Filomat 37:17 (2023), 5829–5834 https://doi.org/10.2298/FIL2317829X

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Gallai's path decomposition conjecture

Mengmeng Xie^a

^aSchool of Mathematics and Statistics, Ningbo University, Ningbo, 315211, China

Abstract. Gallai conjectured that every connected graph on *n* vertices can be decomposed into at most $\frac{n+1}{2}$ paths. Let *G* be a connected graph on *n* vertices. The *E*-subgraph of *G*, denoted by *F*, is the subgraph induced by the vertices of even degree in *G*. The maximum degree of *G* is denoted by $\triangle(G)$. In 2020, Botler and Sambinelli verified Gallai's Conjecture for graphs whose *E*-subgraphs *F* satisfy $\triangle(F) \leq 3$. If the *E*-subgraph of *G* has at most one vertex with degree greater than 3, Fan, Hou and Zhou verified Gallai's Conjecture for *G*. In this paper, it is proved that if there are two adjacent vertices $x, y \in V(F)$ such that $d_F(v) \leq 3$ for every vertex $v \in V(F) \setminus \{x, y\}$, then *G* has a path-decomposition \mathcal{D}_1 such that $|\mathcal{D}_1| \leq \frac{n+1}{2}$ and $\mathcal{D}_1(x) \geq 2$, and a path-decomposition \mathcal{D}_2 such that $|\mathcal{D}_2| \leq \frac{n+1}{2}$ and $\mathcal{D}_2(y) \geq 2$.

1. Introduction

All graphs considered in this paper are finite and simple. A *decomposition* of a graph is a set of subgraphs that partition its edge set. If all these subgraphs are isomorphic to path, then it is called a path-decomposition. Let \mathcal{D} be a path-decomposition of a graph G. The number of elements of \mathcal{D} is denoted by $|\mathcal{D}|$. For a vertex $v \in V(G)$, the number of paths in \mathcal{D} with v as an end vertex is denoted by $\mathcal{D}(v)$. Gallai [6] proposed the following conjecture.

Conjecture 1.1. (*Gallai's conjecture* [6]) Let *G* be a connected graph on *n* vertices. Then *G* has a path-decomposition \mathcal{D} such that $|\mathcal{D}| \leq \frac{n+1}{2}$.

The first breakthrough in the study of Gallai's conjecture is Lovász [6] made.

Theorem 1.1. (Lovász [6]) Let G be a graph on n vertices. If G has at most one vertex of even degree, then G has a path-decomposition \mathcal{D} such that $|\mathcal{D}| \leq \frac{n}{2}$.

Given a graph *G*, the sets of vertices and edges of *G* are denoted by *V*(*G*) and *E*(*G*), respectively. A *cut vertex* of *G* is a vertex whose removal increases the number of components of *G*. The *even subgraph* of *G* (*E*-subgraph, for short), denoted by EV(G), is the subgraph of *G* induced by its even degree vertices. The maximum degree of a graph *G* is denoted by $\triangle(G)$. A *block* in a graph *G* is a maximal 2-connected subgraph of *G*. We use S_{k_1,k_2} to denote a double-star with center vertices *x* and *y*, where the degree of *x* is k_1 and the degree of *y* is k_2 .

²⁰²⁰ Mathematics Subject Classification. Primary 05C38; Secondary 05C51.

Keywords. Decomposition; Path; Gallai's conjecture.

Received: 01 November 2022; Accepted: 09 January 2023

Communicated by Paola Bonacini

Research supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23A010013. *Email address:* xiemengmeng@nbu.edu.cn (Mengmeng Xie)

By Theorem 1.1, Gallai's conjecture is true if the *E*-subgraph of *G* has at most one vertex. The conjecture was verified by Favaron and Kouider [5] for Eulerian graphs with degrees 2 and 4, by Botler and Jiménez [1] for 2*k*-regular ($k \ge 3$) graphs of girths at least 2k - 2 that have a pair of disjoint perfect matchings. Pyber [7] verified Gallai's conjecture for graphs whose *E*-subgraphs are forests. Each block of a forest is a single edge. If each block of the *E*-subgraph of *G* has maximum degree at most 3 and contains no triangles, Fan [3] verified Gallai's conjecture is true. If the maximum degree of the *E*-subgraph of *G* less than or equal to 3, Botler and Sambinelli [2] verified that *G* has a path-decomposition \mathcal{D}_1 such that $|\mathcal{D}_1| \le \frac{|V(G)|}{2}$, or a path-decomposition \mathcal{D}_2 such that $|\mathcal{D}_2| \le \frac{|V(G)|+1}{2}$. From this result, we can get the following theorem.

Theorem 1.2. (*Theorem 13,* [2]) Let G be a connected graph on n vertices and F be the E-subgraph of G. If $\triangle(F) \leq 3$, then G has a path-decomposition \mathcal{D} such that $|\mathcal{D}| \leq \frac{n+1}{2}$.

Fan, Hou and Zhou [4] generalized the result above.

Theorem 1.3. (*Theorem 5,* [4]) Let *G* be a connected graph on *n* vertices and *F* be the *E*-subgraph of *G*. If there is a vertex $x \in V(F)$ such that $d_F(v) \leq 3$ for every vertex $v \in V(F) \setminus \{x\}$, then *G* has a path-decomposition \mathcal{D} such that $|\mathcal{D}| \leq \frac{n+1}{2}$ and $\mathcal{D}(x) \geq 2$.

The main result of this paper is as following.

Theorem 1.4. Let G be a connected graph on n vertices and F be the E-subgraph of G. If there are two vertices $x, y \in V(F)$ and an edge $xy \in E(F)$ such that $d_F(v) \leq 3$ for every vertex $v \in V(F) \setminus \{x, y\}$, then G has a path-decomposition \mathcal{D}_1 such that $|\mathcal{D}_1| \leq \frac{n+1}{2}$ and $\mathcal{D}_1(x) \geq 2$, and a path-decomposition \mathcal{D}_2 such that $|\mathcal{D}_2| \leq \frac{n+1}{2}$ and $\mathcal{D}_2(y) \geq 2$.

2. Technical Lemmas

In a graph *G*, the set of neighbors of a vertex *x* is denoted by $N_G(x)$, the set of the edges incident with *x* is denoted by $E_G(x)$ and its degree by $d_G(x) = |E_G(x)|$. For a subgraph *H* of *G* and a vertex $x \in V(G)$, $N_H(x)$ is the set of the neighbors of *x* in *H*, $E_H(x)$ is the set of the edges incident with *x* in *H*, and $d_H(x) = |E_H(x)|$ is the degree of *x* in *H*. For $B \subseteq E(G)$, $G \setminus B$ is the graph obtained from *G* by deleting all the edges of *B*. For $X \in V(G)$, G - X is the graph obtained from *G* by deleting all the vertices of *X* together with all the edges with at least one end in *X*. (When $X = \{x\}$, we simplify the notation to G - x.) The following easy observation will be used throughout the paper.

Observation 2.1. Suppose that \mathcal{D} is a path-decomposition of a graph G. Then $\mathcal{D}(v) \ge 1$ if $d_G(v)$ is odd.

Definition 2.2. Let w be a vertex in a graph G and B be a set of edges incident to w. Let $H = G \setminus B$ and \mathcal{D} be a path-decomposition of H. For a subset $A \subseteq B$, say $A = \{wx_i : 1 \le i \le k\}$, we say that A is addible at w with respect to \mathcal{D} if $H \cup A$ has a path-decomposition \mathcal{D}^* such that

(*i*) $|\mathcal{D}^*| = |\mathcal{D}|$; (*ii*) $\mathcal{D}^*(w) = \mathcal{D}(w) + |A|$ and $\mathcal{D}^*(x_i) = \mathcal{D}(x_i) - 1, 1 \le i \le k$; (*iii*) $\mathcal{D}^*(v) = \mathcal{D}(v)$ for each $v \in V(G) \setminus \{w, x_1, ..., x_k\}$.

We say that \mathcal{D}^* a transformation of \mathcal{D} by adding *A* at *w*. The next lemma is from [3].

Lemma 2.3. (Lemma 3.6, [3]) Let w be a vertex in a graph G and $x_1, x_2, ..., x_s$ be neighbors of w in G. Let $H = G \setminus \{wx_1, wx_2, ..., wx_s\}$. If H has a path-decomposition \mathcal{D} such that $\mathcal{D}(v) \ge 1$ for every vertex $v \in N_G(w)$, then for any vertex $x \in \{x_1, x_2, ..., x_s\}$, there is an edge set $B \subseteq \{wx_1, wx_2, ..., wx_s\}$ such that $wx \in B$, $|B| \ge \lceil \frac{s}{2} \rceil$, and B is addible at w with respect to \mathcal{D} .

The next lemma is from [4].

Lemma 2.4. (Lemma 5, [4]) Suppose that w is a vertex in a graph G and $x_1, x_2, ..., x_k$ are neighbors of w in G. Let $H = G \setminus \{wx_1, wx_2, ..., wx_k\}$. If H has a path-decomposition \mathcal{D} such that for some integer l, $|\{v \in N_H(x_i) : \mathcal{D}(v) = 0\}| \le l$ for each $i, 1 \le i \le k$, and $\mathcal{D}(w) \ge l + k$, then G has a path-decomposition \mathcal{D}^* such that

(*i*) $|\mathcal{D}^*| = |\mathcal{D}|$; (*ii*) $\mathcal{D}^*(w) \ge l$ and $\mathcal{D}^*(x_i) = \mathcal{D}(x_i) + 1, 1 \le i \le k$; (*iii*) $\mathcal{D}^*(v) = \mathcal{D}(v)$ for each vertex $v \in V(G) \setminus \{w, x_1, ..., x_k\}$.

3. Proof of Main Theorem

Proof of Theorem 1.4.

By the hypothesis of *G*, $S_{2,2}$ is the graph that has the fewest edges. The two center vertices of $S_{2,2}$ are denoted by *x* and *y*, respectively. The two leaf vertices of $S_{2,2}$ are denoted by v_1 and v_2 , respectively (see Figure 1).

Figure 1: *S*_{2,2}.

Let $\mathcal{D}_1 = \{v_1x, xyv_2\}$ and $\mathcal{D}_2 = \{v_1xy, yv_2\}$. Because $|\mathcal{D}_1| = |\mathcal{D}_2| = 2 < \frac{4+1}{2}$ and $\mathcal{D}_1(x) \ge 2$, $\mathcal{D}_2(y) \ge 2$, the theorem holds. If the theorem is not true, choose *G* to be a counterexample with |E(G)| minimum. Then $|E(G)| \ge 4$.

Claim 1. For any $z \in V(F)$, G - z is connected.

If the claim is not true, then there are two connected nontrivial subgraphs G_1 and G_2 such that $V(G_1) \cap V(G_2) = \{z\}, E(G_1) \cup E(G_2) = E(G)$ and $z \in V(F)$. Let F_i be the *E*-subgraph of G_i , i = 1, 2. Obviously, F_i is a subgraph of F, i = 1, 2. Since $d_G(z)$ is even, we have that $d_{G_1}(z) \equiv d_{G_2}(z) \pmod{2}$.

Because $xy \in E(G)$ and $xy \in E(F)$, x and y are both in either G_1 or G_2 .

Case 1. $z \neq x, y$.

Assuming that $x, y \in V(G_2)$.

Subcase 1.1. Both $d_{G_1}(z)$ and $d_{G_2}(z)$ are even.

In the current case, $|V(F_1)| \ge 1$. According to Theorem 1.3, *G* has a path decomposition \mathcal{P}_1 such that $|\mathcal{P}_1| \le \frac{|V(G_1)|+1}{2}$ and $\mathcal{P}_1(z) \ge 2$. Let P_1 and P_2 be two paths in \mathcal{P}_1 having *z* as an endvertex.

Because $x, y \in V(G_2)$ and $d_{G_2}(z)$ is even, $|V(F_2)| \ge 3$. By the minimality of G, G_2 has a path-decomposition \mathcal{P}_2 such that $\mathcal{P}_2(x) \ge 2$ and a path-decomposition \mathcal{P}'_2 such that $\mathcal{P}'_2(y) \ge 2$. $d_{G_2}(z)$ is even. If z is not the end vertex of any path in \mathcal{P}_2 , let $Q \in \mathcal{P}_2$ and $z \in V(Q)$. The two segments of Q divided by z are denoted by Q_1 and Q_2 . If z is the end vertex of some paths in \mathcal{P}_2 , there are at least two such paths. Choose two paths from \mathcal{P}_2 with z as the end vertex, denoted by Q_1 and Q_2 , respectively.

Let $\mathcal{D}_1 = (\mathcal{P}_1 \setminus \{P_1, P_2\}) \cup (\mathcal{P}_2 \setminus \{Q_1 \cup Q_2\}) \cup \{P_1 \cup Q_1, P_2 \cup Q_2\}$, then $|\mathcal{D}_1| \leq \frac{|V(G_1)|+1}{2} - 2 + \frac{|V(G_2)|+1}{2} - 1 + 2 = \frac{|V(G_1)|+1}{2} = \frac{n+1}{2}$ and $\mathcal{D}_1(x) \geq 2$. Similarly, we can use \mathcal{P}_1 and \mathcal{P}'_2 to find a path-decomposition \mathcal{D}_2 of G such that $|\mathcal{D}_2| \leq \frac{n+1}{2}$ and $\mathcal{D}_2(y) \geq 2$, contradicting that G is a counterexample.

Subcase 1.2. Both $d_{G_1}(z)$ and $d_{G_2}(z)$ are odd.

If the degree of every vertex of G_1 is odd, then there is a path-decomposition \mathcal{P}_1 of G_1 such that $|\mathcal{P}_1| \leq \frac{|V(G_1)|+1}{2}$, $\mathcal{P}_1(z) \geq 1$, by Theorem 1.1 and Observation 2.1. If the number of even degree vertices in G_1 is greater than or equal to 1, then there is a path-decomposition \mathcal{P}_1 of G_1 such that $|\mathcal{P}_1| \leq \frac{|V(G_1)|+1}{2}$, $\mathcal{P}_1(z) \geq 1$, by Theorem 1.3 and Observation 2.1. So, in either case, G_1 always has a path-decomposition \mathcal{P}_1 , such that $|\mathcal{P}_1| \leq \frac{|V(G_1)|+1}{2}$, $\mathcal{P}_1(z) \geq 1$. Let P_1 be a path in \mathcal{P}_1 that ends at z. By the minimality of G, G_2 has a path-decomposition \mathcal{P}_2 such that $|\mathcal{P}_2| \leq \frac{|V(G_2)|+1}{2}$, $\mathcal{P}_2(y) \geq 2$. For path-decomposition \mathcal{P}_2 or \mathcal{P}'_2 , z is the end vertex of at least one path, by Observation 2.1. Let Q_1 and Q'_1 be a path in \mathcal{P}_2 and \mathcal{P}'_2 that ends at z, respectively. Let $\mathcal{D}_1 = (\mathcal{P}_1 \setminus \{P_1\}) \cup (\mathcal{P}_2 \setminus \{Q_1\}) \cup \{P_1 \cup Q_1\}$

and $\mathcal{D}_2 = (\mathcal{P}_1 \setminus \{P_1\}) \cup (\mathcal{P}_2 \setminus \{Q'_1\}) \cup \{P_1 \cup Q'_1\}$. Then $|\mathcal{D}_1| \le \frac{|V(G_1)|+1}{2} - 1 + \frac{|V(G_2)|+1}{2} - 1 + 1 = \frac{|V(G)|+1}{2} = \frac{n+1}{2}$, $|\mathcal{D}_2| \le \frac{|V(G)|+1}{2} = \frac{n+1}{2}$ and $\mathcal{D}_1(x) \ge 2$, $\mathcal{D}_2(y) \ge 2$, contradicting that *G* is a counterexample. Case 2. z = x or y.

Without loss of generality, we assume that z = x and $y \in V(G_1)$. Because $d_G(y)$ is even and $y \in V(G_1)$, we can choose G_1 such that $G_1 - x$ is connected and $|E(G_1)| \ge 2$.

Subcase 2.1. Both $d_{G_1}(x)$ and $d_{G_2}(x)$ are even.

In the current case, $x, y \in V(F_1)$. By the minimality of G, G_1 has a path-decomposition \mathcal{P}_1 such that $|\mathcal{P}_1| \leq \frac{|V(G_1)|+1}{2}$, $\mathcal{P}_1(x) \geq 2$ and a path-decomposition \mathcal{P}'_1 such that $|\mathcal{P}'_1| \leq \frac{|V(G_1)|+1}{2}$, $\mathcal{P}'_1(y) \geq 2$. Because $x \in V(F_2)$, there are at least one vertex of even degree in G_2 . By Theorem 1.3, G_2 has a path-decomposition \mathcal{P}_2 such that $|\mathcal{P}_2| \leq \frac{|V(G_2)|+1}{2}$, $\mathcal{P}_2(x) \geq 2$. In \mathcal{P}_2 , we choose two paths with x as the end vertex, denoted by Q_1 and Q_2 , respectively. In \mathcal{P}_1 , we choose two paths with x as the end vertex, denoted by P_1 and P_2 , respectively. Let $\mathcal{D}_1 = (\mathcal{P}_1 \setminus \{P_1\}) \cup (\mathcal{P}_2 \setminus \{Q_1\}) \cup \{P_1 \cup Q_1\}, \text{ then } |\mathcal{D}_1| \leq \frac{|V(G_1)|+1}{2} - 1 + \frac{|V(G_2)|+1}{2} - 1 + 1 = \frac{|V(G)|+1}{2} = \frac{n+1}{2} \text{ and } \mathcal{D}_1(x) \geq 2.$ In $\mathcal{P}'_1, \mathcal{P}'_1(x) = 0 \text{ or } \mathcal{P}'_1(x) \geq 2.$ If $\mathcal{P}'_1(x) = 0$, we choose a path from \mathcal{P}'_1 containing *x*, denoted by *P*. We divide *P* from *x* into two segments, denoted by *P*_1 and *P*_2, respectively. If $\mathcal{P}'_1(x) \geq 2$, we choose two paths with *x* as the end vertex, denoted by P_1 and P_2 , respectively. Let $\hat{D}_2 = (\mathcal{P}'_1 \setminus \{P_1 \cup P_2\}) \cup (\mathcal{P}_2 \setminus \{Q_1, Q_2\}) \cup \{P_1 \cup Q_1, P_2 \cup Q_2\}$. Then $|\mathcal{D}_2| \leq \frac{|V(G_1)|+1}{2} - 1 + \frac{|V(G_2)|+1}{2} - 2 + 2 = \frac{|V(G)|+1}{2} = \frac{n+1}{2} \text{ and } \mathcal{D}_2(y) \geq 2, \text{ contradicting that } G \text{ is a counterexample.}$ Subcase 2.2. Both $d_{G_1}(x)$ and $d_{G_2}(x)$ are odd.

(i) $|E(G_2)| \ge 2$.

Let H_i be the connected graph obtained from G_i by adding a new edge xw, where w is a new vertex, i = 1, 2. The *E*-subgraph of H_i is denoted by F'_i , i = 1, 2. Then $xy \in E(F'_1)$, $x \in F'_i$ and $|E(H_i)| \leq |E(G)|$, i = 1, 2. By the minimality of G, H_1 has a path-decomposition \mathcal{P}_1 such that $|\mathcal{P}_1| \leq \frac{|V(H_1)|+1}{2}, \mathcal{P}_1(x) \geq 2$ and a path-decomposition \mathcal{P}'_1 such that $|\mathcal{P}'_1| \leq \frac{|V(H_1)|+1}{2}$, $\mathcal{P}'_1(y) \geq 2$. Because $d_{H_2}(x)$ is even, the number of even degree vertices of H_2 is greater than or equal to 1. By Theorem 1.3, H_2 has a path-decomposition \mathcal{P}_2 such that $|\mathcal{P}_2| \leq \frac{|V(H_2)|+1}{2}$, $\mathcal{P}_2(x) \geq 2$. Next, we construct the path-decomposition \mathcal{D}_1 of G such that $|\mathcal{D}_1| \leq \frac{n+1}{2}$, $\mathcal{D}_1(x) \geq 2.$

In \mathcal{P}_1 , we choose the path which contains the edge *xw*, denoted by P_1 . In $\mathcal{P}_1 \setminus \{P_1\}$, we choose one path with x as the end vertex, denoted by P_2 . In \mathcal{P}_2 , we choose the path which contains the edge *xw*, denoted by Q_1 . In $\mathcal{P}_2 \setminus \{Q_1\}$, we choose one path with *x* as the end vertex, denoted by Q_2 .

Let $P = (P_1 \setminus xw) \cup (Q_1 \setminus xw)$ and $Q = P_2 \cup Q_2$. If neither Q_1 nor P_1 is the single edge xw, let $\mathcal{D}_1 = (\mathcal{P}_1 \setminus \{P_1, P_2\}) \cup (\mathcal{P}_2 \setminus \{Q_1, Q_2\}) \cup \{P, Q\}$. Then $|\mathcal{D}_1| \le \frac{|V(H_1)|+1}{2} - 2 + \frac{|V(H_2)|+1}{2} - 2 + 2 = \frac{|V(G)|+1}{2} = \frac{n+1}{2}$ and $\mathcal{D}_1(x) \ge 2$. If both $Q_1 = xw$ and $P_1 = xw$, let $\mathcal{D}_1 = (\mathcal{P}_1 \setminus \{Q_1\}) \cup (\mathcal{P}_2 \setminus \{Q_2\})$. Then $|\mathcal{D}_1| \le \frac{|V(H_1)|+1}{2} - 1 + \frac{|V(H_2)|+1}{2} - 1 = \frac{|V(H_2)|+1}{$ $\frac{|V(G)|+1}{2} = \frac{n+1}{2}$ and $\mathcal{D}_1(x) \ge 2$. If exactly one of Q_1 and P_1 is the single edge xw, say $P_1 = xw$, $Q_1 \neq xw$. Let $\mathcal{D}_1 = (\mathcal{P}_1 \setminus \{P_1, P_2\}) \cup (\mathcal{P}_2 \setminus \{Q_1, Q_2\}) \cup \{Q, Q_1 \setminus xy\}, \text{ then } |\mathcal{D}_1| \leq \frac{|V(G)|+1}{2} \text{ and } \mathcal{D}_1(x) \geq 2.$

In the following, we construct the path-decomposition \mathcal{D}_2 of G such that $|\mathcal{D}_2| \leq \frac{n+1}{2}$, $\mathcal{D}_2(y) \geq 2$. In G_1 , the number of even degree vertices is greater than or equal to 1, and the degree of every vertex except y of F_1 less than or equal to three. By Theorem 1.3, G_1 has a path-decomposition \mathcal{P}_1 such that $|\mathcal{P}_1| \leq \frac{|V(G_1)|+1}{2} = \frac{n+1}{2}$, $\mathcal{P}_1(y) \ge 2$. Because $d_{G_1}(x)$ is odd, $\mathcal{P}_1 \ge 1$, by Observation 2.1. In \mathcal{P}_1 , we choose one path with x as the end vertex, denoted by P_1 . By Theorem 1.1 or 1.2, G_2 has a path-decomposition \mathcal{P}_2 such that $|\mathcal{P}_2| \leq \frac{|V(G_2)|+1}{2} = \frac{n+1}{2}$. By Observation 2.1, $\mathcal{P}_2(x) \ge 1$. In \mathcal{P}_2 , we choose one path with x as the end vertex, denoted by P_2 . Let $\mathcal{D}_2 = (\mathcal{P}_1 \setminus \{P_1\}) \cup (\mathcal{P}_2 \setminus \{P_2\}) \cup \{P_1, P_2\}$. Then $|\mathcal{D}_2| \le \frac{|V(G_1)|+1}{2} - 1 + \frac{|V(G_2)|+1}{2} - 1 + 1 = \frac{|V(G)|+1}{2} = \frac{n+1}{2}$ and $\mathcal{D}_2(y) \ge 2$, contradicting that *G* is a counterexample.

(ii) $|E(G_2)| = 1$.

 G_2 is a single edge, say $G_2 = xw_1$. Let $R = G_1 - x$. By the choice of G_1 , R is connected. Let $E_F(x) = G_1 - x$. { $xx_1, xx_2, ..., xx_m$ }, $m = d_F(x)$. Let $H = G \setminus E_F(x)$ and F_H be the *E*-subgraph of *H*.

In the following, we construct the path-decomposition \mathcal{D}_1 of G such that $|\mathcal{D}_1| \leq \frac{n+1}{2}$, $\mathcal{D}_1(x) \geq 2$. (1) $m < d_{G_1}(x)$.

Because $R = G_1 - x$ is connected and $m < d_{G_1}(x)$, H is connected.

If *m* is even, then $d_H(x)$ is even, and $y \in \{x_1, x_2, ..., x_m\}$. So, $d_H(y)$ is odd. By Theorem 1.3, there is a

path-decomposition \mathcal{P} of H such that $|\mathcal{P}| \leq \frac{|V(H)|+1}{2} \leq \frac{n+1}{2}$ and $\mathcal{P}(x) \geq 2$. By Lemma 2.3, there is an edge set $B \subseteq E_F(x)$ such that $|B| \geq \lceil \frac{m}{2} \rceil$, $xy \in B$ and B is addible at x with respect to \mathcal{P} .

If *m* is odd, then *x* is odd degree in *H*, and *H* has a path-decomposition \mathcal{P} such that $|\mathcal{P}| \leq \frac{n+1}{2}$, by Theorem 1.1 or 1.2. By Observation 2.1, $\mathcal{P}(x) \geq 1$. By Lemma 2.3, there is an edge set $B \subseteq E_F(x)$ and $xy \in B$ such that $|B| \geq \lceil \frac{m}{2} \rceil$ and *B* is addible at *x* with respect to \mathcal{P} .

In either case, $H \cup B$ has a path-decomposition \mathcal{P}' , a transformation of \mathcal{P} by adding B at x, such that $|\mathcal{P}'| \leq \frac{n+1}{2}$ and $\mathcal{P}'(x) \geq m - \lceil \frac{m}{2} \rceil + 2$. Since $d_F(v) \leq 3$ for every vertex $V(F) \setminus \{x, y\}$. So, every vertex $v \in E_F(x) \setminus B$, $d_F(v) \leq 3$ and $d_{F_H}(v) \leq 2$.

By Lemma 2.4, with l = 2 and $k = m - \lceil \frac{m}{2} \rceil$, *G* has a path-decomposition \mathcal{P}^* such that $|\mathcal{P}^*| = |\mathcal{P}'| \le \frac{n+1}{2}$ and $\mathcal{P}^*(x) \ge 2$.

(2) $m = d_{G_1}(x)$.

Because $d_G(x)$ is even and $d_{G_2}(x) = 1$, *m* is odd, say m = 2k + 1. There are no new even vertices in $R = G_1 - x$. The degree of *x* and all vertices adjacent to *x* are odd. By Theorem 1.1 or 1.2, there is a path-decomposition \mathcal{R} of *R* such that $|\mathcal{R}| \leq \frac{|V(R)|+1}{2}$ and $\mathcal{R}(x_i) \geq 1$ for all $i, 1 \leq i \leq m$. By Lemma 2.3, there is an edge set $B \subseteq E_F(x)$, $xy \in B$, such that $|\mathcal{R}| \geq k + 1$ and *B* is addible at *x* with respect to \mathcal{R} . Let \mathcal{R}' be a transformation of \mathcal{R} by adding *B* at *x*. Then \mathcal{R}' is a path-decomposition of $R \cup B$ such that $|\mathcal{R}'| \leq \frac{|\mathcal{R}|+1}{2}$ and $\mathcal{R}'(x) \geq |B| \geq k + 1$. Let $\mathcal{P}' = \mathcal{R}' \cup \{xw_1\}$, which is a path-decomposition of $R \cup B \cup \{xw_1\}$. Note that |V(R)| = |V(G)| - 2. So, $|\mathcal{P}'| \leq \frac{|V(R)|+1}{2} + 1 = \frac{n+1}{2}$ and $\mathcal{P}'(x) \geq |B| + 1 \geq k + 2$. By Lemma 2.4, with l = 2, we obtain a path-decomposition \mathcal{D}_1 of *G* such that $|\mathcal{D}_1| \leq \frac{n+1}{2}$ and $\mathcal{D}_1(x) \geq 2$.

Next, we will find a path-decomposition \mathcal{D}_2 of G, such that $|\mathcal{D}_2| \leq \frac{n+1}{2}$ and $\mathcal{D}_2(y) \geq 2$. Let $I = G \setminus \{xw_1\}$ and F_I be the *E*-subgraph of *I*. Because the number of even vertices in *I* is greater than or equal to one, and only $d_{F_I}(y)$ may be greater than three, *I* has a path-decomposition \mathcal{P} such that $|\mathcal{P}| \leq \frac{|V(I)|+1}{2}$ and $\mathcal{P}(y) \geq 2$, by Theorem 1.3. Because $d_I(x)$ is odd, $\mathcal{P}(x) \geq 1$, by Observation 2.1. In \mathcal{P} , we choose one path with *x* as the end vertex, denoted by *P*. Let $Q = P \cup \{xw_1\}$ and $\mathcal{D}_2 = (\mathcal{P} \setminus \{P\}) \cup \{Q\}$. Then $|\mathcal{D}_2| \leq \frac{|V(I)|+1}{2} - 1 + 1 < \frac{|V(G)|+1}{2} = \frac{n+1}{2}$ and $\mathcal{D}_2(y) \geq 2$, contradicting that *G* is a counterexample. This proves Claim 1.

Claim 2. At least one of $d_F(x)$ and $d_F(y)$ is even.

Suppose, to the contrary, that $d_F(x)$ and $d_F(y)$ are odd. Let $E_F(x) = \{xw_1, xw_2, ..., xw_m\}$, where $m = d_F(x)$ and $w_m = y$. Let $H = G \setminus E_F(x)$. By Claim 1, H is connected. Note that the degree of x and y are odd in H. By Theorem 1.1 or 1.2, H has a path-decomposition \mathcal{P}_1 such that $|\mathcal{P}_1| \leq \frac{n+1}{2}$. By Observation 2.1, $\mathcal{P}_1(x) \geq 1$, $\mathcal{P}_1(y) \geq 1$. By Lemma 2.3, to add a set $B \subseteq E_F(x)$ at x with $|B| \geq \lceil \frac{m}{2} \rceil$ and $xy \in B$, we can get a path-decomposition \mathcal{P}_2 of $H \cup B$ from \mathcal{P}_1 . Since $|B| \geq \lceil \frac{m}{2} \rceil$ and m is odd, $|B| \geq \frac{m+1}{2}$, $\mathcal{P}_2(x) \geq \frac{m+1}{2} + 1 = \frac{m+3}{2}$ and $|\mathcal{P}_2| \leq \frac{n+1}{2}$. By applying Lemma 2.4, with l = 2, we obtain a path-decomposition \mathcal{D}_1 of G such that $|\mathcal{D}_1| \leq \frac{n+1}{2}$ and $\mathcal{D}_1(x) \geq 2$. Because $d_F(y)$ is odd, we can obtain the path-decomposition \mathcal{D}_2 in the same way as above such that $|\mathcal{D}_2| \leq \frac{n+1}{2}$ and $\mathcal{D}_2(y) \geq 2$, contradicting that G is a counterexample. This proves Claim 2.

Because $xy \in E_F(x)$ and $xy \in E_F(y)$, $d_F(x) \neq 0$ and $d_F(y) \neq 0$. By Claim 2, at least one of $d_F(x)$ and $d_F(y)$ is even. Without loss of generality, suppose $d_F(x)$ is even. So, $d_F(x) \ge 2$.

In the following, we will find a path-decomposition \mathcal{D} of G, such that $|\mathcal{D}| \leq \frac{n+1}{2}$, $\mathcal{D}(x) \geq 2$ and $\mathcal{D}(y) \geq 2$.

Let $E_F(x) = \{xx_1, xx_2, ..., xx_m\}, m = d_F(x) \ge 2$ is even. Let $xx_m = xy, m = 2k$ and $k \ge 1$. Let $S = E_F(x) \setminus \{xx_m\}$. Thus |S| = 2k - 1. Suppose $H = G \setminus S$. By Claim 1, H is connected. $d_H(x)$ is odd and $d_H(y)$ is even. By Theorem 1.3, there is a path-decomposition \mathcal{P} of H such that $|\mathcal{P}| \le \frac{n+1}{2}$ and $\mathcal{P}(y) \ge 2$. By Observation 2.1, $\mathcal{P}(x)$ and $\mathcal{P}(v) \ge 1, v \in N_G(x)$. By Lemma 2.3, there is an edge set $B \subseteq S$, such that $|B| \ge k$ and B is addible at x with respect to \mathcal{P} . Let \mathcal{P}' be a transformation of \mathcal{P} by adding B at x. Then \mathcal{P}' is a path-decomposition of $H \cup B$ such that $|\mathcal{P}'| \le \frac{n+1}{2}$ and $\mathcal{P}'(x) \ge k+1$. Note that $|S \setminus B| \le k - 1$. By Lemma 2.4, with l = 2, G has a path-decomposition \mathcal{D} of G, such that $|\mathcal{D}| \le \frac{n+1}{2}, \mathcal{D}_2(x) \ge 2$ and $\mathcal{D}_2(y) \ge 2$, contradicting that G is a counterexample.

Date availability statement

Because no new data were created or analyzed in this study, data sharing is not applicable to this article.

References

- [1] F. Botler and A. Jiménez, On path decompositions of 2k-regular graphs, Discrete Math. 340 (2017), 1405–1411.
- [2] F. Botler and M. Sambinelli, *Towards Gallai's path decomposition conjecture*, J. Graph Theory 97 (2021), 161–184.
 [3] G. Fan, *Path decompositions and Gallai's conjecture*, J. Combin. Theory Ser. B 93 (2005), 117–125.
- [4] G. Fan, J. Hou and C. Zhou, Gallai's conjecture on path decompositions, Journal of the operations research society of China (2022), accepted.
 [5] O. Favaron and M. Kouider, Path partitions and cycle partitions of Eulerian graphs of maximum degree 4, Studia Sci. Math. Hung. 23
- (1988), 237-244.
- [6] L. Lovász, On covering of graphs, Theory of Graphs (P. Erdös and G. Katona, eds.) (1968), 231–236, Academic Press, New York.
- [7] L. Pyber, Covering the edges of a connected graph by paths, J. Combin. Theory Ser. B 66 (1996), 152–159.