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Abstract. In this paper, we provided a numerical method to solve a class of two dimensional time-delay
optimal control problems (2DTDOCPs) with quadratic cost functional using Ritz method and orthogonal
Legendre Block-Pulse functions. First, the state and control vectors are approximated as a series of hybrid
functions(block-pulse functions and Legendre polynomials) with unknown coefficients. Then, we derive an
equation with unknown coefficients by substituting these approximations in the cost functional. A system
of algebraic equations is obtained by applying the optimal conditions for this equation. Solving this system
and substituting the coefficients into approximating the guessed functions, the state and control functions
are obtained. By increasing the number of blocks, as well as the basic functions, we get more accurate
solutions. The convergence of proposed method is discussed, and finally, we will present some examples to
show the validity and applicability of proposed method, and evaluate its accuracy and efficiency. Moreover,
our results are compared to previous results to show the superiority of this technique.

1. Introduction

Delays often occur in chemical, industrial, biological, electronic, and transportation systems as well
as many other areas, such as population growth models, economic growth, and neural networks [1, 2].
Analysis, identification, and optimal control of delay systems were considered by many researchers which
are very important from a practical point of view. In applied mathematics, solving delayed differential
equations is important. The process of determining the response of delay systems is often very complex
and in a wide range of these systems, determining the analytical response is difficult or impossible. For this
reason, delay systems are among the most important categories of control systems and providing a suitable
and efficient numerical method to solve them is of considerable importance.

In nature, many quantities are the functions of two independent variables, and two-dimensional systems
and signals are used to model phenomena with two independent variables. Moreover, the importance and
necessity of examining two-dimensional state delay optimal control systems is very important. Continuous-
temporal dynamic equations describe many control systems. Considering lack of analytical solutions to
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two-dimensional state delay, optimal control problems of continuous-temporal systems, numerical and
semi-analytical methods are suggested to solve a number of such problems. Also, by using Pontryagin’s
maximum principle, the time-delay optimal control problem reduces to a system of coupled two-point
boundary value problem involving both delay and advance terms whose exact solution can not be easily
calculated except in very special cases [8]. Numerical computational methods which are currently used
in science and engineering are very diverse, and a specific solution can be provided for each specific
problem or special condition. Since it is very difficult and in some cases impossible to obtain the solution
to the analysis of these types of problems, semi-analytical and numerical methods are used for solving
them. In the following, some studies in delay systems are presented. In [3], Banks proposed the optimal
control of nonlinear delay systems from a theoretical point of view and proposed an approximate method
to solve them. In [4], Banks, Burns and Cliff, analyzed and identified delay systems. The authors of [5]
proposed a method to solve multiple delay systems using integral and delay matrices corresponding to
Taylor polynomials. Also, Lee presented another method to solve the optimal control of delay functions
with non-equal constraints on state variables [6]. Another work, optimal control of a nonlinear time-delay
system in batch fermentation process has been studied in [27]. In [28], Dadebo and Luus, investigated the
use of iterative dynamic programming employing systematic region contraction and accessible grid points
for the optimal control of time-delay systems. Also in [29], a symplectic local pseudospectral method for
solving nonlinear state-delayed optimal control problems with inequality constraints is proposed by Wang
et al. Peng et al. proposed an iterative Symplectic Pseudospectral Method to solve Nonlinear State-delayed
Optimal Control Problems in [30].

In recent years, orthogonal functions have received special attention from the researchers for analyzing
the optimal control systems [7]. As an example, a method for analyzing and solving time-delay optimal
control problems using orthogonal hybrid functions was proposed in [8] by Marzban and Razzaghi. Hence,
Kern, Maurer and Gllmann solved a series of one-dimensional time-delay optimal control problems [9].
Moreover, in [10], the authors studied and solved a range of nonlinear time-delay optimal control problems
using fixed piecewise functions.

Two-dimensional systems along with their spatial models were first introduced as part of image process-
ing by Roesser. [11]. Mamehrashi and Yousefi used a method to solve a class of two-dimensional control
problems using the Ritz-Galerkin method [12]. In another work, Tsai, Li, and Shieh [13] transformed the
Roesser type continuous-temporal state optimal control problem with a quadratic cost functional into a
discrete two-dimensional control problem. Furthermore, Nemati and Yousefi used Ritz method to solve a
class of two-dimensional control problems [14], and the problems of two-dimensional optimal control of
deficit were studied by Rabiei, Ordokhani and Babolian [15].

In recent years, orthogonal Block-Pulse functions were used to solve many state optimal control prob-
lems, examples of which can be seen in the articles of researchers and scholars [16–19, 31, 32]. Rakhshan and
Effati presented a class of deficit time-delay optimal control problems using an Euler-Lagrange approach
[20]. In [21], Nouri, Nazari and Torkzadeh, transformed the problem of time-delay fractional differential
equations into a system of nonlinear algebraic equations using hybrid functions. Moreover, Rafiei, Kaffash
and Karbassi, solved a number of one-dimensional time-delay control problems using hybrid functions
[22].

We present an alternative numerical method to solve a class of two-dimensional time-delay optimal
control problems. To the best of our knowledge, it is the first numerical method for 2DTDOCPs. The
proposed method is a direct method based on approximating state and control variables via hybrid Block-
Pulse functions and Legendre polynomials using the Ritz method [12, 14]. Considering the flexibility of
Ritz method in the face of initial and boundary conditions, we used this approach in the proposed method.
To calculate the dual integral in a standard function, we have used Gaussian method. By substituting the
approximated functions in the constraints of the problem and using the suggested method, the optimal
control problem is reduced to an unconstrained optimization problem which can be easily solved.

This article is organized as follows: Section 2 introduces the general problem of two-dimensional time-
delay optimal control. Section 3 introduces the Ritz method and the hybrid Legendre Block-Pulse functions.
In sections 4 and 5, we describe the proposed numerical method and discuss the convergence of the method,
respectively. In section 6, the efficiency and accuracy of the proposed method are examined by providing
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two examples. Furthermore, a conclusion is given in section 7.

2. Problem statement

Consider the following controllable and observable two-dimensional time delay system [23],

z′(x, t) = Az(x, t) + Adz(x − τ1, t − τ2) + Bu(x, t) (1)

where,

z′(x, t) =

 ∂zh(x,t)
∂x

∂zv(x,t)
∂t

 , z(x, t) =
[

zh(x, t)
zv(x, t)

]
, z(x − τ1, t − τ2) =

[
zh(x − τ1, t)
zv(x, t − τ2)

]
zh(x, t) and zv(x, t) are the horizontal and vertical components of the space, A, B and Ad are constant ma-
trices with appropriate dimensions, respectively. Also τ1, τ2 are constant delays of horizontal and vertical
components. The boundary conditions are as follows,

zh(a, t) =


fa(t) − τ1 ≤ a ≤ 0, 0 ≤ t ≤ t f

0 − τ1 ≤ a ≤ 0, t ≥ t f .

zv(x, b) =


1b(x) − τ2 ≤ b ≤ 0, 0 ≤ x ≤ x f

0 − τ2 ≤ b ≤ 0, x ≥ x f .

(2)

which, x f and t f are fixed positive values, fa(t) and 1b(x) are given vectors. The purpose of this paper is to
determine the control vector u(x, t) and the corresponding state vector z(x, t) such that the following cost
functional is minimized according to constraints (1) and (2),

J =
1
2
ξT(x f , t f )Sξ(x f , t f ) +

1
2

t f∫
0

x f∫
0

[ξT(x, t)Qξ(x, t) + uT(x, t)Ru(x, t)]dxdt, (3)

where S and Q are semi-definite matrices and R is the positive definite matrix.

3. Function approximation

3.1. Ritz method

The Ritz method is a simple and efficient way to approximate the solution of an optimization problem.
In this method, the solution of the functional minimization problem,

min L[y(x)] =
∫ b

a
f (x, y, y′)dx

with boundary conditions,

y(a) = a0 , y(b) = b0

is considered as follows,

yn(x) ≈
n∑

i=1

ciφi(x) + φ0(x). (4)
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We must select the basic functions φi(x) that satisfy the following conditions,

φ0(a) = a0, φ0(b) = b0

φi(a) = φi(b) = 0, i = 1, 2, ...,n (5)

By substituting yn(x) into the problem and solving it, the unknown coefficients and the solution of yn(x) are
obtained.
Suppose that φi(x) = k(x)pi(x), so Eq. (4) can be written as

yn(x) ≈
n∑

i=1

k(x)cipi(x) + φ0(x) (6)

where, k(x) satisfies the homogeneous conditions and pi(x) are Legendre polynomials.
If we use the Ritz method to approximate the function z(x, t), Eq. (6) is written as

zmn(x, t) =
m∑

i=0

n∑
j=0

k(x, t)ci jpi(x)p j(t) + w(x, t), (7)

where k(x, t) and w(x, t) satisfy the homogeneous and boundary conditions, respectively [24].

3.2. Two-dimensional Block-Pulse functions

A set of two dimensional Block-Pulse functions (2DBPFs) Φi1,i2 (x, t) for x ∈ [0,T1], t ∈ [0,T2] is defined as
follows

Φi1,i2 (x, t) =

 1 x ∈
[

(i1 − 1)T1

m1
,

i1T1

m1

)
, t ∈
[

(i2 − 1)T2

m2
,

i2T2

m2

)
0 otherwise

2DBPFs are disjoined with each other,

Φi1,i2 (x, t)Φ j1, j2 (x, t) =
{
Φi1,i2 (x, t) i1 = j1 and i2 = j2
0 otherwise

and are orthogonal,∫ T1

0

∫ T2

0
Φi1,i2 (x, t)Φ j1, j2 (x, t)dxdt =

{
h1h2 i1 = j1 and i2 = j2
0 otherwise

in the region x ∈ [0,T1) and t ∈ [0,T2), where

i1, j1 = 1, 2, ...,m1, i2, j2 = 1, 2, ...,m2, h1 =
T1

m1
, h2 =

T2

m2
.

Also 2DBPFs are complete when both m1 and m2 approach infinity [26].
Since each 2DBPF takes only one value in its subregion, the 2DBPFs can be expressed as

Φi1,i2 (x, t) = φi1 (x)Ψi2 (t),

where φi1 (x) and Ψi2 (t) are one-dimensional Block-Pulse functions related to the variables x and t, respec-
tively.
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3.3. Hybrid functions of Block-Pulse and Legendre polynomials

The two-dimensional hybrid functions (block-pulse functions and Legendre polynomials) is defined as
follows

Ψi1 j1i2 j2 (x, t) =
L j1 ( 2N1x

x f
− 2i1 + 1)L j2 ( 2N2t

t f
− 2i2 + 1) : (x, t) ∈ [ i1−1

N1
x f ,

i1
N1

x f ] × [ i2−1
N2

t f ,
i2

N2
t f ]

0 otherwise
(8)

where, i1 = 1, 2, ...,N1, i2 = 1, 2, ...,N2 and j1, j2 = 0, 1, ...M − 1 are the order of Block-Pulse functions and
Legendre polynomials, respectively and L j1 (x),L j2 (t) are the well known Legendre polynomials [8].

4. Proposed state-control parameterization method

In this section, we present a numerical method based on approximating the state and control variables
to solve a class of 2DTDOCPs.
Consider the following problem:

Min J =
1
2

zT(x f , t f )Sz(x f , t f ) +
1
2

∫ t f

0

∫ x f

0
[zT(x, t)Qz(x, t) + uT(x, t)Ru(x, t)]dxdt (9)

subject to the time-delay system dynamics,

z′(x, t) = Az(x, t) + Adz(x − τ1, t − τ2) + Bu(x, t) (10)

with the following boundary conditions

zh(a, t) =


fa(t) − τ1 ≤ a ≤ 0, 0 ≤ t ≤ t f

0 − τ1 ≤ a ≤ 0, t ≥ t f .
(11)

zv(x, b) =


1b(x) − τ2 ≤ b ≤ 0, 0 ≤ x ≤ x f

0 − τ2 ≤ b ≤ 0, x ≥ x f .
(12)

Suppose that Q ⊂ PC2([0, x f ] × [0, t f ]) is a set of all continuous piecewise functions that satisfy the bound-
ary condition (11)-(12). The cost functional J is a function of z(x, t) and u(x, t), so problem (9)-(12) can be
considered as a problem of minimizing the value of J on Q. Suppose QN1N2(M−1)(M−1) ⊂ Q is a set of the
Legendre Block-Pulse hybird functions consisting of N1N2 polynomials and the degree of each polynomial
is at most (M − 1)(M − 1). The state variable is approximated using a finite number of the hybrid functions
(block-pulse functions and Legendre polynomials) as

z(x, t) =
N1∑

i1=1

M−1∑
j1=0

N2∑
i2=1

M−1∑
j2=0

fi1, j1,i2, j2Ψi1, j1,i2 j2 (x, t) (13)

Let

α = [ f1,0,1,0, f1,0,1,1, ..., f1,0,1,M−1, ..., fN1,M−1,N2,M−1] (14)
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Now by selecting N1,N2 as

N1 =


x f

τ1

x f

τ1
is integer

[x f

τ1

]
+ 1 otherwise

(15)

N2 =


t f

τ2

t f

τ2
is integer

[
t f

τ2

]
+ 1 otherwise

(16)

the interval [0, x f ] × [0, t f ] is converted to the following N1 ×N2 sub intervals

[0,
1

N1
x f ] × [0,

1
N2

t f ], [0,
1

N1
x f ] × [

1
N2

t f ,
2

N2
t f ] · · · [

N1 − 1
N1

x f , x f ] × [
N2 − 1

N2
t f , t f ]

As a result, the state variable (13) is written as

ẑ(x, t) =

ẑ11(x, t) =
M−1∑
j1=0

M−1∑
j2=0

f1, j1,1, j2ψ1, j1,1, j2 : (x, t) ∈ [0,
1

N1
x f ] × [0,

1
N2

t f ]

...

ẑN1N2 (x, t) =
M−1∑
j1=0

M−1∑
j2=0

fN1, j1,N2, j2ψN1, j1,N2, j2 : (x, t) ∈ [
N1 − 1

N1
x f , x f ] × [

N2 − 1
N2

t f , t f ]

(17)

To approximate z(x−τ1, t−τ2) without interfering the whole discussion, we explain the steps for zv(x, t−τ2).
Eq.(12) yields

zv(x, t) = 1(x, t) 0 ≤ x ≤ x f ,−τ2 ≤ t ≤ 0.

If s = t + 1
N2

t f , then t = s − 1
N2

t f and considering the definition of N2, we can write t = s − τ2, therefore, Eq.
(12) becomes as

zv
11(x, s − τ2) = 1(x, s − τ2) 0 ≤ s ≤ τ (18)

Also, zv(x, s − τ2) for

(x, t) ∈ [0,
1

N1
x f ] × [

1
N2

t f ,
2

N2
t f ]

can be defined as

ˆz11(x, t) =
M−1∑
j1=0

M−1∑
j2=0

f1, j1,1, j2ψ1, j1,1, j2 (x, t).

Considering s = t + 1
N2

t f , we can write

zv
12(x, s − τ2) =

M−1∑
j1=0

M−1∑
j2=0

f1, j1,1, j2ψ1, j1,1, j2 (x, s − τ2) , (x, s) ∈ [0,
1

N1
x f ] × [

1
N2

t f ,
2

N2
t f ].

Now, according to the definition ofΨi1 j1i2 j2 (x, t), we have

ψ1, j1,1, j2 (x, s − τ2) = ψ1, j1,1, j2 (x, s)
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therefore,

zv
12(x, s − τ2) =

M−1∑
j1=0

M−1∑
j2=0

f1, j1,1, j2ψ1, j1,2, j2 (x, s) : (x, s) ∈ [0,
1

N1
x f ] × [

1
N2

t f ,
2

N2
t f ].

Similarly, zv(x, s − τ2) can be specified for other intervals and as a result, it is written as

zv(x, s − τ2) =



1(x, t) (x, t) ∈ [0, 1
N1

x f ] × [0, 1
N2

t f ]

M−1∑
j1=0

M−1∑
j2=0

f1, j1,1, j2ψ1, j1,1, j2 (x, t) (x, t) ∈ [0,
1

N1
x f ] × [

1
N2

t f ,
2

N2
t f ]

...

(19)

The same procedure is applied to approximate the other component of the state function zh(x− τ1, t). Now,
by substituting the values of z(x, t) and z(x − τ1, t − τ2) in (10), the control variable u(x, t) is approximated.
Then, substituting the approximations of z(x, t) and u(x, t) into the cost functional (9) an unconstrained
optimization problem is obtained as

Min J(α), α = [ f1,0,1,0, f1,0,1,1, . . . fN1,M−1,N2,M−1].

To minimize this, we solve the following system of equations using Newton’s iterative method

∂J[α]
∂ fi1 j1i2 j2

= 0, i1 = 1, 2, ...,N1, i2 = 1, 2, ...,N2, j1, j2 = 1, 2, ...,M − 1. (20)

By solving the above algebraic system for α, the unknown coefficients fi1 j1i2 j2 are achieved. Then, by
determining fi1 j1i2 j2 , we can find the approximate value of zh(x, t), zv(x, t) and u(x, t) from (13) and (10),
respectively.

5. Convergence analysis

In this section, we recall two theorems and present a lemma which ensure the convergence analysis
of suggested method. Here, the approximation convergence of a function is derived with respect to the
Legendre Block-Pulse bases.
Consider the restriction of the cost functional J to QN1N2(M−1)(M−1) ⊂ Q

J[ẑ(x, t)] = J[
N1∑

i1=1

M−1∑
j1=0

N2∑
i2=1

M−1∑
j2=0

fi1, j1,i2, j2Ψi1, j1,i2 j2 (x, t)] (21)

as a function of N1N2(M − 1)(M − 1) variables. The coefficients fi1 j1i2 j2 are chosen in such a way as to
minimize (21). Let βN1N2(M−1)(M−1) indicate the minimum value of J restricted to QN1N2(M−1)(M−1).
The following theorem is a remarkable result of the Weierstrass famous theorem for two-dimensional space.

Theorem 5.1. For any ẑ(x, t) ∈ Q ⊂ PC2([0, x f ]×[0, t f ]), there exists a sequence of polynomials {Ψi1 j1i2 j2 (x, t)}∞i1, j1,i2, j2=0 ∈

Q that converges uniformly to ẑ(x, t).

Proof. See [33].

The convergence of the proposed method is provided by the following Lemma. We use the facts that
have been mentioned in Theorem (5.1).
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Lemma 5.2. If

βN1N2(M−1)(M−1) = inf
QN1N2(M−1)(M−1)

J, for N1,N2,M = 1, 2, 3, ..,

where QN1N2(M−1)(M−1) is a subset of Q including the Legendre Block-Pulse hybird functions involving N1N2 polyno-
mials of degree at most (M − 1)(M − 1), then

lim
N1,N2,M→∞

βN1N2(M−1)(M−1) = inf
Q

J.

.

Proof. Let

βN1N2(M−1)(M−1) = min
αN1N2(M−1)(M−1)

J(αN1N2(M−1)(M−1)),

then,
βN1N2(M−1)(M−1) = J(α∗N1N2(M−1)(M−1)),

where

α∗N1N2(M−1)(M−1) ∈ Argmin{J(αN1N2(M−1)(M−1)) : αN1N2(M−1)(M−1) ∈ R2N1N2M
}.

Now, let

(z∗N1N2(M−1)(M−1)(x, t),u∗N1N2(M−1)(x, t)) ∈
Argmin{J(z(x, t),u(x, t)) : (z(x, t),u(x, t)) ∈ QN1N2(M−1)(M−1)},

then
J(z∗N1N2(M−1)(M−1)(x, t),u∗N1N2(M−1)(M−1)(x, t)) = min

(z(x,t),u(x,t))∈QN1N2(M−1)(M−1)

J(z(x, t),u(x, t)),

where QN1N2(M−1)(M−1) is a class of combinations of the continuous hybrid functions(block-pulse functions
and Legendre polynomials) involving N1N2 polynomials of degree at most (M − 1)(M − 1), so

βN1N2(M−1)(M−1) = J(z∗N1N2(M−1)(M−1)(x, t),u∗N1N2(M−1)(M−1)(x, t)).

Furthermore, according to QN1N2(M−1)(M−1) ⊂ QN1N2MM, we have

min
(z(x,t),u(x,t))∈QN1N2MM

J(z(x, t),u(x, t)) ≤ min
(z(x,t),u(x,t))∈QN1N2(M−1)(M−1)

J(z(x, t),u(x, t)).

Thus, βN1N2MM ≤ βN1N2(M−1)(M−1) is achieved which means βN1N2(M−1)(M−1) is a non-increasing sequence. Also,
this sequence is lower bounded, so its infimum is the limit. Due to the continuity J and by taking the limit
when N1,N2,M→∞, we can write,

lim
N1,N2,M→∞

βN1N2(M−1)(M−1) = min
(z(x,t),u(x,t))∈Q

J(z(x, t),u(x, t)).

which completes the proof.

6. Numerical results

In this section, three optimal control examples are considered to illustrate the theoretical result. The
cost functional for different values of τ is computed. If τ =0, the 2DTDOCP reduces to two-dimensional
quadratic optimal control problem was studied by other researchers. The numerical results were computed
using Maple 2018 programming.
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Example 6.1. Consider the following 2DTDOCP

Min J =

3∫
0

3∫
0

{[
zh(x, t)

]2
+ [zv(x, t)]2 + [u(x, t)]2

}
dxdt, (22)

s.t

∂zh(x,t)
∂x = −3zh(x, t) + 3.2zv(x, t) + 0.3u(x, t)

∂zv(x,t)
∂t = zh(x, t) − zv(x, t − τ)

zv(x, 0) = e−3x cos(2πx)

zh(0, t) = −e−2t

zv(x, θ) = 1,−τ ≤ θ ≤ 0.

(23)

According to the suggested method in section 4, based on the Ritz method and using two-dimensional Block-Pulse
functions, the state variable zv(x, t) is approximated as

zv(x, t) =
N1∑

i1=1

M−1∑
j1=0

N2∑
i2=1

M−1∑
j2=0

tx fi1, j1,i2, j2Ψi1, j1,i2, j2 (x, t) + e−3x−2t cos(2πx),

where N1,N2 are the numbers of blocks and M is the number of Legendre polynomials. For simplicity, we assume that
N1 = N2. In each subinterval

(x, t) ∈ [
i1 − 1

N
,

i1
N

] × [
i2 − 1

N
,

i21
N

],

zv(x, t) can be written for i1, i2 = 1, 2, ...,N and j1, j2 = 0, 1, ...,M − 1 as

zv [i1, i2] =
M−1∑
j1=0

M−1∑
j2=0

L j1 (
2Nx
x f
− 2i1 + 1)L j2(

2Nt
t f
− 2i2 + 1) fi1 j1i2 j2 (24)

The approximation of zv(x, t − τ) is also obtained using (19).
Now from (28), we have

zh(x, t) =
∂zv(x, t)
∂t

+ zv(x, t − τ)

u(x, t) =
10
3

[
∂zh(x, t)
∂x

+ 3zh(x, t) − 3.2zv(x, t)]
(25)

According to (25), zh[i1, i2] and u[i1, i2] can be easily obtained in any corresponding subinterval. By substituting the
approximated values zv(x, t), zh(x, t) and u(x, t) in (27), the 2DTDOPCP reduces to an optimization problem which
can be easily solved using existing optimization methods. By solving obtained optimization problem, the unknown
coefficients fi1, j1,i2, j2 are determined. Using fi1, j1,i2, j2 , we can determine the approximate value of zh(x, t), zv(x, t) and
u(x, t). The obtained vertical, horizontal and control variables from proposed method for this example are shown in
Fig. 1,2 and 3, respectively. The cost functional values for τ = 1, τ = 1

2 , τ =
1
3 and different values of M are shown

in table 1. As seen from the results reported in this table, by increasing M we can get better solutions for the cost
functional J. If τ = 0, the example 6.1 reduces to two-dimensional optimal control problem without time-delay that
has been studied by other researchers. The comparison of the estimated values of J by different methods is shown in
Table 2. By comparing the results for similar values of M and N, it is clear that the results of the proposed method are
better.
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Figure 1: Approximate solution of state vertical component zv(x, t) with τ = 1 for Example 6.1

Figure 2: Approximate solution of state horizontal component zh(x, t) with τ = 1 for Example 6.1

Table 1: Estimated values of J for various values of N,M and τ
N = 3, τ = 1 N = 6, τ = 1

2 N = 9, τ = 1
3

M = 2 9.9091 4.7208 2.1969
M = 3 6.6079 1.7672 1.2483
M = 7 2.5895 1.1256 0.7543
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Figure 3: Approximate solution of control variable u(x, t) with τ = 1 for Example 6.1

Table 2: Comparison of estimated value of J in case τ = o for different methods
Methods J
Method of [13]
X = 0.1,T = 0.1 0.7348
X = 0.05,T = 0.05 0.5510
X = 0.03,T = 0.03 0.4760
Method of [12]
M = 7,N = 8 0.6202
M = 8,N = 3 0.2792
M = 8,N = 8 0.2026
Method of [25]
M = 7,N = 6 0.3094
M = 9,N = 8 0.0951
M = 10,N = 8 0.0608
Present Method
M = 7,N = 8 0.0075
M = 8,N = 3 0.0659
M = 8,N = 8 0.0072
M = 7,N = 6 0.0693
M = 9,N = 8 0.0069
M = 10,N = 8 0.0051

Example 6.2. Consider the following problem

Min J =
1
2

∫ 5

0

∫ 5

0
107[zv(x, t) − sin(x + t)]2 + [u(x, t)]2dxdt,

∂zh(x,t)
∂x = −3zh(x, t) + 3.2zv(x, t) + 0.3u(x, t)

∂zv(x,t)
∂t = zh(x, t) − zv(x, t − τ)

zv(x, 0) = e−3x cos(2πx)

zh(0, t) = −e−2t

zv(x, θ) = 1 : −τ ≤ θ ≤ 0.

(26)
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Following the mentioned methodology to solve 2DTDOCPs in section 4, we approximate the function zv(x, t) in terms
of Legendre Block-Pulse basis. We obtain zh(x, t) and u(x, t) by applying the method similar to Example 6.1.
The achieved vertical, horizontal and control variables by solving the mentioned example are shown in Fig. 4, 5 and
6, respectively. The cost functional values for τ = 3, τ = 2, τ = 1 and different values of M are shown in Table 3. If
τ = 0, similar to example 6.1, comparing the estimated values of J by different methods is shown in Table 4. As seen
from the reported results in Table 4, our solution is better compared with the methods presented in [12] and [25]. By
comparing the results for similar values of M and N, it is clear that the results of the proposed method are better.

Figure 4: Approximate solution of state vertical component zv(x, t) with τ = 1 for Example 6.2

Figure 5: Approximate solution of state horizontal component zh(x, t) with τ = 1 for Example 6.2

Example 6.3. Consider the following 2DTDOCP

Min J =

3∫
0

3∫
0

{[
zh(x, t)

]2
+ [zv(x, t)]2 + [u(x, t)]2

}
dxdt, (27)
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Figure 6: Approximate solution of control variable u(x, t) with τ = 1 for Example 6.2

Table 3: Estimated values of J for various values of N,M andτ
N = 2, τ = 3 N = 3, τ = 2 N = 5, τ = 1

M = 3 11.86268 × 106 8.18034 × 106 4.42061 × 106

M = 5 7.54674 × 106 5.42092 × 106 2.23495 × 106

M = 7 5.16402 × 106 3.70614 × 106 0.75272 × 106

Table 4: Comparison of estimated value of J in case τ = o for different methods
Methods J
Method of [12]
M = 4,N = 7 2.56765 × 106

M = 6,N = 6 2.03080 × 106

M = 7,N = 5 2.15360 × 106

Method of [25]
M = 3,N = 4 4.090680 × 106

M = 5,N = 6 2.398277 × 106

M = 8,N = 9 1.199138 × 106

Present Method
M = 4,N = 7 0.000586 × 106

M = 6,N = 6 0.410512 × 106

M = 7,N = 5 0.610010 × 106

M = 3,N = 4 0.909921 × 106

M = 5,N = 6 0.423217 × 106

M = 8,N = 9 0.000062 × 106

s.t
∂zh(x,t)
∂x = −3zh(x − τ, t) + 3.2zv(x, t) + 0.3u(x, t)

∂zv(x,t)
∂t = zh(x, t) − zv(x, t − τ)

zv(x, 0) = e−3x cos(2πx)

zh(0, t) = −e−2t

zv(x, θ) = 1,−τ ≤ θ ≤ 0.
zh(β, t) = 1,−τ ≤ β ≤ 0.

(28)
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Following the mentioned methodology for solving the 2DTDOCPs in section 4, we approximate the function zv(x, t)
in terms of the Legendre Block-Pulse basis. We obtain zh(x, t) and u(x, t) by applying the method similar to Example
6.1.
The achieved vertical, horizontal and control variables by solving the mentioned example are shown in Fig. 7, 8 and
9, respectively. The cost functional values for τ = 1

2 , τ =
1
3 , τ =

1
4 and different values of M are shown in Table 5. If

τ = 0, the problem such as example 6.1 reduces to the two-dimensional optimal control problem without time-delay
that has been studied by other researchers. The comparison of the estimated values of J by different methods is shown
in Table 2.

Figure 7: Approximate solution of state vertical component zv(x, t) with τ = 1
3 for Example 6.3

Figure 8: Approximate solution of state horizontal component zh(x, t) with τ = 1
3 for Example 6.3
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Figure 9: Approximate solution of control variable u(x, t) with τ = 1
3 for Example 6.3

Table 5: Estimated values of J for various values of N,M andτ
N = 6, τ = 1

2 N = 9, τ = 1
3 N = 12, τ = 1

4
M = 2 26.0203 22.9754 13.6724
M = 3 11.2012 10.1130 4.1256
M = 5 5.4121 4.1283 1.7811

7. Conclusion

This paper presents an efficient method to solve a class of 2DTDOCPs. The state and control variables
are approximated using Ritz method and the hybrid functions (block-pulse functions and Legendre poly-
nomials). Using the proposed method, without using derivative and multiplicative functional matrices,
the optimal control problem reduces to an optimization problem which can be easily solved. We described
the proposed numerical method and discuss the convergence of the method. The obtained results showed
that our method gives a good approximate of the solution and these results are more accurate than other
results that have been obtained from existing methods while τ = 0. Moreover, we obtained satisfactory
results only in a small number of polynomial orders compared to other published methods in literatures.
To solve 2DTDOCPs, we introduced a building block which can be extended. The problems with inequality
constraints and Multiple Time-Varying Delays are under consideration as our future research work.
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