X,Y)Z = 0 for X,Y∈Tλ∩JV(A), X⊥Y and Z∈Tµ∩V(A), then it follows that

0 = R(X,Y)Z = − 1(JY,Z)(JX)T + 1(JX,Z)(JY)T

+ 21(JX,Y)(JZ)T
− 1(JAY,Z)(JAX)T + 1(JAX,Z)(JAY)T

= − (JX)T + 1(X,Y)(JY)T
− 1(JY,Z)(JX)T + 1(JX,Z)(JY)T

= − 2(JX)T,

where we have taken Z = JY, 1(X,Y) = 0, AX = −X, AY = −Y and AZ = Z. So it gives a contradiction.

So we should have hµ − µ2 + 2 = 0. From this, we want to calculate the principle curvatures of cyclic
Ricci semi-symmetric real hypersurfaces in Qm∗ as follows:

0 =hµ − µ2 + 2

={α + (m − 1)(
2
α

)}(
2
α

) −
4
α2 + 2

=(m − 2)
4
α2 + 4.

(4.13)

Then it follows that α2 + m − 2 = 0. This gives a contradiction. So we get a complete proof of our Main
Theorem 1 in the introduction.

5. Proof of Main Theorem 2 with A-isotropic unit normal vector field

In section 4, we proved that there does not exist a Hopf real hypersurface with cyclic semi-symmetric Ricci
tensor in the complex hyperbolic quadric Qm∗ with A-principal unit normal vector field. Motivated by the
result of section 4, in this section we give a complete proof of our Main Theorem 2 for real hypersurfaces
with cyclic semi-symmetric Ricci tensor when M has an A-isotropic unit normal vector field. Then by putting
Z = ξ in the assumption of cyclic Ricci semi-symmetric it is given by

R(X,Y)Ric(ξ) + R(Y, ξ)Ric(X) + R(ξ,X)Ric(Y) = 0. (5.1)
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Since we assumed that the unit normal N is A-isotropic, by the definition in section 3 we know that t = π4 .
Then by the expression of theA-isotropic unit normal vector field, the equation (3.2) gives N = 1

√
2
Z1+

1
√

2
JZ2.

This implies that

1(ξ,Aξ) = 0, 1(ξ,AN) = 0, 1(AN,N) = 0, 1(Aξ,N) = 0,

and
1(JAN, ξ) = −1(AN,N) = 0.

Then the vector fields AN and Aξ become tangent vector fields to M in Qm∗.
When M is A-isotropic, the Ricci operator becomes

Ric(X) = − (2m − 1)X + 3η(X)ξ − 1(AX,N)(AN)T
− 1(JAX,N)(JAN)T

+ hSX − S2X.
(5.2)

Then by putting X = ξ in (5.2) and M being Hopf, we have

Ric(ξ) = κξ, κ = −2m + 4 + hα − α2. (5.3)

Since AN is a tangent vector field for an A-isotropic normal vector field, we know that

∇Y(AN) = {(∇̄YA)N + A∇̄YN}T = {q(Y)JAN − ASY}T,

and

∇Y(Aξ) = −q(Y)AN + BϕSY + 1(SY, ξ)AN,

where we have used (3.2) and (3.6), and (· · ·)T denotes the tangential component of the vector (· · ·) in Qm.

Now we assert an important lemma which gives a key role in the proof of our Main Theorem 2 as
follows:

Lemma 5.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3, with A-isotropic unit
normal vector field N. Then we have

SAξ = 0 and SAN = −SϕAξ = 0.

Proof. Let us denote by Q⊥ = Span{Aξ,AN}, where Q is the maximal A-invariant subspace in the com-
plex subbundle of C. By differentiating 1(AN,N) = 0 and using (∇̄XA)Y = q(X)JAY and the equation of
Weingarten, we know that

0 = 1(∇̄X(AN),N) + 1(AN, ∇̄XN)
= 1(q(X)JAN − ASX,N) − 1(AN,SX)
= −21(ASX,N).

Then SAN = 0. From (3.2), we obtain AN = −ϕAξ. So, it implies that SϕAξ = 0. Moreover, by differentiating
1(Aξ,N) = 0 and using 1(AN,N) = 0, we have:

0 = 1(∇̄X(Aξ),N) + 1(Aξ, ∇̄XN)
= 1(q(X)JAξ + A(ϕSX + 1(SX, ξ)N),N) − 1(SAξ,X)
= −21(SAξ,X)

for any X∈TzM, z∈M, where in the third equality we have used ϕAN = JAN = −AJN = Aξ. Then it follows
that

SAξ = 0.

It completes the proof of our assertion.
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Then by (3.3) and (3.5) the third term of the cyclic Ricci semi-symmetric (5.1) becomes

R(ξ,X)Ric(Y) = − 1(X,Ric(Y))ξ + 1(ξ,Ric(Y))X − 1(AX,Ric(Y))(Aξ)T

+ 1(Aξ,Ric(Y))(AX)T
− 1(JAX,Ric(Y))(JAξ)T

+ 1(JAξ,Ric(Y))(JAX)T

+ 1(SX,Ric(Y))Sξ − 1(Sξ,Ric(Y))SX,

(5.4)

where we have used Jξ = N which becomes a unit normal vector field to M in Qm. Then we can calculate
the above terms one by one as follows:

1(X,Ric(Y))ξ = 1(Ric(X),Y)ξ

=
{
− (2m − 1)1(X,Y) + 3η(X)η(Y) − 1(ϕAξ,X)1(ϕAξ,Y)

− 1(Aξ,X)1(Aξ,Y) + h1(SX,Y) − 1(S2X,Y)
}
ξ,

and

1(ξ,Ric(Y))X = 1(Ric(ξ),Y)X = κη(Y)X,

where we have used (5.2) and (5.3), and put κ = −2(m − 2) + (αh − α2). The other six terms in (5.4) can be
computed as follows:

−1(AX,Ric(Y))(Aξ)T =
{
(2m − 1)1(AX,Y) − 3η(Y)η(AX) + 1(Aξ,Y)η(X)

− h1(SY,AX) + 1(S2Y,AX)
}
(Aξ)T,

where we have usedϕAξ = −AN and 1(Aξ,AX) = η(X) in theA-isotropic unit normal vector field. Moreover,
by virtue of A-isotropic 1(Aξ, ξ) = η(Aξ) = 0 and SAξ = 0 in Lemma 5.1, it follows that

1(Aξ,Ric(Y))(AX)T = 2m1(Aξ,Y)(AX)T,

−1(JAX,Ric(Y))(JAξ)T =
{
(2m − 1)1(JAX,Y) − 3η(Y)η(JAX)

− 1(ϕAξ,Y)1(AN, JAX) − h1(SY, JAX)

+ 1(S2Y, JAX)
}
(JAξ)T,

where the term 1(Aξ,Y)1(Aξ, JAX) = 1(Aξ,Y)1(N,X) = 0 is used. Then by Lemma 5.1 the remained terms
are calculated as follows:

1(JAξ,Ric(Y))(JAX)T =
{
− (2m − 1)1(JAξ,Y) + 3η(Y)η(JAξ)

− 1(ϕAξ,Y)1(ϕAξ, JAξ) − 1(Aξ,Y)1(Aξ, JAξ)

+ h1(SY, JAξ) + h1(SY, JAξ) − 1(S2Y, JAξ)
}
(AX)T

= − 2m1(AN,Y)(JAX)T,

where we have used 1(JAξ,Y) = 1(ϕAξ,Y) = −1(AN,Y) in the A-isotropic unit normal vector field.

1(SX,Ric(Y))Sξ =
{
− (2m − 1)1(Y,SX) + 3η(Y)η(SX)

− 1(ϕAξ,Y)1(ϕAξ,SX)

− 1(Aξ,Y)1(Aξ,SX) + h1(SY,SX) − 1(S2Y,SX)
}
Sξ

=α
{
− (2m − 1)1(SX,Y) + 3αη(X)η(Y)

+ h1(S2X,Y) − 1(S3X,Y)
}
ξ,
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where in the second equality we have used SAξ = 0 in Lemma 5.1. Now the final term in (5.4) is given by

−1(Sξ,Ric(Y))SX = − α1(Ric(Y), ξ)SX

=α
{
(2m − 1)η(Y) − 3η(Y)

+ 1(ϕAξ,Y)1(ϕAξ, ξ) + 1(Aξ,Y)1(Aξ, ξ)

− h1(SY, ξ) + 1(S2Y, ξ)
}
SX

=α{2(m − 2) − hα + α2
}η(Y)SX

Substituting all the formulas above into (5.4) and using (5.2) and (5.3), we have the following

0 =κR(X,Y)ξ + R(ξ,X)Ric(Y) − R(ξ,Y)Ric(X)

=(4 + hα − α2)
{
− 1(Aξ,Y)(AX)T + 1(Aξ,X)(AY)T

+ 1(AN,Y)(JAX)T
− 1(AN,X)(JAY)T

}
−

{
4(η(Y)η(AX) − η(X)η(AY)) + h{1(SY,AX) − 1(SX,AY)}

− (1(S2Y,AX) − 1(S2X,AY))
}
(Aξ)T

−

{
− (2m − 1)(1(JAX,Y) − 1(JAY,X)) + 3η(Y)η(JAX) − 3η(X)η(JAY)

− 1(ϕAξ,Y)η(X) + 1(ϕAξ,X)η(Y) + h{1(SY, JAX) − 1(SX, JAY)}

− (1(S2Y, JAX) − 1(S2X, JAY))
}
(JAξ)T.

(5.5)

Now by Lemma 5.1, let us consider the distribution Q in section 3. At each point z ∈ M, we define the
maximal A-invariant subspace of TzM as follows:

Qz = {X ∈ Cz | AX ∈ TzM for all A ∈ Az}.

By putting X∈Q∩V(A) in (5.5), then Y = ϕX∈Q∩JV(A). Moreover, by Lemma 3.4, if we put SX = λX,
then ϕX = µϕX, where µ = λα−2

2λ−α . From this it follows that

(µ − λ){h − (µ + λ)} = 0. (5.6)

This implies µ = λ or h = µ + λ. Then we consider the following two cases:

Case 1. λ = µ

In this case λ = αλ−2
2λ−α implies λ2

−αλ+1 = 0. This means that the principal curvatures are given by coth r,
tanh r, and α = 2 coth 2r = coth r + tanh r, and the shape operator S and the structure tensor ϕ commutes
with each other, that is, Sϕ = ϕS. So by virtue of Theorem B in the introduction due to Suh [30], M is locally
congruent to a tube of radius r over the complex hyperbolic spaceCHk in Q2k∗ or a horosphere whose center
at infinity is A-isotropic singular.

Case 2. h = λ + µ
In this subcase we know that the trace h becomes h = − α

m−3 , because

h = λ + µ = α + (m − 2)(λ + µ) = α + (m − 2)h.

Since h = λ + µ = λ + αλ−2
2λ−α , it implies the following

2λ2
− 2hλ + αh − 2 = 0. (5.7)
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From this, together with h = − α
m−3 , it follows that the principal curvatures λ and µ satisfies the quadratic

equation
2(m − 3)x2 + 2αx − α2

− 2(m − 3) = 0.

In this case the shape operator is given by

S =



α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0
...
...
...
...
. . .

...
... · · ·

...
0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 µ · · · 0
...
...
...
...
...
...
...
. . .

...
0 0 0 0 · · · 0 0 · · · µ


where the two principal curvatures λ and µ are respectively given by

λ =
−α +

√
(2m − 5)α2 + 4(m − 3)2

2(m − 3)

and

µ =
−α −

√
(2m − 5)α2 + 4(m − 3)2

2(m − 3)
.

Here, the corresponding principal curvature spaces are ξ∈Tα, Aξ,AN∈Tβ=γ, Tλ and Tµwith multiplicities
1, 2, m − 2 and m − 2 respectively.

When m = 3, then from h = α + (m − 2)h it follows that the Reeb function α = 0. Moreover, by virtue of
(5.7), principal curvatures λ and µ satisfy the quadratic equation

x2
− hx − 1 = 0.

So we have that the principal curvatures are given by

α = 0, β = γ = 0, λ =
h +
√

h2 + 4
2

, and µ =
h −
√

h2 + 4
2

with multiplicities 1, 2, 1 and 1 respectively. This gives a complete proof of our Main Theorem 2.
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[12] A. Martinez and J.D. Pérez, Real hypersurfaces in quaternionic projective space, Ann. Math. Pura Appl. 145 (1968), 355–384.
[13] S. Montiel and A. Romero, On some real hypersurfaces in a complex hyperbolic space, Geom. Dedicata 212(1991), 245-261.
[14] S. Montiel and A. Romero, Complex Einstein hypersurfaces of indefinite complex space forms, Proc. Camb. Phil. Soc. 94(1983),

495-508.
[15] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
[16] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1975), 355-364.
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