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Available at: http://www.pmf.ni.ac.rs/filomat

The Dunkl-Williams constant related to the Singer orthogonality and
red isosceles orthogonality in Banach spaces

Yuankang Fua, Huayou Xiea, Yongjin Lia

aDepartment of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P. R. China

Abstract. In this paper, we shall consider two new constants DWS(X) and DWI(X), which are the Dunkl-
Williams constant related to the Singer orthogonality and theisosceles orthogonality, respectively. We
discuss the relationships between DWS(X) and some geometric properties of Banach spaces, including
uniform non-squareness, uniform convexity. Furthermore, an equivalent form of DWS(X) in the symmetric
Minkowski planes is given and used to compute the value of DWS((R2, ∥ · ∥p)), 1 < p < ∞, and we also give a
characterization of the Radon plane with affine regular hexagonal unit sphere in terms of DWS(X). Finally,
we establish some estimates for DWI(X) and show that DWI(X) does not necessarily coincide with DWS(X).

1. Introduction

In 1964, Dunkl and Williams [1] showed that, in any Banach space X, the inequality∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 4∥x − y∥
∥x∥ + ∥y∥

holds for any nonzero elements x, y ∈ X. This inequality is called the Dunkl-Williams inequality. Actually,
the Dunkl-Williams inequality gives the upper bound for the angular distance

α[x, y] =
∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
between two nonzero elements x, y ∈ X. The angular distance, also called the Clarkson distance, was
introduced by Clarkson [2], in order to make a detailed analysis of the triangle inequality in uniformly
convex Banach spaces.

In the same year that the Dunkl-Williams inequality came out, Kirk and Smiley [3] found that the
Dunkl-Williams inequality with 2 in place of 4 in fact characterizes the Hilbert space, that is, a Banach space
X is a Hilbert space if and only if the inequality∥∥∥∥∥ x

∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 2∥x − y∥
∥x∥ + ∥y∥
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holds for any nonzero elements x, y ∈ X.
According to the above result, Jiménez-Melado et al. [4] pointed out that the smallest number which

can replace 4 in Dunkl-Williams inequality measures “how much” this Banach space is close to be a Hilbert
space. Thus, Jiménez-Melado et al. [4] introduced the Dunkl-Williams constant as following:

DW(X) = sup
{
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ : x, y ∈ X\{0}, x , y
}
, (1)

and also obtained some conclusions about DW(X):
(1) 2 ≤ DW(X) ≤ 4 holds for any Banach space X.
(2) DW(X) = 2 if and only if X is a Hilbert space.
(3) DW(X) < 4 if and only if X is a uniformly non-square Banach space, that is, there exists δ > 0 such

that for any x, y ∈ SX we have min{∥x − y∥, ∥x + y∥} ≤ 2 − δ.
(4) If DW(X) < 4, then X has the fixed point property, that is, every nonexpansive self mapping of any

closed convex bounded subset of X has a fixed point in this subset.
For more results about the Dunkl-Williams constant DW(X), we recommend [5–9] to interested readers.
Let x, y be two elements in a real Banach space X. Then x is said to be Birkhoff orthogonal to y and

denoted by x ⊥B y (cf. [10]), if
∥x + λy∥ ≥ ∥x∥, λ ∈ R.

In addition, x is said to be isosceles orthogonal to y and denoted by x ⊥I y (cf. [11]), if

∥x + y∥ = ∥x − y∥.

One can easily know that the Birkhoff orthogonality coincides with the isosceles orthogonality if X is Hilbert
space. In fact, the Birkhoff orthogonality coincides with the isosceles orthogonality only if X is a Hilbert
space (see [12], Theorem 5.1), that is, X is a Hilbert space if and only if the Birkhoff orthogonality coincides
with the isosceles orthogonality in X. This conclusion also indicates that these two orthogonalities are
different in Banach spaces. To quantify the difference between these two orthogonalities, some parameters
are introduced (see [8], [13]):

D(X) = inf
{

inf
λ∈R
∥x + λy∥ : x, y ∈ SX, x ⊥I y

}
.

IB(X) = inf
{

infλ∈R ∥x + λy∥
∥x∥

: x, y ∈ X\{0}, x ⊥I y
}
.

IB′(X) = inf
{

infλ∈R ∥x + λy∥
∥x∥

: x, y ∈ X\{0}, ∥y∥ ≤ ∥x∥, x ⊥I y
}
.

For more studies of the difference between these two orthogonalities can be found in [14], [15].
In [8], Mizuguchi gave an unexpected result which connects IB(X) with DW(X), that is,

IB(X)DW(X) = 2.

The proof of this result is based on the following equivalent form of DW(X)

DW(X) = sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x + y , 0, 0 ≤ t ≤ 1
}
. (2)

In [8], Mizuguchi also considered the following supremum which is similar to DW(X)

sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x ⊥I y, 0 ≤ t ≤ 1
}
. (3)
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Recall that x is said to be Singer orthogonal to y and denoted by x ⊥S y (cf. [16]), if either ∥x∥ · ∥y∥ = 0 or∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = ∥∥∥∥∥ x
∥x∥
+

y
∥y∥

∥∥∥∥∥ .
Obviously, the Singer orthogonality is defined by restricting isosceles orthogonality to the unit sphere (i.e.
x ⊥S y⇔ x

∥x∥ ⊥I
y
∥y∥ ). Thus, (3) can be rewritten as following

sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x ⊥S y, 0 ≤ t ≤ 1
}
. (4)

Now, take into account (1), (2), (3), and (4), it is natural for us to consider the following two parameters

DWS(X) = sup
{
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ : x, y ∈ X\{0}, x ⊥S y
}

and

DWI(X) = sup
{
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ : x, y ∈ X\{0}, x ⊥I y
}
.

Actually, due to the following equality

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ =
∥∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥∥∥∥∥∥ x
∥x∥+∥y∥ −

y
∥x∥+∥y∥

∥∥∥∥ .
DWS(X) and DWI(X) can be regarded as discussing the ratio of the following two dotted lines under different
orthogonal conditions.

x
∥x∥

y
∥y∥O

x
∥x∥+∥y∥

y
∥x∥+∥y∥

Figure 1. The graphic interpretation of DWS(X) and DWI(X).

Throughout this paper, we always assume that X is a real Banach space with dimX ≥ 2. The arrangement
of this paper is as follows:

In Section 2, we consider the constant DWS(X). First, we present the bounds of DWS(X) and show
that the lower bound of DWS(X) can be used to characterize the Hilbert space. In addition, we also state
the relationships between DWS(X) and some geometric properties of Banach spaces, including uniform
non-squareness, uniform convexity. Second, we study DWS(X) in symmetric Minkowski planes. An
equivalent form of DWS(X) in symmetric Minkowski planes is given and used to compute the value of
DWS((R2, ∥ · ∥p)), 1 < p < ∞. Finally, we also discuss DWS(X) in Radon planes. The bounds of DWS(X) in
Radon planes are given. Moreover, we use the upper bound to characterize the Radon plane with affine
regular hexagonal unit sphere.

In Section 3, we will be concerned with the constant DWI(X). First, we discuss the bounds of DWI(X)
and give an example to illustrate that DWI(X), DWS(X) and DW(X) do not necessarily coincide with each
other. Second, we also give some estimates for DWI(X) in terms of other well-known constants.
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2. The Dunkl-Williams constant related to the Singer orthogonality

2.1. Some geometric properties related to DWS(X)
This section is devoted to the relationships between DWS(X) and some geometric properties of Banach

spaces. The following result is the key to our subsequent discussion.

Proposition 2.1. Let X be a Banach space. Then

D(X)DWS(X) = 2.

Proof. First, for any x, y ∈ X\{0}with x ⊥S y, let u = x
∥x∥ , v = −

y
∥y∥ . Due to x ⊥S y, we obtain ∥u+ v∥ = ∥u− v∥,

which means that u+v
∥u+v∥ ,

u−v
∥u+v∥ ∈ SX. Moreover, since u, v ∈ SX and ∥u + v∥ = ∥u − v∥, we get u+v

∥u+v∥ ⊥I
u−v
∥u+v∥ .

Thus, according to the definition of D(X), we have

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = ∥u + v∥∥∥∥∥ ∥x∥
∥x∥+∥y∥u +

∥y∥
∥x∥+∥y∥v

∥∥∥∥
=

∥u + v∥
1
2

∥∥∥∥u + v + ∥x∥−∥y∥
∥x∥+∥y∥ (u − v)

∥∥∥∥
=

2∥∥∥∥ u+v
∥u+v∥ +

∥x∥−∥y∥
∥x∥+∥y∥

u−v
∥u+v∥

∥∥∥∥
≤

2
D(X)

,

which implies that

DWS(X) ≤
2

D(X)
.

On the other hand, for any x, y ∈ SX with x ⊥I y, it is clear that there exists a λ1 ∈ [−1, 1] such that
infλ∈R ∥x + λy∥ = ∥x + λ1y∥. Now, we consider the following two cases:

Case 1: λ1 ∈ [0, 1].
Let

u =
1 + λ1

2
x + y
∥x + y∥

, v = −
1 − λ1

2
x − y
∥x + y∥

.

Since x, y ∈ SX and x ⊥I y, one can easily deduce that u ⊥S v. Thus, we have

inf
λ∈R
∥x + λy∥ = ∥x + λ1y∥ = 2

∥x + y∥
2
∥x + λ1y∥
∥x + y∥

= 2
∥∥∥∥∥ u
∥u∥
−

v
∥v∥

∥∥∥∥∥−1
∥x + λ1y∥
∥x + y∥

= 2
∥∥∥∥∥ u
∥u∥
−

v
∥v∥

∥∥∥∥∥−1 ∥∥∥∥∥ (1 + λ1)(x + y)
2∥x + y∥

+
(1 − λ1)(x − y)

2∥x + y∥

∥∥∥∥∥
= 2

∥∥∥∥∥ u
∥u∥
−

v
∥v∥

∥∥∥∥∥−1

∥u − v∥

=
2

1
∥u−v∥

∥∥∥ u
∥u∥ −

v
∥v∥

∥∥∥
=

2
∥u∥+∥v∥
∥u−v∥

∥∥∥ u
∥u∥ −

v
∥v∥

∥∥∥
≥

2
DWS(X)

.
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Case 2: λ1 ∈ [−1, 0].
It is evident that infλ∈R ∥x + λy∥ = infλ∈R ∥x + λ(−y)∥, thus we obtain

inf
λ∈R
∥x + λ(−y)∥ = ∥x + λ1y∥ = ∥x + (−λ1)(−y)∥.

Since −λ1 ∈ [0, 1] and x ⊥I −y, then, due to the Case 1, we have

inf
λ∈R
∥x + λy∥ = inf

λ∈R
∥x + λ(−y)∥ = ∥x + (−λ1)(−y)∥ ≥

2
DWS(X)

.

Consequently, we obtain

D(X) ≥
2

DWS(X)
.

This completes the proof.

Now, by virtue of Proposition 2.1, we can obtain the following results which give us the bounds of
DWS(X), the relationship between DWS(X) and Hilbert spaces, and the relationship between DWS(X) and
uniform non-squareness.

Corollary 2.2. Let X be a Banach space. Then the following statements hold
(1) 2 ≤ DWS(X) ≤

√
2 + 1.

(2) X is a Hilbert space if and only if DWS(X) = 2.
(3) If DWS(X) <

√
2 + 1, then X is uniformly non-square. The converse is not true.

Proof. The above results can be easily deduced from Proposition 2.1 and following conclusions of D(X).
(1) 2(

√
2 − 1) ≤ D(X) ≤ 1 (see [13], Theorem 1).

(2) X is a Hilbert space if and only if D(X) = 1 (see [13], Theorem 1).
(3) If D(X) > 2(

√
2 − 1), then X is uniformly non-square (see [14], Theorem 3.2). Furthermore, the

converse is not true. Since, in Example 4 of [14], Papini and Wu pointed out that if we take X as R2

endowed with the norm whose unit sphere SX is the hexagon with

p1 = (1, 1), p2 = (1 −
√

2, 1), p3 = (−1,
√

2 − 1),

and their opposites as vertices (see the following Figure), then X is uniformly non-square and such that
D(X) = 2(

√
2 − 1).

p1p2

p3

SX

Figure 1. D(X) = 2(
√

2 − 1)

Remark 2.3. From Corollary 2.2 (1) and (3), we know that if X is not uniformly non-square, then DWS(X) =
√

2+1.
On the other hand, Jiménez-Melado et al. [4] proved that if X is not uniformly non-square, then DW(X) = 4. Thus,
DWS(X) does not necessarily coincide with DW(X).
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Since the converse of Corollary 2.2 (3) is not true, a natural question arises, that is, what condition does
X satisfy to make DWS(X) <

√
2 + 1 valid. To answer this question, we recall that a Banach space X is said

to be uniformly convex, if, for any 0 < ε ≤ 2, there exists a δ > 0 such that∥∥∥∥∥x + y
2

∥∥∥∥∥ ≤ 1 − δ

holds for any x, y ∈ SX with ∥x − y∥ ≥ ε.
The following result is a well-known characterization of uniform convexity.

Lemma 2.4. [17] Let X be a Banach space. Then the following statements are equivalent
(1) X is uniformly convex.
(2) If xn, yn ∈ X such that ∥xn∥ → 1, ∥yn∥ → 1, and ∥xn + yn∥ → 2, then ∥xn − yn∥ → 0.

Now, it is time to answer the question, we assert that if X is uniformly convex, then DWS(X) <
√

2 + 1.

Theorem 2.5. Let X be a Banach space. If X is uniformly convex, then DWS(X) <
√

2 + 1.

Proof. According to Proposition 2.1, it is sufficient to prove that D(X) > 2(
√

2 − 1). Now, we suppose
conversely that D(X) = 2(

√
2 − 1). Then there exist xn, yn ∈ SX with xn ⊥I yn such that

inf
λ∈R
∥xn + λyn∥ → 2(

√

2 − 1).

For any n ∈ N, since xn ⊥I yn, one can easily deduce that infλ∈R ∥xn + λyn∥ is attained at some λn ∈ [−1, 1].
Without loss of generality, we can assume that λn ∈ [0, 1], since otherwise yn could be replaced by −yn.
Therefore,

∥xn + λnyn∥ → 2(
√

2 − 1), λn ∈ [0, 1]. (5)

In addition, since λn ∈ [0, 1], we can also assume that limn→∞ λn exists.
Due to xn ⊥I yn, we have

1 + λn = (1 + λn)∥xn∥ ≤ ∥xn + λnyn∥ + λn∥xn − yn∥

= ∥xn + λnyn∥ + λn∥xn + yn∥

≤ ∥xn + λnyn∥ + λn(∥xn + λnyn∥ + (1 − λn)∥yn∥)
= (1 + λn)∥xn + λnyn∥ + λn(1 − λn),

which implies that

∥xn + λnyn∥ ≥
1 + λ2

n

1 + λn
≥ min

0≤k≤1

1 + k2

1 + k
= 2(
√

2 − 1).

Let n→∞, it follows that

λn →
√

2 − 1. (6)

Further, according (5), (6) and the following inequalities∣∣∣∣∥xn + (
√

2 − 1)yn∥ − 2(
√

2 − 1)
∣∣∣∣ ≤ ∣∣∣∣∥xn + (

√

2 − 1)yn∥ − ∥xn + λnyn∥

∣∣∣∣ + ∣∣∣∣∥xn + λnyn∥ − 2(
√

2 − 1)
∣∣∣∣

≤

∣∣∣∣λn − (
√

2 − 1)
∣∣∣∣ + ∣∣∣∣∥xn + λnyn∥ − 2(

√

2 − 1)
∣∣∣∣ ,

we can easily deduce that

∥xn + (
√

2 − 1)yn∥ → 2(
√

2 − 1). (7)
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Now, let un =
1
2 yn +

√
2+1
2 xn, vn =

√
2

2 (xn − yn). Then we have

∥un∥ =

∥∥∥∥∥∥1
2

yn +

√
2 + 1
2

xn

∥∥∥∥∥∥ = 1

2(
√

2 − 1)
∥xn + (

√

2 − 1)yn∥.

Let n→∞, by (7), we obtain
∥un∥ → 1.

Further, since xn ⊥I yn, we get

∥vn∥ =

∥∥∥∥∥∥
√

2
2

(xn − yn)

∥∥∥∥∥∥ = ∥(1 + √2)xn −
√

2un∥ ≥ 1 +
√

2 −
√

2∥un∥,

and

∥vn∥ =

∥∥∥∥∥∥
√

2
2

(xn − yn)

∥∥∥∥∥∥ =
∥∥∥∥∥∥
√

2
2

(xn + yn)

∥∥∥∥∥∥ = ∥(2 − √2)un + (
√

2 − 1)yn∥ ≤
(
2 −
√

2
)
∥un∥ +

√

2 − 1.

Let n→∞, from ∥un∥ → 1, we also obtain
∥vn∥ → 1.

In addition, it is clear that

∥(
√

2 − 1)vn + (2 −
√

2)un∥ = ∥xn∥ = 1, (8)

and

∥(2 −
√

2)un + (
√

2 − 1)yn∥ =

∥∥∥∥∥∥
√

2
2

(xn + yn)

∥∥∥∥∥∥ =
∥∥∥∥∥∥
√

2
2

(xn − yn)

∥∥∥∥∥∥ = ∥vn∥ → 1. (9)

Notice that
√

2 − 1, 2 −
√

2 ∈ (0, 1) and (
√

2 − 1) + (2 −
√

2) = 1, thus, according to ∥yn∥ = 1, ∥un∥ → 1,
∥vn∥ → 1, (8) and (9), it follows that

∥vn + un∥ → 2,

and

∥un − vn∥ = ∥(
√

2 − 1)un + yn∥ =
√

2

∥∥∥∥∥∥
(
1 −

√
2

2

)
un +

√
2

2
yn

∥∥∥∥∥∥→ √2.

Consequently, we have

∥un∥ → 1, ∥vn∥ → 1, ∥un + vn∥ → 2, ∥un − vn∥ →
√

2 , 0,

which contradicts Lemma 2.4. This completes the proof.

Remark 2.6. In Corollary 2.13, we will prove that, for any ε > 0, there always exists a uniformly convex Banach
space X such that DWS(X) >

√
2+1−ε. This indicates that the number

√
2+1 in the above result cannot be replaced

by a smaller number.

2.2. DWS(X) in symmetric Minkowski planes
In this section, we will establish an equivalent form of DWS(X) in symmetric Minkowski planes, which

gives us a way to compute the value of DWS((R2, ∥ · ∥p)), 1 < p < ∞.
Recall that a Minkowski plane (i.e. two-dimensional normed linear space) X is called symmetric

Minkowski plane, if there exist e1, e2 ∈ SX such that

∥e1 + te2∥ = ∥e1 − te2∥ = ∥e2 + te1∥ = ∥e2 − te1∥, t ∈ R,
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where {e1, e2} is called a pair of axes of X. In fact, {e1, e2} is a basis of X. If not, there exists γ ∈ R such that
e1 = γe2. Since e1, e2 ∈ SX, we obtain γ = ±1. Further, if γ = 1, then, from ∥e1 + te2∥ = ∥e1 − te2∥, t ∈ R, we
obtain that |1 + t| = |1 − t|, t ∈ R. This is impossible. Similarly, if γ = −1, the contradiction will also be
derived. Thus, {e1, e2} is a basis of X.

Here are some classic examples of symmetric Minkowski plane.

Example 2.7. Let X = (R2, ∥ · ∥p) (1 ≤ p ≤ ∞), then X is a symmetric Minkowski plane and {(1, 0), (0, 1)} is a pair
of axes of X.

Example 2.8. Let X = (R2, ∥ · ∥p1+p2 ) (1 ≤ p1 ≤ p2 ≤ ∞), where ∥ · ∥p1+p2 =
∥·∥p1+∥·∥p2

2 , then X is a symmetric
Minkowski plane and {(1, 0), (0, 1)} is a pair of axes of X.

The following results are key to obtaining the equivalent form of DWS(X) in symmetric Minkowski
planes.

Lemma 2.9. [13] Let X be a symmetric Minkowski plane, {e1, e2} be a pair of axes of X. Then x, y ∈ SX, x = αe1+βe2,
x ⊥I y if and only if y = ±(−βe1 + αe2).

Proposition 2.10. Let X be a Banach space. Then

DWS(X) = sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x ⊥I y, 0 ≤ t ≤ 1
}
.

Proof. First, for any x, y ∈ X\{0}with x ⊥S y, let u = x
∥x∥ , v = −

y
∥y∥ . Then, we have u ⊥I v and

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = ∥u + v∥∥∥∥∥ ∥x∥
∥x∥+∥y∥u +

∥y∥
∥x∥+∥y∥v

∥∥∥∥
≤ sup

{
∥x + y∥

∥(1 − t)x + ty∥
: x, y ∈ SX, x ⊥I y, 0 ≤ t ≤ 1

}
,

which implies that

DWS(X) ≤ sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x ⊥I y, 0 ≤ t ≤ 1
}
.

On the other hand, let u, v ∈ SX with u ⊥I v. We consider the following two cases:
Case 1: 0 < t < 1.
let x = (1 − t)u , 0, y = −tv , 0. Then, x ⊥S y and

∥u + v∥
∥(1 − t)u + tv∥

=
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ DWS(X).

Case 2: t = 0 or t = 1.
Then, by Corollary 2.2 (1), we obtain

∥u + v∥
∥(1 − t)u + tv∥

≤
∥u∥ + ∥v∥

1
= 2 ≤ DWS(X).

Consequently, we obtain

DWS(X) ≥ sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x ⊥I y, 0 ≤ t ≤ 1
}
.

This completes the proof
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The ideas and techniques for the following proposition are based on literature [18].

Theorem 2.11. Let X be a symmetric Minkowski plane, {e1, e2} be a pair of axes of X. Then

DWS(X) = sup
{

∥(1 + λ)e1 + (1 − λ)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: − 1 ≤ λ ≤ 1, 0 ≤ t ≤ 1

}
.

Proof. Let x, y ∈ SX with x ⊥I y. Since {e1, e2} is a basis of X, thus we assume that x = ae1 + be2. Moreover,
due to x ∈ SX, we always have a , 0 or b , 0. Without loss of generality, we assume that a , 0. Then,∥∥∥∥∥e1 +

b
a

e2

∥∥∥∥∥ = ∥∥∥∥x
a

∥∥∥∥ = 1
|a|
,

which means that

x =
e1 +

b
a e2∥∥∥e1 +
b
a e2

∥∥∥ s1n(a).

Now, according to Lemma 2.9, we obtain

y = ±
b
a e1 − e2∥∥∥e1 +

b
a e2

∥∥∥ .
For convenience, we denote

b
a e1−e2

∥e1+
b
a e2∥

and −
b
a e1−e2

∥e1+
b
a e2∥

by yx and yx, respectively.

Step 1: We will calculate the values of ∥x + yx∥, ∥x + yx∥, ∥(1 − t)x + tyx∥ and ∥(1 − t)x + tyx∥, 0 ≤ t ≤ 1,
respectively.

First, since x ⊥I y, it follows that

∥x + yx∥ = ∥x + yx∥ =

∥∥∥∥∥∥∥ e1 +
b
a e2∥∥∥e1 +
b
a e2

∥∥∥ +
b
a e1 − e2∥∥∥e1 +

b
a e2

∥∥∥
∥∥∥∥∥∥∥ =

∥∥∥∥(1 + b
a

)
e1 +

(
b
a − 1

)
e2

∥∥∥∥∥∥∥e1 +
b
a e2

∥∥∥ . (10)

Second, to calculate ∥(1 − t)x + tyx∥ and ∥(1 − t)x + tyx∥, 0 ≤ t ≤ 1, we consider the following two cases:
Case 1: a > 0.
Then, for any 0 ≤ t ≤ 1, we have

∥(1 − t)x + tyx∥ =

∥∥∥∥∥∥∥(1 − t)
e1 +

b
a e2∥∥∥e1 +
b
a e2

∥∥∥ + t
b
a e1 − e2∥∥∥e1 +

b
a e2

∥∥∥
∥∥∥∥∥∥∥ =

∥∥∥∥(1 − t
(
1 − b

a

))
e1 +

(
b
a − t

(
b
a + 1

))
e2

∥∥∥∥∥∥∥e1 +
b
a e2

∥∥∥ , (11)

and

∥(1 − t)x + tyx∥ =

∥∥∥∥∥∥∥(1 − t)
e1 +

b
a e2∥∥∥e1 +
b
a e2

∥∥∥ − t
b
a e1 − e2∥∥∥e1 +

b
a e2

∥∥∥
∥∥∥∥∥∥∥ =

∥∥∥∥(1 − t
(
1 + b

a

))
e1 +

(
b
a − t

(
b
a − 1

))
e2

∥∥∥∥∥∥∥e1 +
b
a e2

∥∥∥ . (12)

Case 2: a < 0.
Then, for any 0 ≤ t ≤ 1, we have

∥(1 − t)x + tyx∥ =

∥∥∥∥∥∥∥−(1 − t)
e1 +

b
a e2∥∥∥e1 +
b
a e2

∥∥∥ + t
b
a e1 − e2∥∥∥e1 +

b
a e2

∥∥∥
∥∥∥∥∥∥∥ =

∥∥∥∥(1 − t
(
1 + b

a

))
e1 +

(
b
a − t

(
b
a − 1

))
e2

∥∥∥∥∥∥∥e1 +
b
a e2

∥∥∥ , (13)

and

∥(1 − t)x + tyx∥ =

∥∥∥∥∥∥∥−(1 − t)
e1 +

b
a e2∥∥∥e1 +
b
a e2

∥∥∥ − t
b
a e1 − e2∥∥∥e1 +

b
a e2

∥∥∥
∥∥∥∥∥∥∥ =

∥∥∥∥(1 − t
(
1 − b

a

))
e1 +

(
b
a − t

(
b
a + 1

))
e2

∥∥∥∥∥∥∥e1 +
b
a e2

∥∥∥ . (14)
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Step 2: We will show that{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}
=

{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 + λ))e1 + (λ − t(λ − 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}
.

(15)

Now, for any λ ∈ (−∞,+∞) and t ∈ [0, 1], we have

∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥

=
∥(1 + λ)e1 + (1 − λ)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥

=
∥(1 − λ)e1 + (1 + λ)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥

=
∥(1 + (−λ))e1 + (−λ − 1)e2∥

∥(1 − t(1 + (−λ)))e1 + (−λ − t(−λ − 1))e2∥
,

which indicates that{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}
=

{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 + λ))e1 + (λ − t(λ − 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}
.

Step 4: For any t ∈ [0, 1], let

ft(λ) =
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
, λ ∈ (−∞,+∞).

We will prove that

ft
( 1
λ

)
= ft (−λ) , t ∈ [0, 1]. (16)

For any t ∈ [0, 1], it is easily seen that

ft
( 1
λ

)
=

∥∥∥(1 + 1
λ )e1 + ( 1

λ − 1)e2

∥∥∥∥∥∥∥(1 − t
(
1 − 1

λ

))
e1 +

(
1
λ − t

(
1
λ + 1

))
e2

∥∥∥∥
=

∥(λ + 1)e1 + (1 − λ)e2∥

∥(λ − t(λ − 1))e1 + (1 − t(1 + λ))e2∥

=
∥(1 − λ)e1 + (λ + 1)e2∥

∥(1 − t(1 + λ))e1 + (λ − t(λ − 1))e2∥

=
∥(1 − λ)e1 + (−λ − 1)e2∥

∥(1 − t(1 + λ))e1 + (−λ − t(−λ + 1))e2∥

= ft (−λ) .

Step 5: We will prove that

DWS(X) = sup
{

∥(1 + λ)e1 + (1 − λ)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: − 1 ≤ λ ≤ 1, 0 ≤ t ≤ 1

}
.
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Denote b
a by λ, then, for any x = ae1 + be2 ∈ SX, we have λ = b

a ∈ (−∞,+∞). Conversely, for any

λ ∈ (−∞,+∞), let y = e1 + λe2 and x =: y
∥y∥ =

1
∥y∥ e1 +

λ
∥y∥ e2. Then, we have x ∈ SX and

λ
∥y∥
1
∥y∥
= λ, which shows

that, for any λ ∈ (−∞,+∞), we can always find a xλ = aλe1 + bλe2 ∈ SX such that bλ
aλ
= λ. Therefore, taking

into account (10), (11), (12), (13), (14), (15), and (16), we obtain

DWS(X) = sup
{

∥x + y∥
∥(1 − t)x + ty∥

: x, y ∈ SX, x ⊥I y, 0 ≤ t ≤ 1
}

= sup
{{

∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}
∪

{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 + λ))e1 + (λ − t(λ − 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}}
= sup

{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: −∞ < λ < +∞, 0 ≤ t ≤ 1

}
= sup

{
∥(1 + λ)e1 + (λ − 1)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: − 1 ≤ λ ≤ 1, 0 ≤ t ≤ 1

}
.

As an application of Theorem 2.11, we give the value of DWS((R2, ∥ · ∥p)), 1 < p < ∞.

Theorem 2.12. Let p, q ∈ (1,+∞) with 1
p +

1
q = 1, and X = (R2, ∥ · ∥p). Then

DWS(X) = sup
{

2∥(1, t)∥p∥(1, t)∥q
1 + t2 : 0 ≤ t ≤ 1

}
.

Proof. Let e1 = (1, 0), e2 = (0, 1), it is immediate that {(1, 0), (0, 1)} is a pair of axes of X. Now, for any
λ ∈ [−1, 1], let

fλ(t) = |1 − t(1 − λ)|p + |λ − t(λ + 1)|p, t ∈ [0, 1].

Step 1: We will show that

min
0≤t≤1

fλ(t) =
(1 + λ2)p(

(1 − λ)
p

p−1 + (1 + λ)
p

p−1
)p−1 , λ ∈ [−1, 1]. (17)

We only prove the above equality for λ ∈ [0, 1], since the proof for λ ∈ [−1, 0] is similar. To obtain
min0≤t≤1 fλ(t), we consider the following two cases:

Case 1: 0 ≤ t ≤ λ
λ+1 .

Then fλ(t) = (1− t(1−λ))p + (λ− t(λ+ 1))p.Obviously, fλ(t) is a decreasing function of t in
[
0, λλ+1

]
. Thus,

we obtain

min
0≤t≤ λ

λ+1

fλ(t) = fλ
(
λ
λ + 1

)
=

(
1 + λ2

λ + 1

)p

.

Case 2: λ
λ+1 ≤ t ≤ 1.

Then fλ(t) = (1 − t(1 − λ))p + (t(λ + 1) − λ)p. Further, one can easily obtain that f ′λ(t) ≥ 0 if and only if

t ≥
(1 − λ)

1
p−1 + λ(1 + λ)

1
p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1

.
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Moreover, through some calculations, we can get that the following inequalities

(1 − λ)
1

p−1 + λ(1 + λ)
1

p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1

≤ 1

and
(1 − λ)

1
p−1 + λ(1 + λ)

1
p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1

≥
λ

1 + λ

are equivalent to

λp−1
− λp

≤ 1 + λ (18)

and (
1 +

1
λ

)p−1

≥ (1 − λ)p−1, (19)

respectively. Since λ ∈ [0, 1], the inequalities (18) and (19) obviously hold. Thus, we obtain

(1 − λ)
1

p−1 + λ(1 + λ)
1

p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1

∈

[
λ
λ + 1

, 1
]
.

This means that

min
λ
λ+1≤t≤1

fλ(t)

= fλ

 (1 − λ)
1

p−1 + λ(1 + λ)
1

p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1


=

1 −
(1 − λ)

1
p−1 + λ(1 + λ)

1
p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1

(1 − λ)

p

+

 (1 − λ)
1

p−1 + λ(1 + λ)
1

p−1

(1 − λ)
p

p−1 + (1 + λ)
p

p−1

(λ + 1) − λ

p

=

(
(1 + λ)

p
p−1 − λ(1 − λ)(1 + λ)

1
p−1

)p
+

(
(1 + λ)(1 − λ)

1
p−1 − λ(1 − λ)

p
p−1

)p

(
(1 − λ)

p
p−1 + (1 + λ)

p
p−1

)p

=
(1 + λ)

p
p−1

(
1 + λ2

)p
+ (1 − λ)

p
p−1

(
1 + λ2

)p(
(1 − λ)

p
p−1 + (1 + λ)

p
p−1

)p

=

(
1 + λ2

)p

(
(1 − λ)

p
p−1 + (1 + λ)

p
p−1

)p−1 .

It is obvious that (
(1 − λ)

p
p−1 + (1 + λ)

p
p−1

)p−1
≥ (1 + λ)p,

thus

min
0≤t≤1

fλ(t) = min
 min

0≤t≤ λ
λ+1

fλ(t), min
λ
λ+1≤t≤1

fλ(t)
 = min

λ
λ+1≤t≤1

fλ(t) =

(
1 + λ2

)p

(
(1 − λ)

p
p−1 + (1 + λ)

p
p−1

)p−1 .

Step 2: We will show that

DWS(X) = sup
{
∥(1 + λ, 1 − λ)∥p∥(1 + λ, 1 − λ)∥q

1 + λ2 : 0 ≤ λ ≤ 1
}
,



Y. Fu et al. / Filomat 37:17 (2023), 5601–5622 5613

Notice that, by (17), we have

min
0≤t≤1

fλ(t) = min
0≤t≤1

f−λ(t), λ ∈ [−1, 1].

Thus, according to Theorem 2.11, we obtain

DWS(X) = sup
{

∥(1 + λ)e1 + (1 − λ)e2∥

∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: − 1 ≤ λ ≤ 1, 0 ≤ t ≤ 1

}
= sup

{
∥(1 + λ)e1 + (1 − λ)e2∥

min0≤t≤1 ∥(1 − t(1 − λ))e1 + (λ − t(λ + 1))e2∥
: − 1 ≤ λ ≤ 1

}
= sup

 ((1 + λ)p + (1 − λ)p)
1
p(

min0≤t≤1 fλ(t)
) 1

p

: − 1 ≤ λ ≤ 1


= sup

 ((1 + λ)p + (1 − λ)p)
1
p(

min0≤t≤1 fλ(t)
) 1

p

: 0 ≤ λ ≤ 1


= sup

 ((1 + λ)p + (1 − λ)p)
1
p ((1 + λ)q + (1 − λ)q)

1
q

1 + λ2 : 0 ≤ λ ≤ 1


= sup

{
∥(1 + λ, 1 − λ)∥p∥(1 + λ, 1 − λ)∥q

1 + λ2 : 0 ≤ λ ≤ 1
}
.

Step 3: We will prove that

DWS(X) = sup
{

2∥(1, t)∥p∥(1, t)∥q
1 + t2 : 0 ≤ t ≤ 1

}
.

For any λ ∈ [0, 1], let t = 1−λ
1+λ ∈ [0, 1]. Then we have λ = 1−t

1+t . Moreover, by the Step 2, we obtain

DWS(X) = sup
{
∥(1 + λ, 1 − λ)∥p∥(1 + λ, 1 − λ)∥q

1 + λ2 : 0 ≤ λ ≤ 1
}

= sup


(1 + λ)2

∥∥∥∥(1, 1−λ
1+λ

)∥∥∥∥
p

∥∥∥∥(1, 1−λ
1+λ

)∥∥∥∥
q

1 + λ2 : 0 ≤ λ ≤ 1


= sup

{
2∥(1, t)∥p∥(1, t)∥q

1 + t2 : 0 ≤ t ≤ 1
}
.

By applying Theorem 2.12, we can obtain the following result which implies that the number
√

2 + 1 in
the Theorem 2.5 cannot be replaced by a smaller number.

Corollary 2.13. For any ε > 0, there exists a uniformly convex Banach space X such that DWS(X) >
√

2 + 1 − ε.

Proof. Let p, q ∈ (1,+∞) with 1
p +

1
q = 1. Now, by Theorem 2.12 and Corollary 2.2 (1), we obtain

√

2 + 1 ≥ DWS((R2, ∥ · ∥p)) ≥
2∥(1,

√
2 − 1)∥p∥(1,

√
2 − 1)∥q

1 + (
√

2 − 1)2
=

(1 + (
√

2 − 1)p)
1
p (1 + (

√
2 − 1)

p
p−1 )

p−1
p

2 −
√

2
.

Let p → ∞, we obtain DWS((R2, ∥ · ∥p)) →
√

2 + 1. Thus, for any ε > 0, there exists a p large enough, such
that DWS((R2, ∥ · ∥p)) >

√
2 + 1 − ε. Moreover, it is well-known that (R2, ∥ · ∥p) is uniformly convex, so we

obtain the desired result.
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2.3. DWS(X) in Radon planes
The usual orthogonality in the Hilbert space is always symmetric, that is, x ⊥ y implies y ⊥ x. However,

the Birkhoff orthogonality in the Banach space is not symmetric in general. In [19], James proved the
following result.

Theorem 2.14. [19] A normed linear space X whose dimension is at least three is an inner product space if and only
if the Birkhoff orthogonality is symmetric in X.

The assumption of the dimension of the space X in the above theorem cannot be omitted. James
[19] provided examples of two-dimensional normed linear spaces, in which the Birkhoff orthogonality is
symmetric, that is, the space lp − lq is defined for 1 ≤ p, q ≤ ∞ as the space R2 with the norm

∥(x1, x2)∥ =
{
∥(x1, x2)∥p (x1x2 ≥ 0) ;
∥(x1, x2)∥q (x1x2 ≤ 0) ,

where 1
p +

1
q = 1.

Definition 2.15. [20] A two-dimensional normed linear space in which the Birkhoff orthogonality is symmetric is
called Radon plane.

Radon planes have many remarkable, almost-Euclidean properties. For example, the radial projection
on the Radon plane X is non-expansive, that is, the map R : X→ X, defined by

R(x) =
{

x ∥x∥ ≤ 1;
x
∥x∥ ∥x∥ > 1,

such that ∥R(x) − R(y)∥ ≤ ∥x − y∥, x, y ∈ X. However, in higher dimensions only Euclidean space has this
property. For a survey on Radon planes, including further results, see [20].

In [9], Mizuguchi considered the Dunkl-Williams constant DW(X) in Radon planes and gave the follow-
ing results:

(1) Let X be a Radon plane. Then 2 ≤ DW(X) ≤ 9
4 .

(2) Let X be a Radon plane. Then DW(X) = 9
4 if and only if its unit sphere is an affine regular hexagon

(see [9], Preliminaries).
In this section, we will study the constant DWS(X) in Radon planes and show that the above two results

still hold for DWS(X).
Since 2 ≤ DW(X) ≤ 9

4 holds for any Radon plane, we can get the following result easily by Corollary 2.2
(1) and the fact that DWS(X) ≤ DW(X).

Proposition 2.16. Let X be a Radon plane. Then 2 ≤ DWS(X) ≤ 9
4 .

Since two-dimensional Hilbert spaces are Radon planes, by Corollary 2.2 (2), we can know that the
lower bound shown in the above result is sharp. Moreover, the following example will indicate that the
upper bound shown in the above result is also sharp.

Example 2.17. Let X be a Radon plane l∞ − l1, that is, the space R2 with the norm defined by

∥(x1, x2)∥ =
{
∥(x1, x2)∥∞ (x1x2 ≥ 0) ;
∥(x1, x2)∥1 (x1x2 ≤ 0) .

Then DWS(X) = 9
4 .

Proof. Take x = (−1, 0) and y =
(

1
2 , 1

)
, it is clear that x, y ∈ SX. Further, since ∥x + y∥ = ∥x − y∥ = 3

2 , we have
x ⊥I y. Now, by Proposition 2.10 and Proposition 2.16, we have

9
4
≥ DWs(X) ≥

∥x + y∥∥∥∥ 1
3 x + 2

3 y
∥∥∥ = 9

4
.

This completes the proof.
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Notice that the unit sphere of l∞ − l1 is actually an affine regular hexagon, hence l∞ − l1 is a Radon plane
with DWS(X) = 9

4 and such that its unit sphere is an affine regular hexagon. In fact, this is also true in
general, see the following result.

Theorem 2.18. Let X be a Radon plane. Then DWS(X) = 9
4 if and only if its unit sphere is an affine regular hexagon.

Proof. If DWS(X) = 9
4 , from the inequalities DWS(X) ≤ DW(X) ≤ 9

4 and the fact the DW(X) = 9
4 if and only

if unit sphere is an affine regular hexagon, we obtain that SX is an affine regular hexagon.
Conversely, if SX is an affine regular hexagon, then there exist u, v ∈ SX such that ±u, ±v, ±(u+ v) are the

vertices of SX.

u

O
v−v

−u

u + v

−(u + v)

Figure 2. Affine regular hexagonal unit sphere.

Let x = −v and y = u + 1
2 v. Then, we have x ∈ SX and y = 1

2 u + 1
2 (u + v) ∈ SX. Moreover, we also have

∥x + y∥ =
∥∥∥∥∥u −

1
2

v
∥∥∥∥∥ = 3

2

∥∥∥∥∥2
3

u +
1
3

(−v)
∥∥∥∥∥ = 3

2

and

∥x − y∥ =
∥∥∥∥∥u +

3
2

v
∥∥∥∥∥ = 3

2

∥∥∥∥∥2
3

u + v
∥∥∥∥∥ = 3

2

∥∥∥∥∥2
3

(u + v) +
1
3

v
∥∥∥∥∥ = 3

2
,

which indicate that x ⊥I y. Consequently, by Proposition 2.10 and Proposition 2.16, we have

9
4
≥ DWS(X) ≥

∥x + y∥∥∥∥ 1
3 x + 2

3 y
∥∥∥ =

3
2∥∥∥− 1

3 v + 2
3 u + 1

3 v
∥∥∥ =

3
2
2
3

=
9
4
.

This completes the proof.

3. The Dunkl-Williams constant related to the isosceles orthogonality

3.1. The difference between DWI(X), DWS(X) and DW(X)

In this section, we will discuss the bounds of DWI(X) and give a example to show that DWI(X), DWS(X)
and DW(X) do not necessarily coincide with each other. To obtain the bounds of DWI(X), we need the
following result.

Lemma 3.1. [11] If x and y are isosceles orthogonal elements in a Banach space, and ∥y∥ ≤ ∥x∥, then ∥x + ky∥ ≥
2(
√

2 − 1)∥x∥, k ∈ R.

Proposition 3.2. Let X be a Banach space. Then 2 ≤ DWI(X) ≤
√

2 + 1.
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Proof. First, take x, y ∈ SX with x ⊥I y, then,

DWI(X) ≥
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = 2.

Second, for any x, y ∈ X\{0}with x ⊥I y, we consider the following two cases:

Case 1:
∥∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥∥ ≥ ∥∥∥∥ x
∥x∥ +

y
∥y∥

∥∥∥∥.

Let u = x
∥x∥ and v = − y

∥y∥ . Then, we have ∥u + v∥ ≥ ∥u − v∥ and u + v ⊥I u − v. Further, by Lemma 3.1, we
have

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = ∥u + v∥∥∥∥∥ ∥x∥
∥x∥+∥y∥u +

∥y∥
∥x∥+∥y∥v

∥∥∥∥
=

∥u + v∥
1
2

∥∥∥∥u + v + ∥x∥−∥y∥
∥x∥+∥y∥ (u − v)

∥∥∥∥
=

2∥∥∥∥u+v+ ∥x∥−∥y∥
∥x∥+∥y∥ (u−v)

∥∥∥∥
∥u+v∥

≤
2

2(
√

2 − 1)
=
√

2 + 1.

Case 2:
∥∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥∥ < ∥∥∥∥ x
∥x∥ +

y
∥y∥

∥∥∥∥.

Let u = x
∥x∥ and v = y

∥y∥ . Then, we have ∥u + v∥ > ∥u − v∥ and u + v ⊥I u − v. Notice that x ⊥I y, then, by
Lemma 3.1, it follows that

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ <∥x∥ + ∥y∥∥x − y∥

∥∥∥∥∥ x
∥x∥
+

y
∥y∥

∥∥∥∥∥
=
∥x∥ + ∥y∥
∥x + y∥

∥∥∥∥∥ x
∥x∥
+

y
∥y∥

∥∥∥∥∥
=

∥u + v∥∥∥∥∥ ∥x∥
∥x∥+∥y∥u +

∥y∥
∥x∥+∥y∥v

∥∥∥∥
=

∥u + v∥
1
2

∥∥∥∥u + v + ∥x∥−∥y∥
∥x∥+∥y∥ (u − v)

∥∥∥∥
=

2∥∥∥∥u+v+ ∥x∥−∥y∥
∥x∥+∥y∥ (u−v)

∥∥∥∥
∥u+v∥

≤
2

2(
√

2 − 1)
=
√

2 + 1.

Consequently, we obtain DWI(X) ≤
√

2 + 1.

Remark 3.3. If X is a Hilbert space, then DW(X) = 2 (see [1]). So, by the inequalities 2 ≤ DWI(X) ≤ DW(X) = 2,
we obtain DWI(X) = 2, which shows that the lower bound given in the above proposition is sharp. But for the upper
bound

√
2 + 1, we don’t know if there’s any space attains it.

Next, we will give an example to show that DWI(X), DWS(X) and DW(X) do not necessarily coincide
with each other. The following result is needed.
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Proposition 3.4. Let X be a Banach space. Then

DWI(X) = sup
{
∥x + y∥ + ∥x − y∥

2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ : x, y ∈ SX, x , ±y
}
.

Proof. First, for any x, y ∈ SX with x , ±y, let

u =
x + y

2
, v =

x − y
2
.

It is clearly that u, v , 0 and u ⊥I v. Then we get

DWI(X) ≥
∥u∥ + ∥v∥
∥u − v∥

∥∥∥∥∥ u
∥u∥
−

v
∥v∥

∥∥∥∥∥ = ∥x + y∥ + ∥x − y∥
2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ ,
which means that

DWI(X) ≥ sup
{
∥x + y∥ + ∥x − y∥

2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ : x, y ∈ SX, x , ±y
}
.

On the other hand, for any u, v ∈ X \ {0} such that u ⊥I v, taking

x =
u + v
∥u + v∥

, y =
u − v
∥u − v∥

.

It is easy to see that x, y ∈ SX and x , ±y. Thus we have

∥u∥ + ∥v∥
∥u − v∥

∥∥∥∥∥ u
∥u∥
−

v
∥v∥

∥∥∥∥∥ =∥x + y∥ + ∥x − y∥
2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥
≤ sup

{
∥x + y∥ + ∥x − y∥

2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ : x, y ∈ SX, x , ±y
}
,

which shows that

DWI(X) ≤ sup
{
∥x + y∥ + ∥x − y∥

2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ : x, y ∈ SX, x , ±y
}
.

This completes the proof.

By applying the above equivalent form of DWI(X), we only need to consider x, y ∈ SX and x, y are not
required to be isosceles orthogonal, when we are calculating the value DWI(X) for some space X. This
is much more convenient than using the definition of DWI(X) to calculate the value of DWI(X), since the
definition of DWI(X) requires us to consider x, y ∈ X\{0}with x ⊥I y.

Example 3.5. Let X = (R2, ∥ · ∥∞). Then DWI(X) = 9
4 .

Proof. Next, we will prove that

∥x + y∥ + ∥x − y∥
2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ ≤ 9
4

(20)

holds for any x, y ∈ SX with x , ±y.
Obviously, if x is replaced by −x or y is replaced by −y , the value on the left side of (20) will not change.

Thus, we only need to prove the inequality (20), for x = (x1, x2) and y = (y1, y2) with x1 ≥ 0, y1 ≥ 0. Now,
for x, we consider the following four cases, that is

x = (a, 1), a ∈ [0, 1], x = (1, b), b ∈ [0, 1],
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x = (1, c), c ∈ [−1, 0], x = (d,−1), d ∈ [0, 1].

Further, for any of the above four cases, we always divide y into the following four cases, that is

y = (ā, 1), ā ∈ [0, 1], y = (1, b̄), b̄ ∈ [0, 1],

y = (1, c̄), c̄ ∈ [−1, 0], y = (d̄,−1), d̄ ∈ [0, 1].

According to the above method, there are a total of 16 cases to be considered. However, since each case is
very similar, we will only take the case of x = (a, 1), a ∈ [0, 1], y = (1, b), b ∈ [0, 1] as an example to prove
that the inequality (20) is true.

Case 1: a ≤ b.
Then, we have

∥x + y∥ + ∥x − y∥
2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥
=

2 + b − a
2

2 + a + b
1 + b

=
(2 + b)2

− a2

2(1 + b)
≤

(2 + b)2

2(1 + b)
≤ sup

0≤b≤1

(2 + b)2

2(1 + b)
=

9
4
.

Case 2: b < a.
Then, we have

∥x + y∥ + ∥x − y∥
2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥
=

2 + a − b
2

2 + a + b
1 + a

=
(2 + a)2

− b2

2(1 + a)
≤

(2 − a)2

2(1 + a)
≤ sup

0≤a≤1

(2 + a)2

2(1 + a)
=

9
4
.

Thus, we have (20) holds for any x, y ∈ SX with x , ±y.
On the other hand, we take x = (0, 1) and y = (1, 1). Then, due to Proposition 3.4, we have

9
4
≥ DWI(X) ≥

∥x + y∥ + ∥x − y∥
2

∥∥∥∥∥ x + y
∥x + y∥

−
x − y
∥x − y∥

∥∥∥∥∥ = 9
4
,

which shows that DWI(X) = 9
4 .

Since X = (R2, ∥ · ∥∞) is not uniformly non-square, by Remark 2.3 and above result, we can assert that
DWI(X), DWS(X) and DW(X) do not necessarily coincide with each other.

Additionally, there’s another thing we can see from Example 3.5. We know that DWS(X) and DW(X)
both attain their upper bounds

√
2 + 1 and 4 in (R2, ∥ · ∥∞), but DWI(X) does not attain its upper bound

√
2 + 1 in (R2, ∥ · ∥∞). Thus, we suspect that

√
2 + 1 may not be the best upper bound of DWI(X), but 9

4 is.
Although we cannot prove that our conjecture is correct, we can prove the following conclusion, which can
be regarded as a necessary condition for “DWI(X) ≤ 9

4 ”.

Proposition 3.6. Let X be a Banach space. Then, for any x, y ∈ X\{0} with x ⊥I y, the following inequality holds

min
{
∥x∥ + ∥y∥
∥x − y∥

,

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥} ≤ 3
2
.
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Proof. Suppose conversely that there exist x, y ∈ X\{0}with x ⊥I y such that

∥x∥ + ∥y∥
∥x − y∥

>
3
2
,

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ > 3
2
.

Without loss of generality, we suppose that ∥x∥ ≤ ∥y∥. Then, it follows that

3
2
<

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
= 2

∥∥∥∥∥∥∥y∥ − ∥x∥2∥y∥
x
∥x∥
+
∥x∥ + ∥y∥

2∥y∥

(
∥x∥

∥x∥ + ∥y∥
x
∥x∥
−

∥y∥
∥x∥ + ∥y∥

y
∥y∥

)∥∥∥∥∥∥
≤
∥y∥ − ∥x∥
∥y∥

+
∥x∥ + ∥y∥
∥y∥

∥∥∥∥∥ ∥x∥
∥x∥ + ∥y∥

x
∥x∥
−

∥y∥
∥x∥ + ∥y∥

y
∥y∥

∥∥∥∥∥
=
∥y∥ − ∥x∥
∥y∥

+
∥x∥ + ∥y∥
∥y∥

1
∥x∥+∥y∥
∥x−y∥

<
∥y∥ − ∥x∥
∥y∥

+
∥x∥ + ∥y∥
∥y∥

2
3

=
5∥y∥ − ∥x∥

3∥y∥
,

which implies that

∥x∥ <
1
2
∥y∥. (21)

Then, from (21) and x ⊥I y, we have

3
2
<
∥x∥ + ∥y∥
∥x − y∥

<
3
2
∥y∥
∥x − y∥

=
3
4
∥2y∥
∥x − y∥

≤
3
4
∥x + y∥ + ∥x − y∥

∥x − y∥
=

3
2
.

This is impossible. Thus, we obtain the desired result.

Remark 3.7. It is possible to give an example of a Banach space X where x, y ∈ X\{0} with x ⊥I y and

min
{
∥x∥ + ∥y∥
∥x − y∥

,

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥} = 3
2
.

Actually, we only need to consider the Banach space (R2, ∥ · ∥∞), and x =
(

1
2 , 1

)
, y =

(
−

1
2 , 0

)
.

3.2. Some estimates for DWI(X) in terms of other well-known constants
In this section, we will give some estimates for DWI(X) in terms of other well-known constants. Recall

that the modulus of convexity of X introduced by Clarkson [2], which can be used to characterize the
uniform convexity is the function δX(ε) : [0, 2]→ [0, 1] given by

δX(ε) = inf
{

1 −
∥x + y∥

2
: x, y ∈ BX, ∥x − y∥ ≥ ε

}
.

In [4], Jiménez-Melado et al. gave a nice relationship between DW(X) and δX(ε), that is,

DW(X) ≤ sup
0≤ε≤2

{min{4 − 2δX(ε), 2 + ε}} .

Thus, it is natural for us to consider whether there exists a relationship between DWI(X) and δX(ε).
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Proposition 3.8. Let X be a Banach space. Then

DWI(X) ≤ sup
0≤ε≤1
{3 − 2δX(ε)}.

Proof. Without loss of generality, for any x, y ∈ X\{0}with x ⊥I y, we assume that ∥x∥ ≤ ∥y∥. Then,

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = ∥∥∥∥∥x − y +
∥y∥
∥x∥

x −
∥x∥
∥y∥

y
∥∥∥∥∥ ∥x − y∥−1

≤

(
∥x − y∥ +

∥∥∥∥∥∥y∥∥x∥x −
∥x∥
∥y∥

y
∥∥∥∥∥) ∥x − y∥−1

=1 +

∥∥∥∥∥∥∥
∥y∥
∥x∥x

∥x − y∥
−

∥x∥
∥y∥ y

∥x − y∥

∥∥∥∥∥∥∥ .
Now, since x ⊥I y, one can easily deduce that max{∥x∥, ∥y∥} ≤ ∥x − y∥, which means that

∥y∥
∥x∥ x
∥x−y∥ ,

∥x∥
∥y∥ y
∥x−y∥ ∈ BX.

Thus, by the definition of δX(ε), we get

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 1 + 2

1 − δX


∥∥∥∥∥∥∥
∥y∥
∥x∥x

∥x − y∥
+

∥x∥
∥y∥ y

∥x − y∥

∥∥∥∥∥∥∥

 . (22)

In addition, from ∥x∥ ≤ ∥y∥ and x ⊥I y, we also have∥∥∥∥∥∥y∥∥x∥x +
∥x∥
∥y∥

y
∥∥∥∥∥ =

∥∥∥∥∥∥1
2

(
∥y∥
∥x∥
+
∥x∥
∥y∥

)
(x + y) +

1
2

(
∥y∥
∥x∥
−
∥x∥
∥y∥

)
(x − y)

∥∥∥∥∥∥
≥

1
2

(
∥y∥
∥x∥
+
∥x∥
∥y∥

)
∥x + y∥ −

1
2

(
∥y∥
∥x∥
−
∥x∥
∥y∥

)
∥x − y∥

=
∥x∥
∥y∥
∥x − y∥,

which shows that ∥∥∥∥∥∥∥
∥y∥
∥x∥x

∥x − y∥
+

∥x∥
∥y∥ y

∥x − y∥

∥∥∥∥∥∥∥ ≥ ∥x∥∥y∥ .
Then, since δX(ε) is a nondecreasing function, we have the following inequality from (22),

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 1 + 2
(
1 − δX

(
∥x∥
∥y∥

))
≤ sup

0≤ε≤1
{3 − 2δX(ε)}.

which implies that
DWI(X) ≤ sup

0≤ε≤1
{3 − 2δX(ε)}.

In Proposition 2.1, we prove the equality D(X)DWS(X) = 2, which leads us to think that DWI(X) may
also be related to some constant which measures difference between Birkhoff orthogonality and isosceles
orthogonality. Next, we give the relationship between DWI(X) and IB′(X). Its ideas and techniques come
from Proposition 3.2.

Proposition 3.9. Let X be a Banach space. Then

DWI(X) ≤
2

IB′(X)
.



Y. Fu et al. / Filomat 37:17 (2023), 5601–5622 5621

Proof. For any x, y ∈ X\{0}with x ⊥I y, we consider the following two cases:

Case 1:
∥∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥∥ ≥ ∥∥∥∥ x
∥x∥ +

y
∥y∥

∥∥∥∥.

Let u = x
∥x∥ and v = − y

∥y∥ . Then, we have ∥u + v∥ ≥ ∥u − v∥ and u + v ⊥I u − v. Further,

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = ∥u + v∥∥∥∥∥ ∥x∥
∥x∥+∥y∥u +

∥y∥
∥x∥+∥y∥v

∥∥∥∥
=

∥u + v∥
1
2

∥∥∥∥u + v + ∥x∥−∥y∥
∥x∥+∥y∥ (u − v)

∥∥∥∥
=

2∥∥∥∥u+v+ ∥x∥−∥y∥
∥x∥+∥y∥ (u−v)

∥∥∥∥
∥u+v∥

≤
2

IB′(X)
.

Case 2:
∥∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥∥ < ∥∥∥∥ x
∥x∥ +

y
∥y∥

∥∥∥∥.

Let u = x
∥x∥ and v = y

∥y∥ . Then, we have ∥u + v∥ > ∥u − v∥ and u + v ⊥I u − v. Notice that x ⊥I y, then we
obtain

∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ <∥x∥ + ∥y∥∥x − y∥

∥∥∥∥∥ x
∥x∥
+

y
∥y∥

∥∥∥∥∥
=
∥x∥ + ∥y∥
∥x + y∥

∥∥∥∥∥ x
∥x∥
+

y
∥y∥

∥∥∥∥∥
=

∥u + v∥∥∥∥∥ ∥x∥
∥x∥+∥y∥u +

∥y∥
∥x∥+∥y∥v

∥∥∥∥
=

∥u + v∥
1
2

∥∥∥∥u + v + ∥x∥−∥y∥
∥x∥+∥y∥ (u − v)

∥∥∥∥
=

2∥∥∥∥u+v+ ∥x∥−∥y∥
∥x∥+∥y∥ (u−v)

∥∥∥∥
∥u+v∥

≤
2

IB′(X)
.

Consequently, we obtain DWI(X) ≤ 2
IB′(X) .

4. Conclusions

In this paper, we introduce two new constants DWS(X) and DWI(X), which are the Dunkl-Williams
constant related to theSinger orthogonality and the isosceles orthogonality, respectively. It is of interest
to investigate their relationships with other well-known constants. Of course, it is also interesting and
meaningful to explore the relationships between DWS(X) and some geometric properties, such as uniform
non-squareness and uniform convexity. Moreover, we study DWS(X) in symmetric Minkowski planes and
Radon planes, respectively. An equivalent form of DWS(X) in symmetric Minkowski planes is given and
used to compute the value of DWS((R2, ∥ · ∥p)), 1 < p < ∞, and a characterization of the Radon plane with
affine regular hexagonal unit sphere in terms of DWS(X) is also given. However, there are still plenty of
interesting problems that await discussion. Are DW(X) and DWS(X) necessarily equal in Radon planes?
What is the best upper bound of DWI(X)? Are these two constants also related to other geometric properties?
Henceforth, more results about the Dunkl-Williams constant will be presented in future research for the
reader who are interested in the theory of geometric constants in Banach spaces.
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