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Abstract. In this paper, we investigate difference-differential operators of parabolic and hyperbolic types.
Namely, we consider non-homogenous heat and wave equations for Rubin’s difference operator. Well-
posedness results are obtained in appropriate Sobolev type spaces. In particular, we prove that the heat
and wave equations generated by Rubin’s difference operator have unique solutions. We even show that
these solutions can be represented by explicit formulas.

1. Introduction

In the theory of partial differential equations the heat and wave equations are most important and basic
examples. There are a lot of papers studying these equations in different modifications. Also, in this paper
we aim to study a q-analogues of the following classical heat and wave equations{

ut(t, x) − ∆u(t, x) +mu(t, x) = f (t, x), (t, x) ∈ R+ ×Rn,
u(0, x) = φ(x), x ∈ Rn,

and {
utt(t, x) − ∆u(t, x) + but(t, x) +mu(t, x) = f (t, x), (t, x) ∈ R+ ×Rn,
u(0, x) = φ(x),ut(0, x) = ψ(x), x ∈ Rn,

where b,m ∈ R and ∆ is the Laplace operator in Rn.
Here, we will consider the above equations with Rubin’s type q-difference operators instead of ∆.

If we go back to the history, we see that already in 1748 L. Euler [19] introduced basic elements of q-

calculus. He considered the infinite product (q; q)−1
∞ =

∞∏
k=0

1
1−qk+1 , |q| < 1. Around hundred years later the
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progress continued under E. Heine, who in 1846 considered a generalization of the hypergeometric (q-
hypergeometric) series (see [25] and [26]). In the second part of the twentieth century the q-calculus served
as a bridge between physics and mathematics. The q-calculus has numerous applications in various fields
of mathematics e.g number theory, combinatorics, special functions, harmonic analysis, fractional calculus
and also for scientific problems in some applied areas such as computer science, quantum mechanics and
quantum physics (see e.g. [3], [5], [14], [17], [18],[23] and [32]). For the further development and recent
results in q-calculus we refer to the books [4] and [16] and the references given therein.

In the beginning of the last century, especially F.H. Jackson [27] (see also [28]), R.D. Carmichael [13], T.E.
Mason [33], and C.R. Adams [1] (see also [2]) intensively studied the q-difference equations. Thereafter, the
q-difference equations are used to modelling some important linear and nonlinear problems and thereby
played an important role in different fields of engineering and science [7](see also [8]). Moreover, there has
been a great interest in finding difference methods to study exact or approximate solutions of ordinary and
partial q-differential equations, see e.g. [6], [11], [12], [29], [30] and [41].

In 1997, R.L. Rubin [35] studied spectral properties of one q-difference operator (Rubin’s operator). By
using established spectral properties, he constructed the q-difference calculus associated with the Rubin’s
operator. A q2-analogue of the exponential Fourier analysis via q2-Fourier transform was constructed in
[31]. There the author used analogues of trigonometric functions (or orthogonality results) and applied it
to q-deformed quantum mechanics [40]. Moreover, he used the Dalembert and Duhamel’s techniques to
investigation the wave q-difference equation, using the q2-Fourier multiplier tools to aid the construction of
solutions in [36]. The papers [21], [22] and [24] were devoted to the study of the q-analogue of the Fourier
transform and to show how it plays a central role in solving the q-heat and q-wave equations associated
with the Rubin’s q-difference operator ∂q.

However, the theory of the q-difference equations with the Rubin’s q-difference operator ∂q is still at the
initial stage and many aspects of this theory need to be explored. To the best of our knowledge, the theory
of the Cauchy problems for linear, homogeneous and nonhomogeneous q-difference equations generated
by the Rubin’s q-difference operator are not yet developed.

From the other side, it is well known that the quantum calculus provides natural discrete modifications
of the heat and wave equations. To discretize, we will replace the partial derivatives ∂u

∂x by the Rubin’s
q-difference operators ∂q in space, respectively, and we will attempt to develop the q-analogues of these
problems. Here, as we take a limit as q tends to 1, one recovers results related to the continuous heat and
wave equations.

Motivated by this, we study the Cauchy problems for the non-homogenous heat and wave equations
generated by the Rubin’s difference operatorD2

q,x in the Sobolev space L2
q

(
R+q
)

{
ut(t, x) −D2

q,xu(t, x) +mu(t, x) = f (t, x), (t, x) ∈ R+ ×R+q ,
u(0, x) = φ(x), x ∈ R+q ,

and {
utt(t, x) −D2

q,xu(t, x) + but(t, x) +mu(t, x) = f (t, x), (t, x) ∈ R+ ×R+q ,
u(0, x) = φ(x),ut(0, x) = ψ(x), x ∈ R+q ,

here the q-partial differential operator [22, 36] is defined by

Dq,xu(t, x) :=
u(t, q−1x) − u(t, qx) + u(t,−qx) − u(t,−x) + u(t,−q−1x) − u(t,−x)

2x(1 − q)
.

The method developed in this paper is different from that given in [22] and [35], in our opinion, simpler
and more clear and, in addition give the possibility to prove uniqueness and derive explicit formulas for
the solution.

1.1. Structure of the paper
In Section 3 we prove that these equations both has a unique solution and also derive an explicit

formula for this solution in both cases (see Theorems 3.2 and 3.4, respectively). In order to illustrate that
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our method can work also for other equations in Section 4 we prove a corresponding uniqueness result
for a non-homogeneous equation with homogeneous boundary conditions. Also in this case we derive an
explicit formula for the solution (see Theorem 4.2). In order not to disturb our discussions in these two
main Sections we present some necessary preliminaries in Section 2.

2. Preliminaries

We start by recalling some basic notation in the q-calculus, see e.g. the books [15] and [16]. Throughout
this paper, we assume that 0 < q < 1.

Let α ∈ R. Then a q-real number [α]q is defined by

[α]q :=
1 − qα

1 − q
,

where lim
q→1

1−qα

1−q = α.

We introduce for any x, a ∈ R

(x, a)0
q = 1, (x, a)n

q =

n∏
k=0

(
x − qka

)
, (x, a)∞q = lim

n→∞
(x, a)n

q .

The q-analogues of the binomial coefficients and the Gamma function are defined by

[n]q! :=
{

1, if n = 0
[1]q × [2]q × · · · × [n]q if n ∈N

and

Γq(x) =
(q, q)∞q
(qx, q)∞q

(1 − q)1−x,

respectively.
The q2-exponentials eq2 (z) (see [31], [35] and [36]) are defined by

eq2 (z) := cosq2 (−iz) + i sinq2 (−iz) ,

where

cosq2 (z) :=
∞∑

k=0

(−1)kqk(k+1)z2k

[2k]q!
,

and

sinq2 (z) :=
∞∑

k=0

(−1)kqk(k+1)z2k+1

[2k + 1]q!

are the q2-trigonometric functions. Note that the series defining eq2 (z) is absolutely convergent for all z in
the plane, 0 < q < 1, since both of the series defining its component functions are absolutely convergent.
Moreover, it yields that lim

q→1
eq2 (z) = e(z) pointwise and uniformly on compact sets, because both of its

component functions satisfy the corresponding limits (lim
q→1

cosq2 (z) = cos(z) and lim
q→1

sinq2 (z) = sin(z)).

The q-analogue differential operator is defined by (see [27])

Dq f (x) =
f (x) − f (qx)

x(1 − q)
,
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and the q2-differential operator or Rubin operator is defined by (see [35] and [36])

Dq f (x) =
f (q−1x) + f (−q−1x) − f (qx) + f (−qx) − 2 f (−x)

2x(1 − q)
.

Moreover, we will use the q-partial differential operatorsDq,xu(t, x) in the following form:

Dq,xu(t, x) :=
u(t, q−1x) + u(t,−q−1x) − u(t, qx) + u(t,−qx) − 2u(t,−x)

2x(1 − q)
.

Note that if f is differentiable at x, then lim
q→1
Dq f (x) = f ′(x) and lim

q→1
Dq,xu(t, x) = ∂u

∂x (t, x).

The definite q-integral or the q-Jackson integral of a function f is defined by the formula (see [27] and
[28])

x∫
0

f (t)dqt := (1 − q)x
∞∑

k=0

qk f (qkx), 0 < x < ∞, (1)

and the improper q-integral of a function f (x) : [0,∞)→ R, is defined by the formula
∞∫

0

f (t)dqt := (1 − q)
∞∑

k=−∞

qk f (qk). (2)

Note that the series in the right hand sides of (1) and (2) converge absolutely.
We denote R+q = {qk, k ∈ Z} and define

Lp
q

(
R+q
)

:=

 f :


∞∫

0

| f (x)|pdqx


1
p

< ∞

 ,
for 0 < p < ∞ and

L∞q
(
R+q
)

:=
{

f : sup
k∈Z
| f (qk)| < ∞

}
.

Moreover, we define Sq

(
R+q
)

as the set of functions f defined on R+q satisfying the following condition:

Pn,m,q
(

f
)

:= sup
x∈R+q

∣∣∣xm
D

n
q f (x)

∣∣∣ < ∞,
for all m,n ∈N and where lim

x→0
D

n
q f (x) exists in R+q (see [23]).

We also define the space S′q
(
R+q
)

as the topological dual of Sq

(
R+q
)
. The space S′q

(
R+q
)

is called the space
of tempered distributions on R+q .

Definition 2.1. (see [23] and [36]) The q2-Fourier transform f̂ is defined as follows

f̂ (ξ) =
1

2πq

∞∫
0

f (x)eq2 (−ixξ)dqx, ξ ∈ R+q ,

for f ∈ Sq

(
R+q
)

and its inverse 1̌(x) is given by

1̌(x) =
1

2πq

∞∫
0

eq2 (ixξ)1(ξ)dqξ, x ∈ R+q ,

for 1 ∈ Sq

(
R+q
)
, where 1

πq
:= (1+q)

1
2

Γq2 ( 1
2 )

.
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Note that the q2-Fourier transform is an isomorphism from L2
q(R+q ) onto itself. In fact, we have the

following version of the Parseval identity (see e.g. [35] and [36])

∥ f̂ ∥L2
q(R+q ) = ∥ f ∥L2

q(R+q ),∀ f ∈ L2
q(R+q ). (3)

Moreover, for u ∈ S′q
(
R+q
)

it yields that (see e.g. [36]):

∂̂nu = (iξ)nû, (4)

for all ξ ∈ R+q , where n ∈N.

Definition 2.2. (see [21]) For s ∈ R, we define the Sobolev space Ws
q

(
R+q
)

as

Ws
q

(
R+q
)

:=
{
u ∈ S′q

(
R+q
)

:
(
1 + |ξ|2

) s
2 û ∈ L2

q

(
R+q
)}
,

equipped with the norms

∥u∥2
Ws

q(R+q ) :=


∞∫

0

(
1 + |ξ|2

)s
|̂u(ξ)|2dqξ


2

.

Let 0 < T < ∞. We introduce also the spaces Ck
(
[0,T]; Ws

q

(
R+q
))

and Ck
(
[0,T]; L2

q

(
R+q
))

defined by the
finiteness of the norms

∥u∥Ck([0,T];Ws
q(R+q )) :=

k∑
n=0

max
0≤t≤T

∥∂n
t u(t, .)∥Ws

q(R+q ).

and

∥u∥Ck([0,T];Ls
q(R+q )) :=

k∑
n=0

max
0≤t≤T

∥∂n
t u(t, .)∥L2

q(R+q ),

respectively.
Notation. The symbol M ≲ K means that there exists γ > 0 such that M ≤ γK, where γ is a constant.

3. Main results concerning the q-heat and q-wave equations

Our first main result concerns the solvability of the following.

Problem 3.1 (q-Heat Equation). Let m ∈ R and T > 0. We consider the following Cauchy problem (CP):{
ut(t, x) −D2

q,xu(t, x) +mu(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,
u(0, x) = φ(x), x ∈ R+q . (5)

Theorem 3.2. Assume that m is positive and T < ∞. Let φ ∈ W2
q

(
R+q
)

and f ∈ C
(
[0,T]; W2

q

(
R+q
))

. Then there
exists a unique solution of Problem 3.1

u ∈ C1
(
[0,T]; L2

q

(
R+q
))
∩ C
(
[0,T]; W2

q

(
R+q
))
.

Moreover, this solution can be represented by the explicit formula

u(t, x) =
1

4π2
q

t∫
0

∞∫
0

∞∫
0

e−(t−τ)(ξ2+m) f (τ, x)eq2 (−iξx)eq2 (iξx)dqxdqξdτ

+
1

4π2
q

∞∫
0

∞∫
0

e−t(m+ξ2)φ(x)eq2 (−iξx)eq2 (iξx)dqxdqξ,

(6)

for (t, x) ∈ [0,T] ×R+q .
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Proof. Existence. Let us fix t ∈ [0,T]. Then, by using (4) we have that

D̂2
q,xu(t, ξ) =

1
2πq

∞∫
0

D
2
q,xu(t, x)eq2 (−ixξ)dqx = −ξ2û(t, ξ), (7)

for all (t, ξ) ∈ [0,T] ×R+q .
Now, by multiplying both sides of (5) by 1

2πq
eq2 (−ixξ) and q-integrating with respect to x we find that

ût(t, ξ) +
(
m + ξ2

)
û(t, ξ) = f̂ (t, ξ), (8)

for all ξ ∈ R+q , and all t ∈ [0,T].
Applying the q2-Fourier transform and using the definition of the ordinary derivative, we get that

∂
∂t

û(t, ξ) = lim
h→0

û(t + h, ξ) − û(t, ξ)
h

= lim
h→0

1
2πq

∞∫
0

u(t + h, ξ) − u(x, t)
h

eq2 (−ixξ)dqx

=
1

2πq

∞∫
0

lim
h→0

u(t + h, ξ) − u(x, t)
h

eq2 (−ixξ)dqx

=
1

2πq

∞∫
0

∂u
∂t

(t, x)eq2 (−ixξ)dqx

= ût(t, ξ). (9)

From (8) and (9) it follows that{
ût(t, ξ) + ξ2û(t, ξ) +mû(t, ξ) = f̂ (t, ξ), (t, ξ) ∈ [0,T] ×R+q ,
û(0, ξ) = φ̂(ξ), ξ ∈ R+q .

(10)

The solution of the non–homogeneous ordinary differential equation with the constant coefficient

ût(t, ξ) +
(
ξ2 +m

)
û(t, ξ) = f̂ (t, ξ),

which is satisfying the Cauchy data û(0, ξ) = φ̂(ξ), is the following function

û(t, ξ) =

t∫
0

e−(t−τ)(ξ2+m) f̂ (τ, ξ)dτ + φ̂(ξ)e−t(m+ξ2), (11)

for all ξ ∈ R+q .
Finally, we obtain that

u(t, x) =
1

2πq

∞∫
0


t∫

0

e−(t−τ)(ξ2+m) f̂ (τ, ξ)dτ + e−t(m+ξ2)φ̂(ξ)

 eq2 (iξx)dqξ

=
1

4π2
q

t∫
0

∞∫
0

∞∫
0

e−(t−τ)(ξ2+m) f (τ, x)eq2 (−iξx)eq2 (iξx)dqxdqξdτ

+
1

4π2
q

∞∫
0

∞∫
0

e−t(m+ξ2)φ(x)eq2 (−iξx)eq2 (iξx)dqxdqξ,

(12)



S. Shaimardan et al. / Filomat 37:17 (2023), 5799–5812 5805

for all (t, x) ∈ [0,T] ×R+q .

Next we will prove that u ∈ C1
(
[0,T]; L2

q

(
R+q
))
∩C
(
[0,T]; W2

q

(
R+q
))

. By using (11) and the Cauchy–Schwarz
inequality, we can deduce that

∣∣∣û(t, ξ)
∣∣∣2 ≤
∣∣∣∣∣∣∣∣

t∫
0

e−(t−τ)(ξ2+m) f̂ (τ, ξ)dτ

∣∣∣∣∣∣∣∣
2

+
∣∣∣φ̂(ξ)e−t(m+ξ2)

∣∣∣2

≤ t

t∫
0

∣∣∣∣e−(t−τ)(ξ2+m) f̂ (τ, ξ)
∣∣∣∣2 dτ + e−2tm

∣∣∣φ̂(ξ)
∣∣∣2

≤ t

t∫
0

∣∣∣∣ f̂ (τ, ξ)
∣∣∣∣2 dτ + e−2tm

∣∣∣φ̂(ξ)
∣∣∣2 ,

(13)

for all ξ ∈ R+q .

Since φ ∈W2
q

(
R+q
)
, f ∈ C

(
[0,T]; W2

q

(
R+q
))

and by using the Parseval’s identity, we arrive at

∥u(t, ·)∥2
L2

q(R+q ) =
∑
ξ∈R+q

∣∣∣û(t, ξ)
∣∣∣2

≤ t

t∫
0

∑
ξ∈R+q

∣∣∣∣ f̂ (τ, ξ)
∣∣∣∣2 dτ + e−2tm

∑
ξ∈R+q

∣∣∣φ̂(ξ)
∣∣∣2

= t

t∫
0

∥ f (τ, ·)∥2
L2

q(R+q )dτ + e−2tm
∥φ∥2

L2
q(R+q )

≤ T2
∥ f ∥2

C([0,T];L2
q(R+q )) + ∥φ∥

2
L2

q(R+q ) < ∞,

(14)

for T < ∞. Thus, we can conclude that ∥u∥C([0,T];L2
q(R+q )) < ∞.

Repeating the procedure above, we have that

∥u(t, ·)∥2
W2

q(R+q ) =
∑
ξ∈R+q

ξ2
∣∣∣û(t, ξ)

∣∣∣2
≤ t

t∫
0

∑
ξ∈R+q

ξ2
∣∣∣∣ f̂ (τ, ξ)

∣∣∣∣2 dτ + e−2tm
∑
ξ∈R+q

ξ2
∣∣∣φ̂(ξ)

∣∣∣2

= t

t∫
0

∥ f (τ, ·)∥2
W2

q(R+q )dτ + e−2tm
∥φ∥2

W2
q(R+q )

≤ T2
∥ f ∥2

C([0,T];W2
q(R+q )) + ∥φ∥

2
W2

q(R+q ) < ∞,

(15)

for T < ∞, and we find that ∥u∥C([0,T];W2
q(R+q )) < ∞.

In an analogical way, we can derive the estimate ∥u∥C1([0,T];L2
q(R+q )) < ∞, which ends proof of the existence

part.
Uniqueness. Let us obtain the requesteduniqueness by contradiction. Let us assume that there are two

different solutions u(t, x) and v(t, x) of Problem 3.1 such that{
ut(t, x) −D2

q,xu(t, x) +mu(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,
u(0, x) = φ(x), x ∈ R+q ,
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and {
vt(t, x) −D2

q,xv(t, x) +mv(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,
v(0, x) = φ(x), x ∈ R+q .

Denote W(t, x) ≡ u(t, x) − v(t, x). Then the function W(t, x) is the solution of the following problem.{
Wtt(t, x) −D2

q,xW(t, x) +mW(t, x) = 0, (t, x) ∈ [0,T] ×R+q ,
W(0, x) = 0, x ∈ R+q .

From (12) it follows that W(t, x) ≡ 0. Hence, u(t, x) ≡ v(t, x). This contradiction shows that our
assumption is wrong so the solution is unique. The proof is complete.

Our next main result is to derive a corresponding result for the one dimensional q-Wave Equation.

Problem 3.3 (q-Wave Equation). Let b,m ∈ R+. We consider the following homogeneous wave equation with the
initial conditions{

utt(t, x) −D2
q,xu(t, x) + but(t, x) +mu(t, x) = 0, (t, x) ∈ [0,T] ×R+q ,

u(0, x) = φ(x),ut(0, x) = ψ(x), x ∈ R+q ,
(16)

where 0 < T < ∞.

Theorem 3.4. Fix 0 < T < ∞. Let b > 0 and m > 0 be such that b2 < 4m. Assume that φ ∈ W2
q

(
R+q
)

and

ψ ∈W1
q

(
R+q
)
. Then there exists a unique solution

u ∈ C2
(
[0,T]; L2

q

(
R+q
))
∩ C
(
[0,T]; W2

q

(
R+q
))
,

of Problem 3.3. Moreover, this solution can be represented by the explicit formula

u(t, x) =

∞∫
0

Φ(t, x, y)φ(y)dqy +

∞∫
0

Ψ(t, x, y)ψ(y)dqy, (17)

where

Φ(t, x, y) =
e−

b
2 t

8π2
q

∞∫
0

K(t, ξ)eq2 (−iξy)eq2 (iξx)dqξ,

with

K(t, ξ) = e

√
b2−4(m+ξ2)

2 t + e−
√

b2−4(m+ξ2)
2 t + b

e

√
b2−4(m+ξ2)

2 t
− e−
√

b2−4(m+ξ2)
2 t√

b2 − 4 (m + ξ2)
,

and

Ψ(t, x, y) =
e−

b
2 t

4π2
q

∞∫
0

e

√
b2−4(m+ξ2)

2 t
− e−
√

b2−4(m+ξ2)
2 t√

b2 − 4 (m + ξ2)
eq2 (−iξy) eq2 (iξx) dqξ,

Proof. Existence. Multiplying both sides of (16) by 1
2πq

eq2 (−iξx) and by q-integrating with respect to x, we
obtain that

ûtt(t, ξ) − D̂2
q,xu(t, ξ) + bût(t, ξ) +mû(t, ξ) = 0, t ∈ [0,T], (18)
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for all ξ ∈ R+q .
Then, by the property (4) we have that

D̂2
q,xu(t, ξ) =

1
2πq

∞∫
0

Dq,xu(t, x)eq2 (−iξx)dqx = −ξ2û(t, ξ), (19)

for all ξ ∈ R+q , for t ∈ [0,T].
By repeating (9) again, we find that

ûtt(t, ξ) =
∂2u
∂t2 û(t, ξ), t ∈ [0,T], (20)

for all ξ ∈ R+q .
Now by substituting (9), (19) and (20) into (18), we can conclude that

ûtt(t, ξ) + bût(t, ξ) + (m + ξ2)û(t, ξ) = 0, t ∈ [0,T],
û(0, ξ) = φ̂(ξ),
ût(0, ξ) = ψ̂(ξ),

(21)

for all ξ ∈ R+q .
The general solution of (21) is

û(t, ξ) = Ĝ1(ξ)e(− b
2+

√
b2−4(m+ξ2)

2 )t + Ĝ2(ξ)e(− b
2−

√
b2−4(m+ξ2)

2 )t, (22)

where Ĝ1(ξ), Ĝ2(ξ) are arbitrary constants.
From the initial conditions (21) and (22) we obtain that

û(0, ξ) = Ĝ1(ξ) + Ĝ2(ξ) = φ̂(ξ),

ût(0, ξ) =

−b
2
+

√
b2 − 4 (m + ξ2)

2

 Ĝ1(ξ) +

−b
2
−

√
b2 − 4 (m + ξ2)

2

 Ĝ2(ξ)

= ψ̂(ξ).

Hence,

Ĝ1(ξ) =

12 + b

2
√

b2 − 4 (m + ξ2)

 φ̂(ξ) +
1√

b2 − 4 (m + ξ2)
ψ̂(ξ), (23)

and

Ĝ2(ξ) =

12 − b

2
√

b2 − 4 (m + ξ2)

 φ̂(ξ) −
1√

b2 − 4 (m + ξ2)
ψ̂(ξ). (24)

By using (23), (24) and inverse q2-Fourier transform (see Definition 2.1) in (22), we find that

u(t, x) =

∞∫
0

Φ(t, x, y)φ(y)dqy +

∞∫
0

Ψ(t, x, y)ψ(y)dqy, (25)

where

Φ(t, x, y) =
e−

b
2 t

8π2
q

∞∫
0

K(t, ξ)eq2 (−iξy)eq2 (iξx)dqξ,
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with

K(t, ξ) = e

√
b2−4(m+ξ2)

2 t + e−
√

b2−4(m+ξ2)
2 t + b

e

√
b2−4(m+ξ2)

2 t
− e−
√

b2−4(m+ξ2)
2 t√

b2 − 4 (m + ξ2)
,

and

Ψ(t, x, y) =
e−

b
2 t

4π2
q

∞∫
0

e

√
b2−4(m+ξ2)

2 t
− e−
√

b2−4(m+ξ2)
2 t√

b2 − 4 (m + ξ2)
eq2 (−iξy) eq2 (iξx) dqξ.

Hence , the existence part is proved.
Next we will prove that

u ∈ C2
(
[0,T]; L2

q

(
R+q
))
∩ C
(
[0,T]; W2

q

(
R+q
))
. (26)

According to the relations (22), (23) and (24) and taking into account that
∣∣∣∣∣ √b2−4(m+ξ2)

2

∣∣∣∣∣ ≈ (1 + ξ2
) 1

2
≈

(1 + ξ), we we can make the following estimates:

∣∣∣û(t, ξ)
∣∣∣ ≲

∣∣∣∣∣∣∣∣∣
12 − −

b
2

2
√

b2−4(m+ξ2)
2

 φ̂(ξ) +
1

2
√

b2−4(m+ξ2)
2

ψ̂(ξ)

∣∣∣∣∣∣∣∣∣
≲
∣∣∣φ̂(ξ)

∣∣∣ + 1
1 + ξ

∣∣∣∣ψ̂(ξ)
∣∣∣∣ ,∣∣∣∣∂̂tu(t, ξ)

∣∣∣∣ ≲ (1 + ξ)
∣∣∣φ̂(ξ)

∣∣∣ + ∣∣∣∣ψ̂(ξ)
∣∣∣∣ ,

and ∣∣∣∣∂̂2
t u(t, ξ)

∣∣∣∣ ≲ (1 + ξ)2
∣∣∣φ̂(ξ)

∣∣∣ + (1 + ξ)
∣∣∣∣ψ̂(ξ)

∣∣∣∣ ,
for all ξ ∈ R+q .

Since φ ∈ W2
q

(
R+q
)
, ψ ∈ W1

q

(
R+q
)
, and by using the Parseval’s identity and repeating the convergence

part of Theorem 3.2, we arrive at

∥u∥C([0,T];W2
q(R+q )) ≲ ∥φ∥W2

q(R+q ) + ∥ψ∥W1
q (R+q ) < ∞,

and

∥u∥C2([0,T];L2
q(R+q )) ≲ ∥φ∥W2

q(R+q ) + ∥ψ∥W1
q(R+q ) < ∞,

and (26) is proved.
Uniqueness. It only remains to prove the uniqueness of the solution. We assume the opposite, namely

that there exist the functions u(t, x) and v(t, x), which are two different solutions of Problem 3.3. Thus, we
have that {

utt(t, x) −D2
q,xu(t, x) +mν(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,

u(0, x) = φ(x),ut(0, x) = ψ(x) x ∈ R+q ,

and {
vtt(t, x) −D2

q,xv(t, x) +mv(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,
v(0, x) = φ(x), vt(0, x) = φ(x), x ∈ R+q .

We define W(t, x) = u(t, x) − v(t, x). Then the function W(t, x) is a solution of the following problem{
Wtt(t, x) −D2

q,xW(t, x) + bWt(t, x) +mW(t, x) = 0, (t, x) ∈ [0,T] ×R+q ,
W(0, x) = 0,Wt(0, x) = 0, x ∈ R+q .

From (26) it follows that W(t, x) ≡ 0, that is, u(x, t) ≡ v(x, t) and this contradiction to our assumption proves
the uniqueness of the solution. The proof is complete.
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4. Final remark and result

Remark 4.1. The technique we have developed above can be used to investigate also other q-equations. We just
present one example of this fact by solving completely the following non-homogeneous equation (27) with homogeneous
boundary conditions:

Theorem 4.2. Fix 0 < T < ∞. Let b > 0 and m > 0 be such that b2 < 4m. Assume that f ∈ C
(
[0,T]; W1

q

(
R+q
))

.
Then there exists a unique solution

u ∈ C2
(
[0,T]; L2

q

(
R+q
))
∩ C
(
[0,T]; W2

q

(
R+q
))
,

of the Cauchy problem

utt(t, x) −D2
q,xu(t, x) + but(t, x) +mu(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,

u(0, x) = 0,ut(0, x) = 0, x ∈ R+q .
(27)

Moreover, the solution can be represented by the formula

u(t, x) =
1

2πq

t∫
0

∞∫
0

K(t, τ, x, y) f (τ, y)dqydτ, (28)

where

K(t, τ, x, y) =

∞∫
0

F(t, τ, ξ)eq2 (−iξy)eq2 (iξx)dqξ,

with

F(t, τ, ξ) =
e−

b
2+

√
b2−4(m+ξ2)

2 (t−τ)
− e−

b
2−

√
b2−4(m+ξ2)

2 (t−τ)√
b2 − 4 (m + ξ2)

.

Proof. Existence. The first part of the proof consists more as less of repeating the first part of the proof of
Theorem 3.4. In fact, by taking q2-Fourier transform of both sides of (27) and discussing as before, we have
that

ûtt(t) + bût(t) +
(
m + ξ2

)
û(t) = f̂ (t). (29)

The general solution of the differential equation (29) is

û(t, ξ) = Ĝ1(ξ)e(− b
2+

√
b2−4(m+ξ2)

2 )t + Ĝ2(ξ)e(− b
2−

√
b2−4(m+ξ2)

2 )t

+
1

2
√

b2−4(m+ξ2)
2

t∫
0

f̂ (τ, ξ)e(− b
2+

√
b2−4(m+ξ2)

2 )(t−τ)dτ

−
1

2
√

b2−4(m+ξ2)
2

t∫
0

f̂ (τ, ξ)e(− b
2−

√
b2−4(m+ξ2)

2 )(t−τ)dτ, (30)

for all ξ ∈ R+q .
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Moreover, by differentiating with help of Leibniz’s rule we find that (Note that the factor 1

2

√
b2−4(m+ξ2)

2

f̂ (τ, ξ)

cancels):

ût(t, ξ) = (−
b
2
+

√
b2 − 4 (m + ξ2)

2
)Ĝ1(ξ)e(− b

2+

√
b2−4(m+ξ2)

2 )t

+ (−
b
2
−

√
b2 − 4 (m + ξ2)

2
)Ĝ2(ξ)e(− b

2−

√
b2−4(m+ξ2)

2 )t

+
−

b
2 +

√
b2−4(m+ξ2)

2 )

2
√

b2−4(m+ξ2)
2

t∫
0

f̂ (τ, ξ)e(− b
2+

√
b2−4(m+ξ2)

2 )(t−τ)dτ

−
−

b
2 −

√
b2−4(m+ξ2)

2

2
√

b2−4(m+ξ2)
2

t∫
0

f̂ (τ, ξ)e(− b
2+

√
b2−4(m+ξ2)

2 )(t−τ)dτ. (31)

By new using the initial conditions in (27), from (30)-(31) it follows that

û(0, ξ) = Ĝ1(ξ) + Ĝ2(ξ) = 0,

ût(0, ξ) = (−
b
2
+

√
b2 − 4 (m + ξ2)

2
)Ĝ1(ξ) + (−

b
2
−

√
b2 − 4 (m + ξ2)

2
)Ĝ2(ξ) = 0.

Therefore, Ĝ1(ξ) = Ĝ2(ξ) = 0. Finally, we obtain that

u(t, x) =
1

2πq

t∫
0

∞∫
0

K(t, τ, x, y) f (τ, y)dqydτ, (32)

where

K(t, τ, x, y) =

∞∫
0

F(t, τ, ξ)eq2 (−iξy)eq2 (iξx)dqξ,

F(t, τ, ξ) =
e(− b

2+

√
b2−4(m+ξ2)

2 )(t−τ)
− e(− b

2−

√
b2−4(m+ξ2)

2 )(t−τ)√
b2 − 4 (m + ξ2)

,

and the existence part is proved.
Next we will show that

u ∈ C
(
[0,T]; W2

q

(
R+q
))
∩ C2

(
[0,T]; L2

q

(
R+q
))
. (33)

From (30) and (31), by using the Cauchy-Schwartz inequality, it follows that

∣∣∣û(t, ξ)
∣∣∣2 ≲


t∫

0

∣∣∣∣∣∣∣ f̂ (τ, ξ)
1 + ξ

∣∣∣∣∣∣∣ e− b
2 (t−τ)dτ


2

≲

t∫
0

∣∣∣∣∣∣∣ f̂ (τ, ξ)
1 + ξ

∣∣∣∣∣∣∣
2

dτ,
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∣∣∣ût(t, ξ)
∣∣∣2 ≲


t∫

0

∣∣∣∣ f̂ (τ, ξ)
∣∣∣∣ e− b

2 (t−τ)dτ


2

≲

t∫
0

∣∣∣∣ f̂ (τ, ξ)
∣∣∣∣2 dτ,

and

∣∣∣ûtt(t, ξ)
∣∣∣2 ≲


t∫

0

∣∣∣∣(1 + ξ) f̂ (τ, ξ)
∣∣∣∣ e− b

2 (t−τ)dτ


2

≲

t∫
0

∣∣∣∣(1 + ξ) f̂ (τ, ξ)
∣∣∣∣2 dτ.

Since f ∈ C
(
[0,T]; W1

q

(
R+q
))

, by new using the Parseval identity and repeating the convergence part of
Theorem 3.2, we arrive at

∥u∥C([0,T];W2
q(R+q )) ≲ ∥ f ∥C([0,T];W1

q(R+q )) < ∞,

and

∥u∥C2([0,T];L2
q(R+q )) ≲ ∥ f ∥C([0,T];W1

q(R+q )) < ∞,

so (33) is proved.
Uniqueness. To prove the uniqueness we assume by contradiction that both of the different functions

u(t, x) and v(t, x) are solutions of Problem 3.3, that is,{
utt(t, x) −D2

q,xu(t, x) + but(t, x) +mu(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,
u(0, x) = ut(0, x) = 0, x ∈ R+q .

and {
vtt(t, x) −D2

q,xv(t, x) + bvt(t, x) +mv(t, x) = f (t, x), (t, x) ∈ [0,T] ×R+q ,
v(0, x) = vt(0, x) = 0, x ∈ R+q .

We define W(x, t) = u(x, t) − v(x, t). Then the function W(t, x) is the solution of the problem

{
Wtt −D

2
q,xW + bWt +mW = 0, (t, x) ∈ R+ ×R+q ,

W|t=0 =Wt|t=0 = 0, x ∈ R+q .

From (32) it follows that W(t, x) ≡ 0. Hence, u(t, x) ≡ v(t, x) which contradicts to our assumption. The
proof is complete.
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