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Abstract. This manuscript proves the existence and regularity of solutions with respect to the summability
of second member 1 ∈ Lm(·)(Ω), to the obstacle problem associated to nonlinear elliptic equation{
−div A(x, v,∇v) = 1 in Ω,
u = 0 in ∂Ω.

(1)

The arguments are based on the rearrangement techniques to obtain some priori estimates in Marcinkwicz
spaces with variable exponents.

1. Introduction

Let Ω be an open bounded set in RN, (N ≥ 2). In this paper, we are concerned in proving the existence
and regularity of entropy solutions to the following obstacle problems:

(P)


Find v measurable function such that v ≥ ψ a.e. in Ω, and, for every t > 0, Tt(u) ∈W1,p(·)

0 (Ω) and∫
Ω

A(x, v,∇v)∇Tt(v − φ) dx ≤
∫
Ω

1(x)Tt(v − φ) dx,∀φ ∈ Kψ(Ω) ∩ L∞(Ω),

where A : Ω ×R ×RN
→ RN is a Carathéodory function satisfy the following assumptions:

A(x, s, ξ)ξ ≥ α|ξ|p(x), and (A(x, s, ξ) − A(x, s, ξ′))(ξ − ξ′) > 0, for ξ , ξ′and α > 0, (2)
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|A(x, s, ξ)| ≤ β
(
φ(x) + |s|p(x)−1 + |ξ|p(x)−1

)
, (3)

where β > 0, and φ is a non-negative function that belong to Lp′(·)(Ω).

andKψ =
{
v ∈W1,p(·)

0 (Ω) : v ≥ ψ a.e. in Ω
}
, Tt(s) := max{−t,min{t, s}}, s ∈ R

Our main novelty is to prove some regularity of entropy solutions to a problem (P), when the second
member 1 in Lm(·)(Ω) and m− < (p−∗ )′ in which we extend the results in the case of integrable datum m = 1
or in the dual space. Indeed we prove that entropy solutions v ∈Mq0(·)(Ω) and ∇v ∈Mq1(·)(Ω), with q0(·) and
q1(·) are the variable exponents defined by

q0(·) =
p∗(·)
γ
,

q1(·) =
(m−)′p(·)p∗(·)

(m−)′(p∗(·) + γ) − (p∗)−

and γ =
m−p− − (p∗)−(m− − 1)

m−(p− − 1)
, (4)

with all variable exponents are in C+(Ω) =
{
log-Hölder continuous function p : Ω→ R with 1 < p− ≤ p+ <

N
}
, and p∗ =

Np
N − p

. The proof is based on a priori estimates obtained in Marcinkiewicz spaces with variable

exponent Mp(·)(Ω) introduced in first by the authors in [25].

Remark that for the case m = 1 in (4), we have γ = (p−)′, q0(·) =
p∗(·)
(p−)′

and q1(·) =
q0(·)

q0(·) + 1
p(·) which are

the same quantities obtained in [24] and [25] where the authors established the existence and uniqueness
of an entropy solution to the obstacle problem for nonlinear elliptic equations with variable growth and a
second member L1.
Other results in the same context where the source is L1

−integrable, the reader can be refer to [2, 3, 28] in
which the authors established the solvability of the equations with fractional Laplacian or balanced growth
on the operators. Also see [1, 11, 12, 27], where the authors have proved the existence of solutions by using
the rearrangement properties.

A nice overview of the recent work on such equations with the variable exponents and the second
member is in the dual space can be found in in [21]. See also [4–8, 13, 15, 19, 20, 23, 29] for other research in
Sobolev spaces with variable exponent and the references therein for more background.

Note that, our results can be seeing as a continuation for the regularity results obtained in [9, 16, 17]
in classical cases, namely, when p(·) = p and m(·) = m, the exponents q0(·) and q1(·) in (4) becomes

q0(·) = q0 =
Nm(p − 1)

N −mp
and q1(·) = q1 =

Nm(p − 1)
N −m

which coincide with the regularities results in the

above references.

The contributions of the paper are as follows. In Sect. 2, we recall the most important and relevant
properties and notations of Lebesgue spaces with variable exponents, and we review several rearrangement
properties and Marcinkiewicz spaces with variable exponents, as well as their relationship to Lebesgue
spaces. In Sect. 3, we show fourth new results (a priori estimates of entropy solutions and their gradients),
and we establishes our main existence and regularity results.

2. Mathematical Background and Auxiliary Results

In what follows, we give some definitions and properties of Sobolev spaces and Marcinkiwks spaces,
which we will use to prove our main results. For more details,[21, 29] and many references given therein.
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2.1. Sobolev space with variable exponent
A real-valued continuous function p(·) is said to be log-Hölder continuous in Ω if

|p(x) − p(y)| ≤
c

| log |x − y||
∀x, y ∈ Ω such that |x − y| <

1
2
,

where c is a constant. We denote

C+(Ω) =
{
log-Hölder continuous function p : Ω→ R with 1 < p− ≤ p+ < N

}
,

where
p− = inf{p(x), ∀x ∈ Ω} and p+ = sup{p(x), ∀x ∈ Ω}.

For p(·) and q(·) in C+(Ω) we means by p(·)≪ q(·) that inf
Ω

(q(·) − p(·)) > 0.

For p ∈ C+(Ω) the Lebesgue space with variable exponent is defined by

Lp(·)(Ω) =
{
v : Ω→ Rmeasurable :

∫
Ω

|v(x)|p(x) dx < ∞
}
,

the space Lp(·)(Ω) under the norm

∥v∥p(·) = inf
{
λ > 0 :

∫
Ω

∣∣∣v(x)
λ

∣∣∣p(x)
dx ≤ 1

}
is reflexive since it is uniformly convex. We denote by Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), where

1
p(x)

+
1

p′(x)
= 1, for all x ∈ Ω.

Proposition 1 (Hölder inequality [21, 29]). (i) For any functions u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∣∣∣∣∣∫
Ω

u(x)v(x) dx
∣∣∣∣∣ ≤ ( 1

p−
+

1
p′−
)
∥u∥p(·)∥v∥p′(·).

(ii) For all p1, p2 ∈ C+(Ω) such that p1(x) ≤ p2(x) for all x in Ω, we have

Lp2(·)(Ω) ↪→ Lp1(·)(Ω),

moreover the embedding is continuous.

Proposition 2 ([21, 29]). If we denote

ρ(v) =
∫
Ω

|v(x)|p(x) dx ∀v ∈ Lp(·)(Ω),

then, the following assertions hold

1. ∥v∥p(·) < 1 (resp. = 1, > 1) if and only if ρ(v) < 1 (resp. = 1, > 1);

2. We have the following implication

∥v∥p(·) > 1 implies ∥v∥p
−

p(·) ≤ ρ(v) ≤ ∥v∥p
+

p(·),

∥v∥p(·) < 1 implies ∥v∥p
+

p(·) ≤ ρ(v) ≤ ∥v∥p
−

p(·);

3. ∥v∥p(·) → 0 if and only if ρ(v)→ 0, and ∥v∥p(·) →∞ if and only if ρ(v)→∞.
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We define Sobolev space with variable exponent by

W1,p(·)(Ω) =
{
v ∈ Lp(·)(Ω) and |∇v| ∈ Lp(·)(Ω)

}
,

with the norm
∥v∥1,p(·) = ∥v∥p(·) + ∥∇v∥p(·) ∀v ∈W1,p(·)(Ω).

We denote by W1,p(·)
0 (Ω) the closure of D(Ω) in W1,p(·)(Ω), and we define the Sobolev exponent by p∗(x) =

Np(x)
N − p(x)

with p(x) < N.

Proposition 3 ([21]). (i) The spaces W1,p(·)(Ω) and W1,p(·)
0 (Ω) are separable and reflexive Banach spaces.

(ii) The embedding W1,p(·)
0 (Ω) ↪→↪→ Lq(·)(Ω) is continuous and compact, if q(x) < p∗(x),∀x ∈ Ω.

(iii) (Poincaré inequality). For all v ∈W1,p(·)
0 (Ω) there exists a constant c > 0, such that ∥v∥p(·) ≤ c∥∇v∥p(·).

(iv) (Sobolev-Poincaré inequality). For all v ∈W1,p(·)
0 (Ω) there exists a constant c > 0, such that ∥v∥p∗(·) ≤ c∥∇v∥p(·).

Remark 1. We conclude that the norms ∥∇v∥p(·) and ∥v∥1,p(·) are equivalent in W1,p(·)
0 (Ω) using (iii) of Theorem

3.

The truncation functions Tk : R→ R is defined by

Tk(r) =


r if |r| ≤ k

k.si1n(r) if |r| > k.

Now, we define
T

1,p(·)
0 (Ω) :=

{
v : Ω→ R measurable such that Tk(v) ∈W1,p(·)

0 (Ω)
}
.

Proposition 4. ([14]) Let v ∈ T 1,p(·)
0 (Ω), there exists a unique measurable function w : Ω→ RN such that

wχ{|v|≤k} = ∇Tk(v) for a.e. x ∈ Ω and for all k > 0.

We will define the gradient of v as the function w, and we will denote it by w = ∇v.

2.2. Marcinkiewicz spaces

In the following, we review several rearrangement properties and Marcinkiewicz spaces with variable
exponents, as well as their relationship to Lebesgue spaces; for more details, see ([10], [22], [26]) and [25].
We recall some definitions about decreasing rearrangement of functions. Let Ω be a bounded open set of
RN and v : Ω→ R a measurable function.

Definition 1. We define the distribution function of v as follows

µv(t) = meas{x ∈ Ω : |v(x)| > t}, t ≥ 0.

µv is right continuous and decreasing function.

Definition 2. We define the decreasing rearrangement of v as follows

v∗(s) := sup{t ≥ 0 : µv(t) > s}, s ≥ 0.
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Definition 3. A measurable function v : Ω→ R belongs to the Marcinkiewicz space Mp(Ω)(or weak-Lp) if

µv(t) ≤
c
tr , ∀t > 0, or v∗(s) ≤

c
s1/r , ∀s > 0,

for some constant c.
The norm in Mp(Ω) is defined by

∥v∥Mp(Ω) = sup
s>0

v∗(s)s
1
r .

The Marcinkiewicz spaces are ’intermediate’ between Lebesgue spaces, i.e. for any 1 ≤ q < p, we have

Lp(Ω) ⊂Mp(Ω) ⊂ Lq(Ω).

Let q(·) be a measurable function such that q− > 0. We say that a measurable function v belongs to the
Marcinkiewicz space Mq(·) if there exists a positive constant C such that∫

{|v|>t}
tq(x) dx ≤ C, for all t > 0.

When q(·) is constant i.e. q(·) ≡ q this definition is coincides with the classical definition of the
Marcinkiewicz space Mq(Ω). Moreover we have∫

{|v|>t}
tq(x) dx ≤

∫
Ω

|v|q(x) dx, for all t > 0.

Thus if |v|q(·)
∈ L1(Ω), we have v ∈Mq(·)(Ω) and Lq(·)(Ω) ⊂Mq(·)(Ω), for all q(·) ≥ 1.

In the Marcinkiewicz space with constant exponent, if v ∈Mr(Ω), then |v|q ∈ L1(Ω), for all 0 < q < r.
This claim is extended to the non constant setting by the following Lemma, whose proof is given in [25].

Lemma 1. Let r(·) and q(·) be bounded functions such that 0≪ q(·)≪ r(·) and let ϵ := (r− q)− > 0. If v ∈Mr(·)(Ω),
then ∫

Ω

|v|q(x) dx ≤ 2|Ω| + (r+ − ϵ)C/ϵ,

where C is the constant appearing in the definition of Mr(·)(Ω). In particular, Mr(·)(Ω) ⊂ Lq(·)(Ω) for all 1 ≤ q(·)≪ r(·).

The following are our main results, in which we obtain a priori estimates in Marcinkiewicz spaces with
variable exponent for an entropy solution of the obstacle problem ((P), and we state our existence Theorem.

3. Main Results

Let ψ ∈W1,p(·)(Ω), such that ψ+ ∈W1,p(·)
0 (Ω) ∩ L∞(Ω), and define the convex subsetKψ by

Kψ(Ω) = {v ∈W1,p(·)
0 (Ω) such that v ≥ ψ a.e. in Ω}

3.1. A priori estimates

Definition 4. A measurable function v is an entropy solution for obstacle problem (P) if, v ≥ ψ a.e. in Ω, for every
t > 0, Tt(v) ∈W1,p(·)

0 (Ω) and∫
Ω

A(x, v,∇v)∇Tt(v − φ) dx ≤
∫
Ω

1(x)Tt(v − φ) dx, (5)

for all φ ∈ Kψ(Ω) ∩ L∞(Ω).
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Remark 2. For γ > 0, v ∈ M
p∗ (·)
γ (Ω) implies that v ∈ M

p−∗
γ (Ω), witch gives µv(t) ≤ c1t−

p−∗
γ , with c1 is a positive

constant.

Remark 3. Since 1 ∈ Lm(·)(Ω) ⊂ Mm(·)(Ω) we have 1 ∈ Mm− (Ω), witch gives 1∗(t) ≤ c2t−
1

m− , with c2 is a positive
constant.

Theorem 1. Under assumptions (2), (3) and 1 ∈ Lm(·)(Ω) with m− < (p−∗ )′. If v is a solution in the sense of Definition

4 that belongs to M
p∗ (·)
γ (Ω), then there exists a positive constant C, depending only on p(·),N, and Ω, such that∫

{|v|≤t}
|∇v|p(x) dx ≤ Ct1− (p∗ )−

γ(m−)′ ,

for all t ≥ ∥ψ+∥∞ and γ > (p∗)−

(m−)′ .

Proof. We denote by C a constant that varies from line to line.
Since v is an entropy solution to the unilateral problem (P), for all φ ∈ Kψ(Ω) ∩ L∞(Ω) we have

∫
Ω

A(x, v,∇v)∇Tt(v − φ) dx ≤
∫
Ω

1(x)Tt(v − φ) dx,

for φ = Ts+∥ψ+∥∞ (v), we have

∫
{s+∥ψ+∥∞<|v|≤t+s+∥ψ+∥∞}

A(x, v,∇v)∇v dx ≤ t
∫
{|v|>s+∥ψ+∥∞}

|1(x)| d x. (6)

Dividing (6) in the both sides by t, (2) gives

α
t

∫
{s+∥ψ+∥∞<|v|≤t+s+∥ψ+∥∞}

|∇v|p(x) dx ≤
∫
{|v|>s+∥ψ+∥∞}

|1(x)| dx. (7)

Passing to the limit in (7), for t goes to zero we have

α
d
ds

∫
{|v|≤s+∥ψ+∥∞}

|∇v|p(x) dx ≤
∫ µv(s+∥ψ+∥∞)

0
1∗(τ) dτ.

Integrating between 0 and t, we get

α
( ∫
{|v|≤t+∥ψ+∥∞}

|∇v|p(x) dx −
∫
{|v|≤∥ψ+∥∞}

|∇v|p(x) dx
)
≤

∫ t

0

∫ µv(s+∥ψ+∥∞)

0
1∗(τ) dτ ds, (8)

which gives

α

∫
{|v|≤t+∥ψ+∥∞}

|∇v|p(x) dx ≤
∫ t

0

∫ µv(s+∥ψ+∥∞)

0
1∗(τ) dτ d s +

∫
{|v|≤∥ψ+∥∞}

|∇v|p(x) dx. (9)
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For the first term in the right hand side, by using Remark 2 and Remark 3 we have

∫ t

0

∫ µv(s+∥ψ+∥∞)

0
1∗(τ) dτ ds ≤ c2

∫ t

0

∫ µv(s+∥ψ+∥∞)

0
τ−

1
m− dτ ds

≤ c2(m−)′
∫ t

0
µv(s + ∥ψ+∥∞)1− 1

m− ds

≤ c2(m−)′c
1− 1

m−

1

∫ t

0
(s + ∥ψ+∥∞)−

(p∗ )−

(m− )′γ ds

≤ c2(m−)′c
1− 1

m−

1

∫ t+∥ψ+∥∞

0
s−

(p∗)−

(m− )′γ ds

≤
c2(m−)′c

1
(m−)′

1

1 − (p∗)−

(m−)′γ

(
(t + ∥ψ+∥∞)1− (p∗ )−

(m− )′γ

)

=: c
(
t + ∥ψ+∥∞

)1− (p∗ )−

(m−)′γ .

(10)

Now we estimate the second term in the right hand side of (9). Indeed by definition of entropy solution for
obstacle problem (P) we have

∫
Ω

A(x, v,∇v)∇Tt(v − φ) d x ≤
∫
Ω

1(x)Tt(v − φ) d x ≤ t∥1∥1, (11)

for all t > 0, and φ ∈ Kψ(Ω) ∩ L∞(Ω),
using assumptions (2)–(3) and Young’s inequality, we have, for all t > 0,

∫
{|v−φ|≤t}

A(x, v,∇v)∇(v − φ) d x

≥ α

∫
{|v−φ|≤t}

|∇v|p(x) dx

−β

∫
{|v−φ|≤t}

(
φ(x) + |v|p(x)−1 + |∇v|p(x)−1

)
|∇φ| dx

≥ α/2
∫
{|v−φ|≤t}

|∇v|p(x) dx

−C
∫
{|v−φ|≤t}

(
φ(x)p′(x) + |∇φ|p(x) dx

)
− (t + ∥φ∥∞)p±

|Ω|,

(12)

by (11) and (12), for all t > 0 we have

α/2
∫
{|v−φ|≤t}

|∇v|p(x) dx ≤ C
∫
{|v−φ|≤t}

(
φ(x)p′(x) + |∇φ|p(x) dx

)
+(t + ∥φ∥∞)p±

|Ω| + t∥1∥1,
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replacing t with t + ∥φ∥∞ in the last inequality, we get∫
{|v|≤t}

|∇v|p(x) d x ≤

∫
{|v−φ|≤t+|φ∥∞}

|∇v|p(x) d x

≤ C
{∫
{|v−φ|≤t+|φ∥∞}

(
φ(x)p′(x) + |∇φ|p(x)

)
dx

+(t + 2∥φ∥∞)p±
|Ω| + (t + ∥φ∥∞)∥1∥1

}
.

Taking t = ∥ψ+∥∞ in the previous inequality, we obtain∫
{|v|≤∥ψ+∥∞}

|∇v|p(x) d x ≤ C. (13)

By combining (9), (10) and (13) we obtain∫
{|v|≤t+∥ψ+∥∞}

|∇v|p(x) dx ≤ C(t + ∥ψ+∥∞)1− (p∗ )−

(m−)′γ for all t > 0,

which implies ∫
Ω

|∇Tt(v)|p(x) dx ≤ Ct1− (p∗ )−

(m− )′γ for all t ≥ ∥ψ+∥∞.

Theorem 2. Under assumptions (2), (3) and 1 ∈ Lm(·)(Ω) with m− < (p−∗ )′. If v is a solution in the sense of Definition
4 there exists a constant c > 0, such that

1.
∫
{|v|>t}

t
p∗ (x)
γ dx ≤ c,∀t > 0, with γ =

m−p− − (p∗)−(m− − 1)
m−(p− − 1)

,

2. Let q0(x) =
p∗(x)
γ

, for all q(·) such that 0 ≪ q(·) ≪ q0(·), we have |v|q(·)
∈ L1(Ω). Moreover there exists a

constant c0 > 0 such that
∫
Ω

|v|q(x) dx ≤ c0.

Proof. 1). We find γ such that v ∈M
p∗ (·)
γ (Ω).

By using Theorem 2 and Sobolev embedding we have∫
{|v|>t}

t
p∗ (x)
γ dx =

∫
{|v|>t}

t
p∗(x)
γ

∣∣∣∣∣Tt(v)
t

∣∣∣∣∣p∗(x)

dx

=

∫
{|v|>t}

∣∣∣t( 1
γ−1)Tt(v)

∣∣∣p∗(x)
dx

≤

∥∥∥∥∥t( 1
γ−1)Tt(v)

∥∥∥∥∥α1

p∗(x)
≤ c
∥∥∥∥∥∇(t( 1

γ−1)Tt(v))
∥∥∥∥∥α1

p(x)

≤ c
( ∫
Ω

t( 1
γ−1)p(x)

|∇Tt(v)|p(x) dx
)α1/α2

≤ c
( ∫
Ω

t( 1
γ−1)p(x) |∇Tt(v)|p(x)

t1− (p∗ )−

(m− )′γ

t1− (p∗ )−

(m− )′γ dx
)α1/α2

(14)
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for all t ≥ ∥ψ+∥∞, with α1 = (p∗)± and α2 = p±.

By choosing γ such that (
1
γ
− 1)p(x) + 1 −

(p∗)−

(m−)′γ
≤ 0 we have

γ ≥
m−p(x) − (p∗)−(m− − 1)

m−(p(x) − 1)
, ∀x ∈ Ω,

so it’s enough to choose γ =
(m−p(x) − (p∗)−(m− − 1)

m−(p(x) − 1)

)+
. By the fact that

m−p(x) − (p∗)−(m− − 1)
m−(p(x) − 1)

is non-

increasing in p(x) since m− < (p−∗ )′ we have γ =
m−p− − (p∗)−(m− − 1)

m−(p− − 1)
. Then by Theorem 1, (14) becomes

∫
{|v|>t}

t
p∗ (x)
γ d x ≤ c.

For t < ∥ψ+∥∞ we have ∫
{|v|>t}

t
p∗ (x)
γ dx ≤ (∥ψ+∥∞ + 1)

(p∗ )+

γ |Ω|.

2). Let 0≪ q(·)≪ q0(·) and ϵ = (q0(·) − q(·))− > 0. By Theorem 1, we have∫
{|v|>t}

tq0(x) dx ≤ c, for all t > 0.

From Lemma 1, we get ∫
Ω

|v|q(x) dx ≤ 2|Ω| + c
(q0(·) − ϵ

ϵ

)+
, which give the results.

Theorem 3. Under assumptions (2), (3) and m− < (p−∗ )′, if v is a solution in the sense of Definition 4 and there

exists a positive constant c such that
∫
{|v|>t}

tq(x) dx ≤ c,∀t > 0,

then |∇v|α(·)
∈Mq(·)(Ω), where α(·) =

γ(m−)′p(·)
γ(m−)′(q(·) + 1) − (p∗)−

. Moreover

∫
{|∇v|α(·)>t}

tq(x) d x ≤ C′, for all t > 0, with C′ is a positive constant.

Proof. Using Theorem 1, and the definition of α(·), for t ≥ ∥ψ+∥∞ we have∫
{|∇v|α(·)>t}

tq(x) dx ≤

∫
{|∇v|α(·)>t}∩{|v|≤t}

tq(x) dx +
∫
{|∇v|α(·)>t}∩{|v|>t}

tq(x) dx

≤

∫
{|v|≤t}

tq(x)
(
|∇v|α(x)

t

)p(x)/α(x)

dx + c

=

∫
{|v|≤t}

tq(x)+1− (p∗ )−

γ(m−)′ −
p(x)
α(x)
|∇Tt(v)|p(x)

t1− (p∗ )−

γ(m− )′

dx + c

=

∫
{|v|≤t}

|∇Tt(v)|p(x)

t1− (p∗ )−

γ(m− )′

dx + c ≤ C′.
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where c and C′ are positive constants,
for t < ∥ψ+∥∞ we have ∫

{|∇v|α(·)>t}
tq(x) dx ≤ (∥ψ+∥∞ + 1)q+

|Ω|.

Theorem 4. Under assumptions (2), (3) and 1 ∈ Lm(·)(Ω) with m− < (p−∗ )′, q0(·) be as defined in Theorem 2 and
q1(·) = q0(·)α(·).
If v is an entropy solution of problem (P), then |∇v|q(·)

∈ L1(Ω), for all q(·) such that 0≪ q(·)≪ q1(·). Moreover there
exists a constant C such that ∫

Ω

|∇v|q(x) dx ≤ C.

Proof. By Theorem 3, we have

|∇v|α(·)
∈Mq0(·)(Ω), with α(·) =

p(·)

(q0(·) + 1) − (p∗)−

γ(m−)′

.

Let 0≪ q(·)≪ q1(·) and r(·) = q(·)/α(·)≪ q0(·).
Using the Lemma 1 we obtain ∫

Ω

|∇v|q(x) dx =
∫
Ω

|∇v|α(x)r(x) dx ≤ C.

3.2. Existence of Solutions

In this subsection we prove the existence and regularity of solutions in the sense of Definition 4, extending
some results known in the constant exponent case.

Theorem 5. Under assumptions (2), (3) and 1 ∈ Lm(·)(Ω), with m− < (p−∗ )′. Then there exists a solution v in the
sense of Definition 4. Moreover

1. |v|q(·)
∈ L1(Ω) for 0≪ q(·)≪ q0(·), with q0(·) =

p∗(·)
γ
.

2. |∇v|q(·)
∈ L1(Ω) for 0≪ q(·)≪ q1(·), with q1(·) =

(m−)′p(·)p∗(·)
(m−)′(p∗(·) + γ) − (p∗)−

,

where

γ =
m−p− − (p∗)−(m− − 1)

m−(p− − 1)
.

Remark 4. In the case p(·) = p and m(·) = m, the exponents q0(·) and q1(·) are respectively of the form
Nm(p − 1)

N −mp

and
Nm(p − 1)

N −m
.

Let (1n)n ⊂ L∞(Ω) a sequence that converge strongly to 1 in Lm(·)(Ω), and ∥1n∥m(·) ≤ ∥1∥m(·), for all n.
Let (Pn) the approximate problem defined by

(Pn)


−div A(x, vn,∇vn) = 1n, in Ω,

vn = 0, on ∂Ω.
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The problem (Pn) has a weak energy solution vn ∈ Kψ ∩W1,p(·)
0 (Ω) as a result of a standard modification of

the arguments in [21]. Our goal is to prove that vn tend to a measurable function v as n tend to infinity,
and we prove that v is solution in the sense of Definition 4. We will divide the proof in two steps and we
employ the a priori estimates for vn and its gradient derived in the preceding section as our main tool. We
follow the standard method used in the several paper as [9], [14] and [24].

We prove in first step the almost everywhere convergence of the gradient.

First we prove that the sequence (vn)n of solutions to problem (Pn) converges in measure to a measurable
function v.
Define the E1,E2, and E3 sets as follows

E1 = {|vn| > t}, E2 = {|vm| > t}, and E3 = {|Tt(vn) − Tt(vm)| > s},

for s > 0 and t ≥ ∥ψ+∥∞. Since
{|vn − vm| > s} ⊂ E1 ∪ E2 ∪ E3,

it follows that
meas{|vn − vm| > s} ≤ meas(E1) +meas(E2) +meas(E3).

Let ϵ > 0, by Theorem 1, vn is uniformly bounded sequence, thus there exists tϵ, such that for t ≥ tϵ we have

meas(E1) ≤ ϵ/3 and meas(E2) ≤ ϵ/3.

In the approximate problem (Pn), we take Tt(vn) as test function and following the outlines of Theorem 1,
we get ∫

Ω

|∇Tt(vn)|p(x) dx ≤ ct1− (p∗ )−

γ(m− )′ , for all n ≥ 0 and t ≥ ∥ψ+∥∞.

Sobolev embedding imply that there exists a subsequence still denoted by (Tt(vn))n such that

Tt(vn) ⇀ Tt(v) weakly in W1,p(·)
0 (Ω),

Tt(vn)→ Tt(v) strongly in Lq(·)(Ω), for 1 ≤ q(·) < p∗(·),
Tt(vn)→ Tt(v) a.e. in Ω,

(15)

for all t ≥ ∥ψ+∥∞. Thus,

meas(E3) ≤
∫
Ω

(
|Tt(vn) − Tt(vm)|

s

)q(x)

dx ≤ ϵ/3, for all n ≥ n0(s, ϵ).

Finely we have

meas{|vn − vm| > s} ≤ ϵ, for all n,m ≥ n0(s, ϵ) i.e. (vn)n is a Cauchy sequence in measure.

Following the standard argument as in [18], proving that (∇vn)n is a Cauchy sequence in measure is an easy
task.
In the second step we passing to the limit.
Let vn be a solution of approximate unilateral problem (Pn), for φ ∈ Kψ(Ω) we have∫

Ω

A(x, vn,∇vn)∇(vn − φ) dx ≤
∫
Ω

1n(x)(vn − φ) dx.

Taking φ = vn − Tt(vn − w) with w ∈ Kψ ∩ L∞(Ω) we get∫
Ω

A(x, vn,∇vn)∇Tt(vn − w) dx ≤
∫
Ω

1n(x)Tt(vn − w) dx.
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For the term in the right hand side, since 1n converge strongly to 1 in L1(Ω) and Tt(vn−w) converge weakly-*
to Tt(v − w) in L∞(Ω), and a.e. in Ωwe have∫

Ω

1n(x)Tt(vn − w) dx −→
∫
Ω

1(x)Tt(v − w) dx.

For the left hand side we have∫
Ω

A(x, vn,∇vn) · ∇Tt(vn − w) dx =
∫
{|vn−w|≤t}

A(x, vn,∇vn) · ∇vn dx

−

∫
{|vn−w|≤t}

A(x, vn,∇vn) · ∇w dx

=

∫
{|vn−w|≤t}

A(x, vn,∇vn) · ∇vn dx

−

∫
{|vn−w|≤t}

A(x,Ts(vn),∇Ts(vn)) · ∇w d x,

with s = t + ∥w∥∞.
By (3) and (15), we can prove that A(x,Ts(vn),∇Ts(vn)) is uniformly bounded in (Lp′(·)(Ω))N, and converges
weakly to A(x,Ts(v),∇Ts(v)) in (Lp′(·)(Ω))N. Therefore we have∫

{|vn−w|≤t}
A(x, vn,∇vn) · ∇w dx −→

∫
{|v−w|≤t}

A(x, v,∇v) · ∇w dx. (16)

Since A(x, vn,∇vn) · ∇vn → A(x, v,∇v) · ∇v a.e. in Ω, by Fatou’s lemma we have

lim inf
n

∫
{|vn−w|≤t}

A(x, vn,∇vn) · ∇vn dx ≥
∫
{|v−w|≤t}

A(x, v,∇v) · ∇v dx. (17)

By (16) and (17), for all w ∈ Kψ ∩ L∞(Ω) we have∫
Ω

A(x, v,∇v)∇Tt(v − w) dx ≤
∫
Ω

1(x)Tt(v − w) d x.

Arguing as in Theorem 2 and Theorem 4 we obtain the results of regularity.
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