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Abstract. In this article, we study the problem

−∆u −
1
2

(x · ∇u) = f (u), x ∈ R2,

where f : R → R is a superlinear continuous function with exponential subcritical or exponential critical
growth. The main results obtained in this paper are that for any given integer k ≥ 1, there exists a pair of
sign-changing radial solutions u+k and u−k possessing exactly k nodes.

1. Introduction

In this paper, we are looking for a pair of sign-changing solutions for the following class of problems

−∆u −
1
2

(x · ∇u) = f (u) in R2. (1)

In particular, we are interested in establishing two solutions of (1) which are nodal, namely with u+ , 0 and
u− , 0 in R2, where

u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}

and changing of sign k times, where k ∈N. Notice that, in this case, u = u+ + u− and |u| = u+ − u−.

As observed by Escobedo and Kavian in [9], since the exponential-type weight K(x) = exp(|x|2/4) verifies
∇K(x) = 1

2 xK(x), problem (1) can be written as

−div(K(x)∇u) = K(x) f (u) in R2. (2)

Such classes of problems as (1) are related to evolution equations. Consider the parabolic equation

(P) vt − ∆v = |v|p−1v in RN
× (0,+∞),
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where p > 1 is a fixed parameter and N ≥ 1. According to [15], a self-similar solution for (P) is a function
v(x, t) = t

−1
p−1 u(xt−

1
2 ). Note that v is a solution of (P) if, and only if, u is a solution of the problem

(PE) −∆u − 1
2 (x · ∇u) = 1

p−1 u + |u|p−1u in RN.

In [15], Haraux and Weissler considered problem (PE) in order to prove some non-uniqueness results for
the Cauchy problem associated to (P) in the case N = 1.

In this article, we consider the case of N = 2 and more general nonlinear terms. We will construct a
pair of changing solutions u+k and u−k possess exactly k nodes to a problem with a nonlinearity f : R → R
superlinear continuous function with exponential subcritical or exponential critical growth. More precisely,
the hypotheses on the continuous function f : R→ R are the ones below.

(F1) There exists α0 ≥ 0 such that the function f (t) satisfies

lim
t→∞

f (t)
exp(α|t|2)

= 0 for α > α0 and lim
t→∞

f (t)
exp(α|t|2)

= ∞ for α < α0.

(F2) There hold

lim
t→0

f (t)
|t|
= 0.

(F3) There exists θ > 2 such that

0 < θF(t) ≤ f (t)t for all t , 0, where F(t) =
∫ t

0
f (s)ds.

(F4) The function t→ f (t)/|t| is increasing in R \ {0}.

(F5) There exist p > 2 and τ∗ > 0 such that si1n(t) f (t) ≥ τ|t|p−1 for all τ > τ∗ and t , 0.

Let us denote by Xrad(R2) the weighted Sobolev space of the radial functions, which is obtained as the
closure of C∞0,rad(R2) with respect to the norm

∥u∥ =
( ∫
R2

K(x)|∇u|2dx
)1/2
.

The hypotheses (F1)− (F2) imply that the associated functional I : Xrad(R2)→ R of problem (2) given by

I(u) =
1
2

∫
R2

K(x)|∇u|2dx −
∫
R2

K(x)F(u)dx.

is well defined in Xrad(R2).

The main results can be stated as following.

Theorem 1.1. (Subcritical). Assume that (F1) with α0 = 0, (F2), (F3) and (F4) hold, then, for any given k ∈ N,
problem (2) admit a pair of nontrivial solutions u±k with the following properties:

(i) u−k (0) < 0 < u+k (0).

(ii) u±k possess exactly k nodes ri with 0 < r±1 < r±2 < · · · < r±k < ∞ and u+k (r+i ) = u−k (r−i ) = 0 for i = 1, 2, · · · , k.

(iii) The energy of u±k is strictly increasing in k, i.e. I(u±k+1) > I(u±k ) for all k ≥ 0 and I(u±k ) > (k + 1)I(u±0 ).

Theorem 1.2. (Critical). Assume that (F1) with α0 > 0, (F2), (F3), (F4) and (F5) hold, then, for any given k ∈ N,
problem (2) admit a pair of nontrivial solutions u±k with the following properties:



Y. H. Tong, G. M. Figueiredo / Filomat 37:17 (2023), 5751–5764 5753

(i) u−k (0) < 0 < u+k (0).

(ii) u±k possess exactly k nodes ri with 0 < r±1 < r±2 < · · · < r±k < ∞ and u+k (r+i ) = u−k (r−i ) = 0 for i = 1, 2, · · · , k.

(iii) The energy of u±k is strictly increasing in k, i.e. I(u±k+1) > I(u±k ) for all k ≥ 0 and I(u±k ) > (k + 1)I(u±0 ).

Remark 1.3. The results in Theorem 1.1 and Theorem 1.2 still hold for any rotationally symmetric domain. And
compared with k = 0, the solutions u±k (k ≥ 1) are the higher energy solutions.

To our knowledge, the first article that appeared with this argument was that by Cerami, Solimini and
Struwe [7]. They show the existence of solutions of changing sign for the classical problem studied by
Brezis and Nirenberg [2] with K = 1.

Still with K = 1, Cao and Zhu [5] studied the case with subcritical polynomial growth and the case with
exponential growth, considering the following hypothesis on the nonlinearity:

lim
t→∞

f (x, t)
exp(γ|t|)

= 0 for 0 < γ < 2,

uniformly with respect to x. See also Bartsch and Willem [3] for independent work. In [17], Liu and Wang
presented a different proof from [3, 5] and established various results on multiple solutions for superlinear
elliptic equations with more natural super-quadratic condition.

These arguments were used for the version with system by Cao and Tang in [6], for the p-Laplacian
operator by Deng, Guo and Wang in [8] and with the Laplacian operator and for an asymptotically linear
nonlinearity by Liu in [16] , all these authors considering K = 1.

On the other hand, results on the existence of sign-changing solutions with K(x) = exp(|x|2/4) were also
studied. Qian and Chen in [19] show existence of sign-changing solutions for a problem with concave and
convex nonlinearity with critical polynomial growth. These authors also studied a more general case in
[20].

The version with the nonlinearity with exponential growth and the sign-changing solution with an
unique node was studied by Figueiredo, Furtado and Ruviaro in [10]. Figueiredo and Montenegro also
studied a more general case in [11]. For more discussions on the existence of sign-changing solutions for
elliptic equations, we refer the readers to other references, such as [1, 14, 21] and so on.

The present work is strongly influenced by the articles above. Below we list what we believe that are
the main contributions of our paper.

(1) Unlike [5], [6], [7], [8] and [16], we show existence of sign-changing solutions with K(x) = exp(|x|2/4).
Moreover, we also show the energy of u±k is strictly increasing in k. This last result does not appear in
those articles.

(2) We completed the studies done in [19] and [20] because in this paper we are considering nonlinearity
with critical exponential growth.

(3) We complement the study that can be found in [10] and in [11] because, in our results, we show an
arbitrary number of nodes.

This paper is organized as follows. In order to be able to deal variationally, in Section 2 we define some
Function spaces and give radial solutions on rotationally symmetric domains. In Section 3, we prove the
main results.
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2. Function spaces and radial solutions on rotationally symmetric domains

In this section, we define the weighted Lebesgue spaces

Ls
K(R2) =

{
u measurable in R2 : ∥u∥ss =

∫
R2

K(x)|u|sdx < ∞
}
.

It follows from [12, Proposition 2.1] that the embedding Xrad(R2) ↪→ Ls
K(R2) is continuous and compact for

2 ≤ s < ∞. Another interesting result is that Xrad(R2) ↪→ Ls(R2) for any s ≥ 1. Moreover, the following
version of the Trudinger-Moser inequality holds, see[13, Theorem 1.1 and Corollary 1.2].

Lemma 2.1. For any q ≥ 2, u ∈ Xrad(R2) and β > 0, we have that K(x)|u|q(eβu2
− 1) ∈ L1(R2). Moreover,if ∥u∥ ≤M

and βM2 < 4π, then there exists C = C(M, β, q) > 0 such that∫
R2

K(x)|u|q(eβu
2
− 1)dx ≤ C(M, β, q)∥u∥q.

The hypotheses (F1) − (F2) imply that, for any given ϵ > 0, there exists Cϵ such that

max{| f (t)t|, |F(t)|} ≤ ϵ|t|2 + Cϵ|t|q(exp(αt2) − 1), for q ≥ 1, and t ∈ R. (3)

In particular, in this paper, we will use q > 2.

This inequality with q = 2 and Lemma 2.1 imply that the associated functional of problem (2) I ∈
C1(Xrad(R2),R). By using standard calculations we conclude that

I′(u)ϕ =
∫
RN

K(x)∇u∇ϕdx −
∫
RN

K(x) f (u)ϕdx, for all u, v ∈ Xrad(R2).

In [13, Lemma 4.3], the authors established a variant of the well-known Strauss inequality for the
weighted Sobolev space Xrad(R2) as follows, which is crucial in order to obtain multiple sign-changing
solutions.

Lemma 2.2. There exists c > 0 such that, for all u ∈ Xrad(R2), there holds

|u(x)| ≤ c|x|−
1
2 e−

|x|2
8 ∥u∥, for all x ∈ R2.

The following conclusion is crucial in the proof of our main results, which can be found in [13, inequality
(2.4)].

Lemma 2.3. For any r ≥ 1 there exists C = C(r) such that(∫
R2

K(x)r
|u|2rdx

) 1
r

≤ C(r)
∫
R2

K(x)|∇u|2dx, for all u ∈ Xrad(R2).

2.1. Radial solutions on rotationally symmetric domains

For any an open regular set Ω ⊂ R2, we denote by X0,rad(Ω) the closure of C∞0,rad(Ω) with respect to the
norm

∥u∥ =
( ∫
Ω

K(x)|∇u|2dx
)1/2
.

We also define the weighted Lebesgue spaces

Ls
K(Ω) =

{
u measurable in Ω : ∥u∥ss =

∫
Ω

K(x)|u|sdx < ∞
}
.
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In fact, by the same arguments can be found in [12, Proposition 2.1], we can prove that the embedding
X0,rad(Ω) ↪→ Ls

K(Ω) is continuous for 2 ≤ s ≤ ∞, and compact for 2 ≤ s < ∞.

In this subsection, we replace f by the odd continuous functions f±, which are given by

f+(t) =
{

f (t), t ≥ 0,
− f (−t), t < 0,

and f−(t) =
{
− f (−t), t > 0,

f (t), t ≤ 0.

Now, we consider respectively

−div(K(x)∇u) = K(x) f+(u),u ∈ X0,rad(Ω) (4)

and
−div(K(x)∇u) = K(x) f−(u),u ∈ X0,rad(Ω), (5)

where Ω is one of the following three kinds of rotationally symmetric domains:

Type one (ball centered at the origin) : Ω(0, ρ) := {x ∈ R2 : |x| < ρ}, ρ > 0;

Type two (annulus) : Ω(ρ, σ) := {x ∈ R2 : ρ < |x| < σ}, 0 < ρ < σ < ∞;

Type three (the exterior of a ball) : Ω(σ,∞) := {x ∈ R2 : |x| > σ}, σ > 0.

(6)

It is well known that the associated variational functional of (4) and (5)

I±(u) =
1
2

∫
Ω

K(x)|∇u|2dx −
∫
Ω

K(x)F±(u)dx

are well-defined and I± ∈ C1(X0,rad(Ω),R), where F±(t) =
∫ t

0
f±(s)ds. For fixed domain Ω, we define the

corresponding Nehari’s manifold as

N
±(Ω) =

{
u ∈ X0,rad(Ω) : u , 0,

∫
Ω

K(x)|∇u|2 =
∫
Ω

K(x) f±(u)u
}
. (7)

In what follows, by extending u ∈ X0,rad(Ω) by zero outside Ω, we may assume that u ∈ Xrad(R2).

Remark 2.4. The result in Lemma 2.1 also holds for X0,rad(Ω).

In the next result we show thatN±(Ω) is not empty.

Lemma 2.5. For each u ∈ X0,rad(Ω) \ {0}, there exists a unique t > 0 such that tu ∈ N±(Ω).

Proof. Given u ∈ X0,rad(Ω) \ {0}, we define the function γu(t) := I(tu) on [0,∞). Then tu ∈ N±(Ω) if and only
if γ′u(t) = 0. Using (3) with ϵ small enough and the embedding inequality, we have

γu(t) ≥
(1

2
− ϵ

C
2

)
t2
∥u∥2 − tqCϵ

∫
Ω

K(x)|u|q(exp(α|tu|2) − 1)dx,

for some C > 0. By Lemma 2.1, there exists C1 := C1(∥u∥, q) > 0 such that

γu(t) ≥
(1

2
− ϵ

C
2

)
t2
∥u∥2 − tqCϵC1∥u∥q,

for any 0 ≤ t < t∗ :=
√

4π/α∥u∥2. Since q > 2, there is 0 < t∗ ≤ t∗ such that γu(t) > 0 for all 0 < t < t∗.
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Moreover, from (F2) and (F3), there exist C2 > 0 and C3 > 0 such that

γu(t) ≤
t2

2
∥u∥2 − tθC2|u|θθ + t2C3|u|22.

Therefore, since θ > 2, we conclude that lim
t→+∞

γu(t) = −∞. Consequently, there exists at least one t := t(u) > 0

such that γ′u(t) = 0, i.e. tu ∈ N±(Ω). Note, in particular, that

γ′u(t)
t
= ∥u∥2 −

∫
Ω

K(x)
f±(u)

t
udx.

Then, it follows from (F4) that γ
′
u(t)
t is decreasing, and so we get the uniqueness. The lemma is proved.

In the next results we prove that sequences inN±(Ω) cannot converge to 0.

Lemma 2.6. For any u ∈ N±(Ω), there exists C > 0 such that ∥u∥ ≥ C.

Proof. We prove it by contradiction. Suppose that there is un ∈ N
+(Ω) such that un → 0 in X0,rad(Ω). It

follows from (3) and Sobolev inequality that

∥un∥
2 =

∫
Ω

K(x) f+(un)undx

≤ ϵ

∫
Ω

K(x)|un|
2dx + Cϵ

∫
Ω

K(x)|un|
q(exp(αu2

n) − 1)dx

≤ Cϵ∥un∥
2 + Cϵ

∫
Ω

K(x)|un|
q(exp(αu2

n) − 1)dx,

that is,

(1 − Cϵ)∥un∥
2
≤ Cϵ

∫
Ω

K(x)|un|
q(exp(αu2

n) − 1)dx.

Since un → 0 in X0,rad(Ω), there exists n0 ∈N such that ∥un∥ ≤M with αM2 < 4π for all n ≥ n0 and some
M > 0. Then, it follows from Lemma 2.1 that∫

Ω

K(x)|un|
q(expαun

2
− 1)dx ≤ C(M, α, q)∥un∥

q.

Therefore, we have
(1 − Cϵ)∥un∥

2
≤ CϵC(M, α, q)∥un∥

q,

which implies
1 − Cϵ

CϵC(M, α, q)
≤ ∥un∥

q−2. (8)

Since q > 2, the above inequality contradicts the fact that un → 0 in X0,rad(Ω) and the lemma is proved.

The following proposition shows that the minimizer of inf
N+(Ω)

I+(u) and inf
N−(Ω)

I−(u) are solutions.

Proposition 2.7. Assume that û and v̂ are minima of inf
N+(Ω)

I+(u) and inf
N−(Ω)

I−(u), then |û| and −|v̂| are positive and

negative radial solutions of problems (4) and (5), respectively.
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Proof. We first prove that if û is the minima of inf
N+(Ω)

I+(u), then û is a solution of (4). Suppose by contradiction,

that û is not a weak solution of (4). Then one can find φ ∈ X0,rad(Ω) such that

I′+(û)φ =
∫
Ω

K(x)∇û∇φ −
∫
Ω

K(x) f+(û)φ ≤ −1.

Choose ε > 0 very small such that

I′+(tû + σφ)φ ≤ −
1
2
, for all |t − 1| + |σ| ≤ ε.

Let η be a cut-off function such that η(t) = 1, if |t − 1| ≤ 1
2ε; η(t) = 0 , if |t − 1| ≥ ε. In the following, we

estimate supt≥0 I+(tû + εη(t)φ). If |t − 1| + |σ| ≤ ε, then

I+(tû + εη(t)φ) = I+(tû) +
∫ 1

0
I′+(tû + σεη(t)φ)εη(t)φdσ

≤ I+(tû) −
1
2
εη(t).

For |t − 1| ≥ ε, η(t) = 0, the above inequality is trivial. Since û ∈ N+(Ω), for t , 1, we have I+(tû + εη(t)φ) <
I+(û), hence

I+(tû + εη(t)φ) ≤ I+(tû) < I+(û) for t , 1.

If t = 1, then I+(tû + εη(1)φ) ≤ I+(tû) − 1
2εη(1) = I+(û) − 1

2ε. In any case, we have

I+(tû + εη(t)φ) < I+(û) = inf
N+(Ω)

I+(u).

Therefore, we have
sup
t≥0

I+(tû + εη(t)φ) := m̂ < inf
N+(Ω)

I+(u).

Now, we define 1(t) = I′+(tû+εη(t)φ)(tû+εη(t)φ). By direct computation, one gets 1(1−ε) = I′+((1−ε)û)((1−
ε)û) > 0 and 1(1+ε) = I′+((1+ε)û)((1+ε)û) < 0. Thus, By Miranda’s theorem [18], there exists t̂ ∈ (1−ε, 1+ε)
such that 1(t̂) = 0, that is t̂û + εη(t̂)φ ∈ N+(Ω) and so I+(t̂û + εη(t̂)φ) < inf

N+(Ω)
I+(u), which is a contradiction.

We have proved that û is a solution to equation (4).
Next we prove that û is constant-sign. Indeed, let û = û+ + û−, we get I+(û) = I+(û+) + I+(û−). If

û+ , 0, û− , 0, it is easy to verify that I+(û+) > 0, I+(û−) > 0, û+ ∈ N+(Ω) and û− ∈ N+(Ω), which
contradicts the definition of inf

N+(Ω)
I+(u). Thus, u remains non-positive or non-negative on Ω. By classical

regularity elliptic theory, we can obtain that û ∈ C2(Ω). Since f+(u) is a odd function, then both û and
−û attain inf

N+(Ω)
I+(u), and so we can deduce |û| is a positive solution of (4) by standard strong maximum

principle.

By a similar argument, we can obtain that −|v̂| is a negative solution of (5). The proof is completed.

In the following, we verify that inf
N−(Ω)

I−(u) and inf
N+(Ω)

I+(u) are achieved.

2.2. The Subcritical Case

Proposition 2.8. (Subcritical). Suppose that (F1) with α0 = 0, (F2) − (F4) hold, then inf
N±(Ω)

I±(u) can be achieved by

some v ∈ N±(Ω).
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Proof. We only give the proof for inf
N+(Ω)

I+(u) since the other case is similar and we omit it here. By (F3), if

u ∈ N+(Ω), then

I+(u) = I+(u) −
1
θ

I′+(u)u ≥ (
1
2
−

1
θ

)
∫
Ω

K(x)|∇u|2dx.

Since θ > 2, then I+(u) is bounded from below. Therefore, the minimizing sequence (un) of inf
N+(Ω)

I+(u) is

bounded in X0,rad(Ω). Hence, up to a subsequence, still denoted by un, there exists u ∈ X0,rad(Ω) such that
un ⇀ u weakly in X0,rad(Ω) and un → u a.e. in Ω.

We claim that u . 0. Indeed, if u ≡ 0 then, from [11, Lemma 3.1] that∫
Ω

K(x) f+(un)undx→
∫
Ω

K(x) f+(u)udx, (9)

∫
Ω

K(x)F+(un)dx→
∫
Ω

K(x)F+(u)dx, (10)

which implies

∥un∥
2 =

∫
Ω

K(x) f+(un)undx→ 0,

contradicting Lemma 2.6. By Lemma 2.5, there exists t > 0 such that v := tu ∈ N+. From (10), we obtain

inf
N+(Ω)

I+(u) ≤ I+(v) ≤ lim inf
n→∞

I+(tun).

Since un ∈ N
+(Ω), from Lemma 2.5 again, we conclude that maxt≥0 I+(tun) = I+(un). Therefore, lim inf

n→∞
I+(tun) ≤

lim inf
n→∞

max
t≥0

I+(tun) = lim inf
n→∞

I+(un) = inf
N+(Ω)

I+(u). The equality I′(v) = 0 is a consequence of Proposition

2.8.

In what follows, we consider the critical case.

2.3. The Critical Case
Proposition 2.9. (Critical).Suppose that (F1) with α0 > 0, (F2)− (F5) hold, then inf

N±(Ω)
I±(u) can be achieved by some

u ∈ N±(Ω).

To prove Proposition 2.9, we first consider the following auxiliary equation

−div
(
K(x)∇u

)
= K(x)|u|p−2u, x ∈ Ω. (11)

where p > 2. The functional associated with auxiliary problem (11) is given by

Ip(u) =
1
2

∫
Ω

K(x)|∇u|2dx −
1
p

∫
Ω

K(x)|u|pdx.

Define the Nehari’s manifold

Np(Ω) =
{
u ∈ X0,rad(Ω) : u , 0, I′p(u)u = 0

}
.

It is not difficult to verify that there exists up ∈ X0,rad(Ω) such that Ip(up) = cp, I′p(u) = 0 and

cp = (
p − 2

2p
)
∫
Ω

K(x)|up|
p,

where cp = infNp(Ω) Ip. We have the following results.
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Lemma 2.10. There holds inf
N±(Ω)

I±(u) ≤ cp

τ2/(p−2) .

Lemma 2.11. If (un) ⊂ N±(Ω) is a minimizing sequence for inf
N±(Ω)

I±(u), then there holds lim supn→∞ ∥un∥
2
≤

2π
α0

.

Using Lemma 2.10 and Lemma 2.11, we have the following compactness properties of minimizing se-
quences.

Lemma 2.12. If (un) ⊂ N±(Ω) is a minimizing sequence for inf
N±(Ω)

I±(u), then

∫
Ω

K(x) f+(un)undx→
∫
Ω

K(x) f+(u)udx, (12)

∫
Ω

K(x)F(un)dx→
∫
Ω

K(x)F(u)dx. (13)

The proof of lemma 2.10, lemma 2.11 and lemma 2.12 are similar to those in [11]. Here we omit the details.

Proof of Proposition 2.9.

Combine lemma 2.10, lemma 2.11 and lemma 2.12, and recall the proof of Proposition 2.8, we can obtain
the results immediately.

3. Proof of Main Results

In this section, we will give the proof Theorems 1.1 and 1.2. We fix some integer k ≥ 1 and want to find a
pair of radial solutions u+k and u−k of problem (2) having k nodes with u−k (0) < 0 < u+k (0). Here a nodal ρ > 0
is such that u(ρ) = 0. Recall that radial solutions of problem (2) correspond to critical points of the energy
functional

I(u) =
1
2

∫
R2

K(x)|∇u|2dx −
∫
R2

K(x)F(u)dx.

We will work on the Nehari manifold

N =

{
u ∈ Xrad(R2) : u , 0,

∫
R2

K(x)|∇u|2 =
∫
R2

K(x) f (u)u
}
.

If we replace R2 with Ω(ρ, σ) and Xrad(R2) with X0,rad(Ω(ρ, σ)), where 0 ≤ ρ < σ ≤ ∞. The Nehari manifold
N is replaced byN(Ω(ρ, σ)), for simplicity, we denote it briefly byNρ,σ. By extending u(x) = 0 for x < (ρ, σ)
if u ∈ X0,rad(Ω(ρ, σ)), we understand that X0,rad(Ω(ρ, σ)) ⊂ Xrad(R2) and Nρ,σ ⊂ N . For positive integer k
fixed, we define a Nehari type set

N
±

k :=
{
u ∈ Xrad(R2)

∣∣∣ u , 0, there exist 0 =: r0 < r1 < · · · < rk < rk+1 := ∞

such that ± (−1) ju|Ω(r j,r j+1) ≥ 0 and u|Ω(r j,r j+1) ∈ Nr j,r j+1 , j = 0, 1, · · · , k.
}

and
c±k := inf

N±k

I(u).

Lemma 3.1. For each positive integer k, there are u±k ∈ N
±

k such that I(u±k ) = c±k .
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Proof. We only prove the case for u+k and leave the other case to reader. It follows from Proposition 2.8
(subcritical case) and Proposition 2.9 (critical case) that c+(ρ, σ) := infN+ρ,σ I+(u) is achieved by some u ∈ N+ρ,σ.
Since I+ is a even functional, |u| is also the a minimizer and from the strong maximum principle that |u| > 0,
then we may assume that the minimizer u is a positive solution of problem (4).

Therefore, the minimizer u > 0 is a solution of problem{
− div(K(x)∇u) = K(x) f (u), in Ω(ρ, σ),
u = 0, on ∂Ω(ρ, σ).

(14)

Similarly, the infimum c−(ρ, σ) := infN−ρ,σ I−(u) is also achieved by some u ∈ N−ρ,σ, which are negative solutions
of (14).

Let (un) be minimizing sequence of c+k . By the some arguments as in the proof of Proposition 2.8, we can
prove that (un) is bounded. Since (un) ∈ N+k , then there exist 0 =: rn

0 < rn
1 < · · · < rn

k < rn
k+1 := ∞ such that

±(−1) jun|Ω(rn
j ,r

n
j+1) ≥ 0 and un|Ω(rn

j ,r
n
j+1) ∈ Nrn

j ,r
n
j+1
, j = 0, 1, · · · , k. Note that

∥un|Ω(rn
j ,r

n
j+1)∥

2 =

∫
Ω(rn

j ,r
n
j+1)

K(x) f+(un)undx.

Using (3) and embedding inequality, we have∫
Ω(rn

j ,r
n
j+1)

K(x) f+(un)undx

≤ϵ

∫
Ω(rn

j ,r
n
j+1)

K(x)|un|
2dx + Cϵ

∫
Ω(rn

j ,r
n
j+1)

K(x)|un|
q(exp(αu2

n) − 1)dx

≤Cϵ∥un|Ω(rn
j ,r

n
j+1)∥

2 + Cϵ

∫
Ω(rn

j ,r
n
j+1)

K(x)|un|
q(exp(αu2

n) − 1)dx.

(15)

Let pi > 1, i = 1, 2, 3, be such that 1/p1 + 1/p2 + 1/p3 = 1 and (q − 2)p2 ≥ 3. By Hölder’s inequality we have∫
Ω(rn

j ,r
n
j+1)

K(x)|un|
q(exp(αu2

n) − 1)dx

≤

∫
Ω(rn

j ,r
n
j+1)

K(x)p1 |un|
2p1


1/p1

∫
Ω(rn

j ,r
n
j+1)
|un|

(q−2)p2


1/p2

∫
Ω(rn

j ,r
n
j+1)

(exp(αu2
n) − 1)p3


1/p3

≤C(p1)∥un|Ω(rn
j ,r

n
j+1)∥

2

∫
Ω(rn

j ,r
n
j+1)
|un|

(q−2)p2


1/p2

∫
Ω(rn

j ,r
n
j+1)

(exp(p3αu2
n) − 1)


1/p3

,

(16)

where the last inequality we used the result in Lemma 2.3 and the following fact

(es
− 1)r

≤ ers
− 1 for all r ≥ 1, s ≥ 0.

In the subcritical case, we can prove that (un) is bounded by using exactly the same arguments as in the
proof of Proposition 2.8, that is, there exists M1 > 0 such that ∥un∥ ≤ M1. Choosing α < 4π

p3M2
1
, we conclude

by the classical Trudinger-Moser inequality (see [4]) that∫
Ω(rn

j ,r
n
j+1)

(exp(αp3u2
n) − 1) ≤

∫
Ω(rn

j ,r
n
j+1)

(
exp

(
αp3M2

1

(
|un|

∥un∥

)2)
− 1

)
≤ C(M1, α), (17)

for some C(M1, α) > 0.
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In the critical case, from lemma 2.11, we have

lim sup
n→∞

∥un∥
2
≤

2π
α0
.

Let p3 close to 1, choosing α > α0 and close to α0, then αp3∥un∥
2 < 4π. Thus, we conclude the same inequality

(17).

Therefore, it follows from (15),(16) and (17) that

(1 − Cϵ)
CϵC(p1)C(M1, α)

≤

∫
Ω(rn

j ,r
n
j+1)
|un|

(q−2)p2


1/p2

. (18)

Considering Hölder inequality again and by embedding inequality, there exists C > 0 such that

(1 − Cϵ)
CϵC(p1)C(M1, α)

≤

∫
Ω(rn

j ,r
n
j+1)
|un|

(q−2)p2−2


1

((q−2)p2−2)p2 (
(rn

j+1)2
− (rn

j )2
) 1

p2

(
1− 1

(q−2)p2−2

)

≤ C∥un|Ω(rn
j ,r

n
j+1)∥

1
p2

(
(rn

j+1)2
− (rn

j )2
) 1

p2

(
1− 1

(q−2)p2−2

)
.

Then
∥un|Ω(rn

j ,r
n
j+1)∥ ≥ C̃

(
(rn

j+1)2
− (rn

j )2
)−(1− 1

(q−2)p2−2 )
,

where C̃ =
(

1−Cϵ
CCϵC(p1)C(M1,α)

)p2

. This implies that, for ϵ > 0 small, rn
j+1 − rn

j is bounded away from 0 for each

j = 1, 2, · · · , k.

According to Lemma 2.2, we have

|un(x)| ≤ C|x|−
1
2 e−

|x|2
8 ∥un∥, for all un ∈ Xrad(R2).

Then, we see that

∥un(x)∥L∞ ≤ C|rn
k |
−

1
2 e−

|rn
k |

2

8 ∥un∥, for all un ∈ X0,rad(Ω(rn
k ,∞)). (19)

Recalling (18), we obtain that

(1 − Cϵ)
CϵC(p1)C(M1, α)

≤

∫
Ω(rn

k ,∞)
|un|

(q−2)p2

1/p2

=

∫
Ω(rn

k ,∞)
|un|

(q−2)p2−1
|un|

1/p2

.

Combining this inequality with (19), then

(1 − Cϵ)
CϵC(p1)C(M1, α)

≤ C1∥un|Ω(rn
k ,∞)∥

q−2

(
C(rn

k )−
1
2 e−

(rn
k )2

8

) 1
p2

((q−2)p2−1)

,

which implies that

∥un|Ω(rn
k ,∞)∥ ≥ Ĉ

(
(rn

k )
1
2 e

(rn
k )2

8

) 1
p2

((q−2)p2−1)

,

for some Ĉ > 0. Therefore, we infer that rn
j bounded away from∞ for each j = 1, 2, · · · , k.

Then, there exist 0 = r0 < r1 < · · · < rk < rk+1 = ∞ such that rn
j → r j, as n→∞ for j = 1, 2, · · · , k.. Up to a

subsequence, we may assume that un → u weakly in Xrad(R2), strongly in Ls
K(R2) for any s ∈ [2,∞), and a.e.
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on R2. It follows that un|Ω(rn
j ,r

n
j+1) → u|Ω(r j,r j+1) weakly in Xrad(R2), strongly in Ls

K(R2) for any s ∈ [2,∞), and
a.e. on Ω(r j, r j+1). Then (−1) ju|Ω(r j,r j+1) ≥ 0. By (18), we have∫

Ω(rn
k ,r

n
k+1)
|un|

qp1 ≥ C > 0,

and so ∫
Ω(rk ,rk+1)

|u|qp1 ≥ C > 0.

which implies that u|Ω(r j,r j+1) , 0. Thus, from Lemma 2.5, there exists t j > 0 such that t ju|Ω(r j,r j+1) ∈ Nr j,r j+1 for
j = 1, 2, · · · , k. Set

u+k :=
k∑

j=0

t ju|Ω(r j,r j+1). (20)

It is clear that u+k ∈ N
+
k . We claim that I(u+k ) = c+k . Indeed, from un → u weakly in Xrad(R2) and strongly in

Ls
K(R2) for any s ∈ [2,∞), we have

c+k ≤ I(u+k ) =
k∑

j=0

I(t ju|Ω(r j,r j+1)) ≤
k∑

j=0

lim inf
n→∞

I(t jun|Ω(rn
j ,r

n
j+1)). (21)

Moreover, it follows from un|Ω(rn
j ,r

n
j+1) ∈ Nrn

j ,r
n
j+1

and Lemma 2.5 that

k∑
j=0

lim inf
n→∞

I(t jun|Ω(rn
j ,r

n
j+1)) ≤

k∑
j=0

lim inf
n→∞

I(un|Ω(rn
j ,r

n
j+1)) = lim inf

n→∞
I(un) = c+k .

Thus, we conclude that I(uk) = c+k , and t j = 1 for all j.
Then, by the equality in (21), we obtain that u|Ω(r j,r j+1) is a minimizer of infNrj ,rj+1

I+(u) with (−1) ju|Ω(r j,r j+1) ≥

0. By Strauss inequality, uk is continuous except perhaps at 0. We observe that uk(r j) = 0 for j = 1, 2, · · · , k.
The elliptic regularity theory implies that uk ∈ C2 on (r j, r j+1) for any j. Then, by the strong maximum
principle, we obtain that u+k (0) > 0, (−1) ju+k (x) > 0 for r j < |x| < r j+1 and j = 0, 1, 2, · · · , k. So u+k has exactly k
nodes.

In the following, we show that the minimizer of c±k are sign-changing solutions of (2), that is, if c±k = I(u±k )
for some u±k ∈ N

±

k , then I′(u±k ) = 0.

Lemma 3.2. For each positive integer k, the minimizers of c±k are critical points of I.

Proof. We still give the proof only for the case c+k . We use an indirect argument. Suppose that u+k is defined
in (20) with u+k ∈ N

+
k , c+k = I(u+k ) and I′(u+k ) , 0. Then there exist φ ∈ Xrad(R2) such that

I′(u+k )φ =
∫
Ω

K(x)∇u+k ∇φ −
∫
Ω

K(x) f (u+k )φ ≤ −1.

Choose ε > 0 small such that

I′(
k∑

j=0

s ju|Ω(r j,r j+1) + σφ)φ ≤ −
1
2
, for all

k∑
j=0

|s j − 1| + |σ| ≤ ε,

and
∑k

j=0 s ju|Ω(r j,r j+1) + σφ has exactly k nodes

0 < r1(s, σ) < r2(s, σ) < · · · < rk(s, σ) < ∞,



Y. H. Tong, G. M. Figueiredo / Filomat 37:17 (2023), 5751–5764 5763

where r j(s, σ) is continuous with respect to s and σ, s := (s0, s1, · · · , sk) ∈ Rk+1. Let η be a cut-off function
such that

η(s) =

1, if |s j − 1| ≤ 1
2ε for all j,

0, if |s j − 1| ≥ ε for at least one j.

We proceed to estimate sups j≥0 I(
∑k

j=0 s ju|Ω(r j,r j+1) + εη(s)φ). If
∑k

j=0 |s j − 1|+ |σ| ≤ ε, and so |s j − 1| ≤ ε for all j,
then

I(
k∑

j=0

s ju|Ω(r j,r j+1) + εη(s)φ) = I(
k∑

j=0

s ju|Ω(r j,r j+1)) +
∫ 1

0
I′(

k∑
j=0

s ju|Ω(r j,r j+1) + σεη(s)φ)εη(s)φdσ

≤ I(
k∑

j=0

s ju|Ω(r j,r j+1)) −
1
2
εη(s).

(22)

If |s j − 1| ≥ ε for at least one j, η(t) = 0, the above inequality is trivial. Now since u+k ∈ N
+
k , we have

I(
k∑

j=0

s ju|Ω(r j,r j+1) + εη(s)φ) ≤ I(
k∑

j=0

s ju|Ω(r j,r j+1)) < I(u+k ), for all s j , 1.

For s j = 1, j = 0, 1 · · · , k, from (22), we obtain that

I(
k∑

j=0

s ju|Ω(r j,r j+1) + εη(1)φ) ≤ I(
k∑

j=0

u|Ω(r j,r j+1)) −
1
2
εη(1) < I(u+k ).

Thus, we conclude that sups j≥0 I(
∑k

j=0 s ju|Ω(r j,r j+1)+εη(s)φ) < I(u+k ). To complete the proof, it is sufficient to find

ŝ = (ŝ0, ŝ1, · · · , ŝk) such that
∑k

j=0 ŝ ju|Ω(r j,r j+1)+εη(ŝ)φ ∈ N+k , which contradicts the definition of c+k . To this end,

we set Q(s) :=
∑k

j=0 s ju|Ω(r j,r j+1)+εη(s)φ. Obviously, Q(s) has exactly k nodes 0 < r1(s) < r2(s) < · · · < rk(s) < ∞
and r j(s) is continuous with respect to s. Now, we consider the continuous function

Υ j(s) := I′
(
Q(s)

∣∣∣
Ω(r j(s),r j+1(s))

) (
Q(s)

∣∣∣
Ω(r j(s),r j+1(s))

)
,

where Q(s)
∣∣∣∣
Ω(r j(s),r j+1(s))

=
(∑k

i=0 siu|Ω(ri,ri+1) + εη(s)φ
) ∣∣∣∣
Ω(r j(s),r j+1(s))

. For a fixed j, if |s j − 1| = ε, then η(s) = 0 and

r j(s) = r j for all j = 1, 2, · · · , k, and so Υ j(s) = I′
(
s ju|Ω(r j,r j+1)

) (
s ju|Ω(r j,r j+1)

)
. A simple calculation shows that

Υ j(s) > 0 if s j = 1 − ε and Υ j(s) < 0 if s j = 1 + ε. As a consequence, using Miranda’s theorem in [18],
we conclude that there exists ŝ = (ŝ0, ŝ1, · · · , ŝk) with ŝ j ∈ (1 − ε, 1 + ε) such that Q(ŝ) ∈ N+k . The prove is
completed.

3.1. Proof of Theorem 1.1 and Theorem 1.2

The existence of u±k with exactly k nodes follows from Lemma 3.1 and Lemma 3.2. By construction, u±k
is radial and u−k (0) < 0 < u+k (0). Moreover, since u±k |Ω(r j,r j+1) ∈ Nr j,r j+1 ⊆ N , then I(u±k ) > (k + 1)I(u±0 ). Finally,
the conclusion I(u±k+1) > I(u±k ) follows from I(u±k ) =

∑k
j=0 I(u±k |Ω(r j,r j+1)) and I(u±k |Ω(r j,r j+1)) > 0 for j = 0, 1, · · · , k.
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