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Abstract. This paper presents a class of neutral-type neural networks with discontinuous activations and
mixed delays. By using differential inclusions theory, the non-smooth analysis theory with Lyapunov-
like approach, some new sufficient criteria are given to ascertain the existence, uniqueness and globally
exponential stability of the almost periodic solution for the addressed neural network system. Some recent
results in the literature are generalized and improved. Finally, simulation results of two topical numerical
examples are also delineated to demonstrate the effectiveness of our theoretical results.

1. Introduction

In the past decade, neural networks have attracted considerable attention because of their potential
applications in associative memory, pattern recognition, optimization, model identification, signal process-
ing, etc. Due to the complicated dynamic properties of the neural cells in the real word, it is natural to
consider these complicated dynamic properties of neural cells by neutral-type neural networks. Neutral
neural networks contain some information about the derivative of the past state. Due to this, neutral neural
networks can be employed to characterise the properties of a neural reaction process more precisely. As was
pointed out by Hale [14] that the properties of neutral operators are important for studying neutral-type
functional differential equations. In recent years, many investigations have been investigated the dynamic
behaviors of the neutral neural networks with delays. For instance, see [37], [38], [40], [42], [53], [56],
[57]. However, almost all works in [37], [38], [40], [42], [53], [56], [57] and the references related therein
on the neural networks of neutral-type have still assumed that the activation functions are continuous,
Lipschitz continuous or even smooth. In fact, discontinuous behaviors of dynamical systems can be found
everywhere such as impacting machines, dry friction. During the past several years, considerable efforts
have been devoted to investigate the neural network systems with discontinuous activation functions, see
[25], [26], [31], [35], [43], [47] and the references therein. Moreover, from the references above, we can
find that the neutral terms in their systems are x′j(t − τi j(t)), x′j(t − t̃i j(t)) and x′j(t − u). As was pointed out
by Hale [14] that the properties of neutral operator D are important for studying neutral-type functional
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differential equation. Thus, neutral type neural networks with D operator have more realistic significance
than non-operator-based ones in many practical applications of neural networks dynamics. Based on the
complex neural reactions, neutral type neural networks with D operator can be described by the neutral-
type functional differential equation, for more details, we refer the readers to [7], [8], [9], [20], [21], [22], [23],
[39], [44], [45], [49], [52], [54]. For example, by using fixed point theorem, Lyapunov functional method
and comparison theorem, Wang and Zhu in [49] considered the existence, global asymptotic stability and
exponential stability of the unique almost periodic solution for neutral-type neural networks with delays.
Based on the work of [49], be means of the Mawhin’s continuation theorem of coincidence degree theory,
Du et al in [9] further considered the existence and asymptotic behavior results of periodic solution for
discrete-time neutral-type neural networks. However, almost all works in [7], [8], [9], [20], [21], [22], [23],
[39], [49], [52], [54] and the references related therein have always assumed that the activation functions
with delays are continuous, Lipschitz continuous or even smooth.

On the other hand, as pointed out in [4], [11], [29], compared with periodic effects, almost periodic effects
are more frequent in many real world applications. In fact, by a recent work [2], to some extent and in the
sense of category, the “amount” of almost periodic functions (not periodic) is far more than the “amount”
of continuous periodic functions. That is to say, almost periodic oscillatory behavior is considered to be
more accordant with reality. The almost periodic neural networks are as a natural extension of the periodic
ones. In recent years, much efforts have been devoted to studying the dynamical behaviors of recurrently
connected neural network with almost periodic parameters, see [18], [19], [32], [34], [51], [55] and the
references therein. So, how to study the almost periodic solutions of neutral-type neural networks with
discontinuous activations is important.

Actually, time delays, especially the time-varying delays may turn expected dynamics of the proposed
neural network into some undesired complex dynamical behaviors. In general, the results of the stability
analysis and synchronization analysis for delayed neural networks contain delay-dependent and delay-
independent criteria. However, the former can derive less conservativeness and take more advantages
in the practical applications. In view of the way it occurs, time delay should have two types: discrete
delay and distributed delay. In reality, discrete (time-varying) delay and distributed delay always occur
simultaneously. For more knowledge about the practical design and application of time-delayed neural
networks with discontinuous activation functions, we refer to [5], [6], [17], [33], [36], [41], [43], [48], [50].

Compared with the neural networks with continuous activations and delays, little attention has been
devoted to the study of the almost periodic dynamic behavior of the neural networks with discontinuous
activations and delays so far, see [46], [50]. In addition, as far as we know, there is no works concerning on
the neutral-type neural networks with discontinuous activations and no results concerning on the almost
periodic dynamic behavior of the neutral-type neural networks with discontinuous activations and mixed
delays. The major difficulty may contain the following three aspects:

• In order to obtain almost periodic dynamic behavior, the new framework dealing with the neutral
terms, discontinuous activation and mixed time varying delays should be established.

• Since the almost periodic solution has special properties, the corresponding stability analysis with
become more complicated if the discontinuous activations and the neutral terms exist. Thus, some
useful mathematical analysis techniques are required to solve this influence.

Therefore, it is not only of theoretically interesting, but also practical significance to study the almost
periodic dynamic behavior of the neutral-type neural networks with discontinuous activations and mixed
delays. In order to solve the difficulties listed above and motivated by the previous works, in the present
paper, we are concerned with the following neutral-type neural network system with discontinuous acti-
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vations and mixed delays:

(Aixi)′(t) = − di(t)xi(t) +
n∑

j=1

ai j(t) f j(x j(t)) +
n∑

j=1

bi j(t) f j(x j(t − τi j(t)))

+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
f j(x j(s))ds + Ii(t), i = 1, 2, ...,n,

(1.1)

where Ai is a difference operator defined by

Aixi(t) = xi(t) −
n∑

j=1

hi j(t)xi(t − δi j(t)), i = 1, 2, ...,n,

where x(t) = (x1(t), x2(t), ..., xn(t))⊤ ∈ Rn and xi(t) denotes the state variable of the potential of the ith neuron;
di(t) represents the self-inhibition with which the ith neuron will reset its potential to the resting state in
isolations when disconnected from the network; ai j(t) denotes the connection strength of the jth neuron
on the ith neuron; bi j(t) and ci j(t) are the delayed feedbacks of the jth neuron on the ith neuron, with
time-varying delay and distributed delay, respectively; τi j(t) and δi j(t) denote the discrete time-varying
delay, σi j(t) denotes the distributed time-varying delay; fi(xi(t)) represents the activation function of the ith
neuron; Ii(t) denotes the external input to the ith neuron.

The remainder part of this paper is organized as follows. In Section 2 , some basic definitions and
preliminary lemmas are introduced. In Section 3 , some new criteria are given to establish the existence
result of almost periodic solutions. In Section 4 , we give the sufficient conditions to guarantee the
uniqueness and global exponential stability of the almost periodic solutions. In Section 5 , we provide two
numerical examples to demonstrate the theoretical results. Finally, some conclusions are stated in Section
6 .

2. Essential Definitions and Lemmas

In this section, we state some definitions and preliminary lemmas, which will be used throughout this
paper. Firstly, let us recall some basic notations and facts concerning set-valued maps.

Define

dM
i = max

1≤i≤n
sup
t∈R
|di(t)|, IM

i = max
1≤i≤n

sup
t∈R
|Ii(t)|, aM

ij = max
1≤i, j≤n

sup
t∈R
|ai j(t)|,

bM
ij = max

1≤i, j≤n
sup
t∈R
|bi j(t)|, cM

ij = max
1≤i, j≤n

sup
t∈R
|ci j(t)|, hM

ij = max
1≤i, j≤n

sup
t∈R
|hi j(t)|.

Let K(Rn) denote the collection of all nonempty compact subsets of Rn with the Hausdorff metric ρ
defined by

ρ(A,B) = max{β(A,B), β(B,A)}, A,B ∈ K(Rn),

where

β(A,B) = sup{dist(x,B) : x ∈ A}, β(B,A) = sup{dist(y,A) : y ∈ b}.

Obviously, with metric ρ, K(Rn) is a complete metric space. Let

Kν(Rn) = {A ∈ K(Rn) : A is convex}.

Definition 2.1. Suppose E ⊂ Rm. Then x 7→ F(x) is called a setvalued map from E ↪→ Rn if to each point x of a
set E ⊂ Rm, there corresponds a nonempty set F(x) ⊂ Rn. A set-valued map F : E → K(Rn) is said to be upper
semicontinuous (USC) at x0 ∈ E, if β(F(x),F(x0)) → 0 as x → x0. F(x) is said to have a closed (convex, compact)
image if for each x ∈ E, F(x) is closed (convex, compact). Graph(F(E)) = {(x, y) : x ∈ E, and y ∈ F(x)}, where E is
subset of Rn.
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Now we introduce the concept of Filippov solution (see Filippovn [10]). Consider the following differ-
ential system in vector notation:

dx
dt
= f (t, x), (2.1)

where f (t, x) is discontinuous in x.

Definition 2.2. Consider the set-valued map F : R ×Rn
→ Rn defined as

F(t, x) =
⋂
δ>0

⋂
µ(N)=0

co[ f (t,B(x, δ) \N)], (2.2)

where B(x, δ) is the ball of center x and radius δ; co(E) is the closure of the convex hull of set E; intersection is taken
over all sets N of measure zero and over all δ > 0; µ(N) is Lebesgue measure of set N. A vector-value function x(t)
defined on a nondegenerate interval I ⊆ R is called a Filippov solution of (2.1), if it is absolutely continuous on any
subinterval [t1, t2] of I and for almost all t ∈ I, x(t) satisfies the differential inclusion

dx
dt
∈ F(t, x). (2.3)

Lemma 2.3. ([24]) If
∑n

j=1 hM
ij < 1, then the inverse of difference operator Ai, denoted by A−1

i , exists and

|A−1
i | = sup

t∈[0,ω]
|A−1

i (t)| ≤ 1
/(

1 −
n∑

j=1

hM
ij

)
, i = 1, 2, ...,n.

From Lemma 2.3 , we can see that the inverse of difference operator Ai, denoted by A−1
i , exits. Let

(Aixi)(t) = ui(t), then xi(t) = (A−1
i ui)(t). Thus, system (1.1) transforms to the following system, for conve-

nience, we still use xi(t) to denote the state solution, that is,

dxi(t)
dt
= −di(t)xi(t) − di(t)

n∑
j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t) f j

(
(A−1

j x j)(t)
)

+

n∑
j=1

bi j(t) f j

(
(A−1

j x j)(t − τi j(t))
)
+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
f j

(
(A−1

j x j)(s)
)
ds + Ii(t), i = 1, 2, ...,n.

(2.4)

Next, let us consider the differential equation system (2.4). Since dropping the assumption of continuity
on the activation functions, we need to specify what is meant by a solution of the equation system (2.4)
with discontinuous right-hand sides. Moreover, we need to introduce the concept of an output solution
associated with a solution of (2.4). For this purpose, we extend the concept of the Filippov solution to the
differential equation system (2.4) as follows.

Definition 2.4. A vector function x = (x1, x2, ..., xn)⊤ : [−ς, b) → Rn, ς = max
1≤i, j≤n

{τM
ij , σ

M
ij } and b ∈ (0,+∞], is a

state solution of the discontinuous system (2.4) on [−ς, b) if

(1) x = (x1, x2, ..., xn)⊤ is continuous on [−ς, b) and absolutely continuous on any compact interval of [0, b);

(2) there exists a measurable function γ = (γ1, γ2, ..., γn)⊤ : [−ς, b) → Rn such that γ j(t) ∈ co[ f j((A−1
j x j)(t))] for

a.e. t ∈ [−ς, b) and

dxi(t)
dt
= − di(t)xi(t) − di(t)

n∑
j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)γ j(t) +
n∑

j=1

bi j(t)γ j(t − τi j(t))

+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
γ j(s)ds + Ii(t), for a.e. t ∈ [0, b), i = 1, 2, ...,n.

(2.5)
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Any function γ = (γ1, γ2, ..., γn)⊤ satisfying (2.5) is called an output solution associated with the state x =
(x1, x2, ..., xn)⊤. With this definition it turns out that the state x = (x1, x2, ..., xn)⊤ is a solution of (2.4) in the sense
of Filippov since it satisfies

dxi(t)
dt
∈ − di(t)xi(t) − di(t)

n∑
j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)co
[

f j

(
(A−1

j x j)(t)
)]

+

n∑
j=1

bi j(t)co
[

f j

(
(A−1

j x j)(t − τi j(t))
)]
+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
co
[

f j

(
(A−1

j x j)(s)
)]

ds + Ii(t),

for a.e. t ∈ [0, b), i = 1, 2, ...,n.

(2.6)

Definition 2.5. (IVP). For any continuous function ϕ = (ϕ1, ϕ2, ..., ϕn)⊤ : [−ς, 0] → Rn and any measurable
selection ψ = (ψ1, ψ2, ..., ψn)⊤ : [−ς, 0] → Rn, such that ψ j(s) ∈ co[1 j(ϕ j(s))]( j = 1, 2, ...,n) for a.e. s ∈ [−ς, 0] by
an initial value problem associated to (2.4) with initial condition [ϕ,ψ], we mean the following problem: find a couple
of functions [x, γ] : [−ς, b) → Rn

× Rn, such that x is a solution of (2.4) on [−ς, b) for some b > 0, γ is an output
solution associated to x, and

dxi(t)
dt = −di(t)xi(t) − di(t)

∑n
j=1 hi j(t)(A−1

i xi)(t − δi j(t)) +
∑n

j=1 ai j(t)γ j(t)

+
∑n

j=1 bi j(t)γ j(t − τi j(t)) +
∑n

j=1 ci j(t)
∫ t

t−σi j(t)
γ j(s)ds + Ii(t), for a.e. t ∈ [0, b), i = 1, 2, ...,n,

γ j(t) ∈ co[ f j((A−1
j x j)(t))], for a.e. t ∈ [0, b),

x(s) = ϕ(s), ∀s ∈ [−ς, 0],
γ(s) = ψ(s), for a.e. s ∈ [−ς, 0].

(2.7)

Definition 2.6. Let x∗(t) = (x∗1(t), x∗2(t), ..., x∗n(t))⊤ be a solution of the given IVP of system (2.4) (or (2.5)), x∗(t) is
said to be globally exponentially stable, if for any solution x(t) = (x1(t), x2(t), ..., xn(t))⊤ of (2.4) (or (2.5)), there exist
constants α > 0 and M > 0 such that

n∑
i=1

|xi(t) − x∗i (t)| ≤Me−αt, for t ≥ t0 ≥ 0.

Definition 2.7. (Clarke Regular[3]) V(x) : Rn
→ R is said to be regular, if for each x ∈ Rn and v ∈ Rn,

(1) there exists the usual right directional derivative

D+V(x, v) = lim
h→0+

V(x + hv) − V(x)
h

;

(2) the generalized directional derivative of V at x in the direction v ∈ Rn is defined as

D̃V(x, v) = lim
h→0+

sup
y→x

V(y + hv) − V(y)
h

,

then D+V(x, v) = D̃V(x, v).

Definition 2.8. For a locally Lipschitz function V : Rn
×R→ R, we can define Clarke’s generalized gradient of V

at point (x, t), as follows

∂V(x, t) = co
[

lim
k→∞
∇V(xk, tk) : (xk, tk)→ (x, t), (xk, tk) < N, (xk, tk) < Ω

]
,

whereΩ ⊂ Rn
×R is the set of points where V is not differentiable and N ⊂ Rn

×R is an arbitrary set with measure
zero.
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Let ∂xV(x, t) denote the Clarke generalized gradient of V(x, t) in the variable x and ∂tV(x, t) be the Clarke
generalized gradient of V(x, t) in the variable t. The next lemma gives a chain rule for computing the time
derivative of a regular function V(x, t) along the solution trajectories of differential system (2.1).

Lemma 2.9. (Chain Rule, Guo and Huang [13]). Let x(t) be a Filippov solution of system (2.1) on interval I
containing t and V : Rn

×R→ R be a regular function. Then, x(t) and V(x(t), t) are differentiable for a.e. t ∈ I, and
we have

dV(x(t), t)
dt

|(2.1) = η + ζ
⊤ξ(t),

∀η ∈ ∂tV(x, t) and ζ ∈ ∂xV(x, t), where ξ(t) ∈ F(t, x) is a measurable function and satisfies ẋ(t) = ξ(t), for a.e. t ∈ I.

As for the concept of almost periodic function, we use the definition introduced by Fink [11] and He
[15].

Definition 2.10. A continuous function x(t) : R → Rn is said to be almost periodic on R if for any ϵ > 0, the
set T(x, ϵ) = {ω : ∥x(t + ω) − x(t)∥ < ϵ,∀t ∈ R} is relatively dense, that is, for any ϵ > 0, it is possible to find a
real number l = l(ϵ) > 0, for any interval with length l(ϵ), there exists a number ω(ϵ) in this interval such that
∥x(t + ω) − x(t)∥ < ϵ, for all t ∈ R.

3. Existence of almost periodic solution

In this section, we investigate the existence of almost periodic solution to the system (2.4).

Theorem 3.1. Suppose that the following assumption are satisfied:

(H1) For i = 1, 2, ...,n, fi is continuous expect on a countable set of isolate points ρi
k, where there exist finite right

limits lim
xi→(ρi

k)+
fi(xi) := f+i (ρi

k) and left limits lim
xi→(ρi

k)−
fi(xi) := f−i (ρi

k), respectively. Moreover, fi has a finite

number of discontinuous points on any compact interval of R.

(H2) For i = 1, 2, ...,n, fi = 1i + hi, where 1i is continuous on R and hi is continuous expect on a countable set of
isolate points ρi

k. For ∀u, v ∈ R, there exists positive constants Li such that

|1i(u) − 1i(v)| ≤ Li|u − v|, i = 1, 2, ...,n.

Moreover, hi(i = 1, 2, ...,n) is monotonically decreasing in R.

(H3) For i = 1, 2, ...,n, and s ∈ R, the delays τi j(t) and σi j(t) are nonnegative continuous almost periodic functions
and di(t), ai j(t), bi j(t), ci j(t), Ii(t) are continuous almost periodic functions, that is, for any ϵ > 0, there exists
l = l(ϵ) > 0 such that for any interval [α, α + l], there is ω ∈ [α, α + l] such that

|di(t + ω) − di(t)| < ϵ, |Ii(t + ω) − Ii(t)| < ϵ, |ai j(t + ω) − ai j(t)| < ϵ,
|bi j(t + ω) − bi j(t)| < ϵ, |ci j(t + ω) − ci j(t)| < ϵ,
|hi j(t + ω) − hi j(t)| < ϵ, |σi j(t + ω) − σi j(t)| < ϵ,

hold for all i, i = 1, 2, ...,n and t ∈ R.

(H4) The delays τi j(t) and σi j(t) are continuously differentiable function and satisfying τ′i j(t) < 1 for i, j = 1, 2, ...,n.
Moreover, there exist positive constants ξ1, ξ2, ..., ξn and δ > 0 such that

lim sup
t→+∞

Γi(t) < 0 and lim sup
t→+∞

Υi(t) < 0, i = 1, 2, ...,n,
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where

Γi(t) =ξiδ − ξidi(t) +
n∑

j=1

ξ j
|di(t)||hi j(t)|

1 −
∑n

j=1 hM
ij

+

n∑
j=1

ξ jLi|a ji(t)| +
n∑

j=1

ξ j

Lie
δτM

ji |b ji(φ−1
ji (t))|

1 − τ′ji(φ
−1
ji (t))

+

n∑
j=1

ξ jσ
′

ji(t)Li

∫ t

t−σ ji(t)
|c ji(u + σ ji(t))|eδ[u+σ ji(t)−t]du +

n∑
j=1

ξ jLi

∫ 0

−σ ji(t)
|c ji(t − s)|e−δsds,

Υi(t) = − ξiaii(t) +
n∑

j=1, j,i

ξ j|a ji(t)| +
n∑

j=1

ξ j

|b ji(φ−1
ji (t))|

1 − τ′ji(φ
−1
ji (t))

eδτ
M
ji

+

n∑
j=1

ξ jσ
′

ji(t)
∫ t

t−σ ji(t)
|c ji(u + σ ji(t))|eδ[u+σ ji(t)−t]du +

n∑
j=1

ξ j

∫ 0

−σ ji(t)
|c ji(t − s)|e−δsds,

and φ−1
i j is the inverse function of φi j(t) = t − τi j(t).

Then for any IVP associated to (2.7), there exists a solution [x, γ] of the neural network system (2.4) on [0,+∞),
i.e., the solution x of (2.4) is defined for t ∈ [0,+∞) and γ is defined for t ∈ [0,+∞) up to a set with measure zero.
Moreover, there exists constant M > 0 such that ∥x∥ < M for t ∈ [−ς,+∞) and ∥γ∥ < M for a.e. t ∈ [−ς,+∞).

Proof. Define the set-valued map

xi(t) ↪→ −di(t)xi(t) − di(t)
n∑

j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)co
[

f j

(
(A−1

j x j)(t)
)]

+

n∑
j=1

bi j(t)co
[

f j

(
(A−1

j x j)(t − τi j(t))
)]
+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
co
[

f j

(
(A−1

j x j)(s)
)]

ds + Ii(t), i = 1, 2, ...,n.

By (H2), one can easily see that the above set-valued map is upper semi-continuous with nonempty compact
convex values and the local existence of a solution x(t) of (2.6) is obviously([10], [16]). That meas, the IVP
of system (2.5) has at least one solution x(t) = (x1(t), x2(t), ..., xn(t))⊤ on [0, b) for some b ∈ [0,+∞) and the
derivative of xi(t) is a measurable selection from

− di(t)xi(t) − di(t)
n∑

j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)co
[

f j

(
(A−1

j x j)(t)
)]

+

n∑
j=1

bi j(t)co
[

f j

(
(A−1

j x j)(t − τi j(t))
)]
+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
co
[

f j

(
(A−1

j x j)(s)
)]

ds + Ii(t),

for a.e. t ∈ [0, b), i = 1, 2, ...,n.

It follows from the Continuation Theorem [[1], Theorem 2, P78] that either b = +∞, or b < +∞ and
lim
t→b−
∥x(t)∥ = +∞, where ∥x(t)∥ =

∑n
i=1 |xi(t)| is defined as above. Next, we will show that lim

t→b−
∥x(t)∥ < +∞ if

b < +∞, which means that the maximal existing interval of x(t) can be extended to +∞. From Definition 2.4
, there exists γ = (γ1, γ2, ..., γn)⊤ : [−ς, b)→ Rn such that γ j(t) ∈ co[ f j(A−1

j x j)(t)] for a.e. t ∈ [−ς, b) and

dxi(t)
dt
= − di(t)xi(t) − di(t)

n∑
j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)γ j(t)

+

n∑
j=1

bi j(t)γ j(t − τi j(t)) +
n∑

j=1

ci j(t)
∫ t

t−σi j(t)
γ j(s)ds + Ii(t), for a.e. t ∈ [0, b), i = 1, 2, ...,n.
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By (H2), we can see that there exists a vector variable η = (η1, η2, ..., ηn)⊤ : [−ς, b) → Rn and ηi(t) ∈
co[hi((A−1

i xi)(t))] such that

γi(t) = 1i(x(t)) + ηi(t), i = 1, 2, ...,n.

Consider the following candidate Lyapunov function:

V(t) =
n∑

i=1

ξieδt
|xi(t)| +

n∑
i=1

n∑
j=1

ξi

∫ t

t−τi j(t)

|bi j(φ−1
i j (u))|

1 − τ′i j(φ
−1
i j (u))

[
|1 j(x j(u))| + |η j(u)|

]
eδ(u+τM

ij )du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)

∫ t

t+s
|ci j(u − s)|

[
|1 j(x j(u))| + |η j(u)|

]
eδ(u−s)duds.

(3.1)

Obviously, V(t) is regular. Meanwhile, the solution x(t) of the system (2.4) are all absolutely continuous.
Then, V(t) is differential for a.e. t ≥ 0 and the time derivative can be evaluated by Lemma 2.9 .

Define νi(t) = si1n{xi(t)} if xi(t) , 0; while νi(t) can be arbitrarily choosen in [−1, 1] if xi(t) = 0. In
particular, we can choose νi(t) as follows

νi(t) =


0, xi(t) = γi(t) = 0,
−si1n{ηi(t)}, xi(t) = 0 and γi(t) , 0,
si1n{xi(t)}, xi(t) , 0.

Then, we have

νi(t){xi(t)} = |xi(t)|, νi(t){ηi(t)} = −|ηi(t)|, i = 1, 2, ...,n.

Now, by applying the chain rule in Lemma 2.9 , calculate the time derivative of V(t) along the solution
trajectories of the system (2.4) in the sense of (2.5), then we can get for a.e. t ≥ 0 that

dV(t)
dt
=

n∑
i=1

ξiδeδt
|xi(t)| +

n∑
i=1

ξieδtνi(t)
dxi(t)

dt

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t+τM

ij )

−

n∑
i=1

n∑
j=1

ξi|bi j(t)|
[
|1 j(x j(t − τi j(t)))| + |η j(t − τi j(t))|

]
eδ(t−τi j(t)+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u))| + |η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t−s)ds

−

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t)|

[
|1 j(x j(t + s))| + |η j(t + s)|

]
eδ(t)ds,
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then, we have

dV(t)
dt
=

n∑
i=1

ξiδeδ(t)
|xi(t)| +

n∑
i=1

ξieδ(t)νi(t)
dxi(t)

dt

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t+τM

ij )

−

n∑
i=1

n∑
j=1

ξi|bi j(t)|
[
|1 j(x j(t − τi j(t)))| + |η j(t − τi j(t))|

]
eδ(t−τi j(t)+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u))| + |η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t−s)ds

−

n∑
i=1

n∑
j=1

ξi

∫ t

t−σi j(t)
|ci j(t)|

[
|1 j(x j(s))| + |η j(s)|

]
eδ(t)ds,

i.e.,

dV(t)
dt
≤

n∑
i=1

ξiδeδt
|xi(t)| +

n∑
i=1

ξieδ(t)νi(t)
[
− di(t)xi(t) − di(t)

n∑
j=1

hi j(t)(A−1
i xi)(t − δi j(t))

+

n∑
j=1

ai j(t)[1 j(x j(t)) + η j(t)] +
n∑

j=1

bi j(t)[1 j(x j(t − τi j(t))) + η j(t − τi j(t))]

+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
[1 j(x j(s)) + η j(s)]ds + Ii

]

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u))| + |η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t−s)ds,

then, we have

dV(t)
dt
≤

n∑
i=1

ξiδeδt
|xi(t)| −

n∑
i=1

ξieδtdi(t)|xi(t)| +
n∑

i=1

n∑
j=1

ξieδt
|di(t)||hi j(t)||(A−1

i xi)(t − δi j(t))|

+

n∑
i=1

n∑
j=1

ξieδt
|ai j(t)||1 j(x j(t))| −

n∑
i=1

ξieδtaii(t)|ηi(t)| +
n∑

i=1

n∑
j=1, j,i

ξieδt
|ai j(t)||η j(t)|

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t+τM

ij )



H. Qiu et al. / Filomat 37:18 (2023), 6089–6114 6098

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u))| + |η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t))| + |η j(t)|

]
eδ(t−s)ds +

n∑
i=1

ξieδtIi(t),

(3.2)

which together with Lemma 2.3 and (H2) yields

dV(t)
dt
≤

n∑
i=1

ξiδeδt
|xi(t)| −

n∑
i=1

ξieδtdi(t)|xi(t)| +
n∑

i=1

n∑
j=1

ξieδt |di(t)||hi j(t)|

1 −
∑n

j=1 hM
ij

|xi(t − δi j(t))|

+

n∑
i=1

n∑
j=1

ξieδtL j|ai j(t)||x j(t)| −
n∑

i=1

ξieδtaii(t)|ηi(t)| +
n∑

i=1

n∑
j=1, j,i

ξieδt
|ai j(t)||η j(t)|

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
L j|x j(t)| + |η j(t)|

]
eδ(t+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
L j|x j(u)| + |η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
L j|x j(t)| + |η j(t)|

]
eδ(t−s)ds +

n∑
i=1

ξieδtIi(t)

≤

n∑
i=1

eδt
|xi(t)|

[
ξiδ − ξidi(t) +

n∑
j=1

ξ j
|di(t)||hi j(t)|

1 −
∑n

j=1 hM
ij

+

n∑
j=1

ξ jLi|a ji(t)| +
n∑

j=1

ξ j

Lie
δτM

ji |b ji(φ−1
ji (t))|

1 − τ′ji(φ
−1
ji (t))

+

n∑
j=1

ξ jσ
′

ji(t)Li

∫ t

t−σ ji(t)
|c ji(u + σ ji(t))|eδ[u+σ ji(t)−t]du +

n∑
j=1

ξ jLi

∫ 0

−σ ji(t)
|c ji(t − s)|e−δsds

]

+

n∑
i=1

eδt
|ηi(t)|

[
− ξiaii(t) +

n∑
j=1, j,i

ξ j|a ji(t)| +
n∑

j=1

ξ j

|b ji(φ−1
ji (t))|

1 − τ′ji(φ
−1
ji (t))

eδτ
M
ji

+

n∑
j=1

ξ jσ
′

ji(t)
∫ t

t−σ ji(t)
|c ji(u + σ ji(t))|eδ[u+σ ji(t)−t]du +

n∑
j=1

ξ j

∫ 0

−σ ji(t)
|c ji(t − s)|e−δsds

]

+

n∑
i=1

ξieδtIi(t).

(3.3)

From the assumption (H4), we can see that there exist positive constants ϑi, υi(i = 1, 2, ...,n) and t0 ≥ 0 such
that if t ≥ t0

Γi(t) ≤ −ϑi < 0, Υi(t) ≤ −υi < 0, i = 1, 2, ...,n,

which together with (3.3) gives

dV(t)
dt
≤

n∑
i=1

ξieδtIM
i , a.e. t ≥ 0.

Moreover, since

V(t) =V(0) +
∫ t

0
V′(s)ds ≤ V(0) +

∫ t

0

n∑
i=1

ξieδsIM
i ds = V(0) +

1
δ

n∑
i=1

ξieδtIM
i , t ≥ 0. (3.4)
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From (3.1), we can also have

V(t) ≥ eδt
∥x(t)∥. (3.5)

Combining with (3.4) and (3.5), we obtain

∥x(t)∥ ≤ e−δtV(t) ≤ V(0) +
1
δ

n∑
i=1

ξieδtIM
i , t ∈ [0, b), (3.6)

which implies that x(t) is bounded on the interval [−τ, b), where ς = max
1≤i, j≤n

{τM
ij , σ

M
ij }. Then, we can see that

lim
t→b−
∥x(t)∥ < +∞. Thus, we can conclude that b = +∞. Therefore, in view of (3.6), we have

∥x(t)∥ ≤ V(0) +
1
δ

n∑
i=1

ξieδtIM
i + ∥ϕ∥ :=M0, t ∈ [−ς,+∞). (3.7)

Note that, fi has a finite number of discontinuous points on any compact interval of R. In particular, fi
has a finite number of discontinuous points on compact interval [−M0,M0]. Without loss of generality, let
fi discontinuous at points {ρi

k : k = 1, 2, ..., li} on the interval [−M0,M0] and assume that −M0 < ρi
1 < ρ

i
2 <

· · · < ρi
li
< M0. Let us consider a series of continuous functions:

f 0
i (x) =

 fi(x), x ∈ [−M0, ρi
1),

fi(ρi
1 − 0), x = ρi

1;
f li
i (x) =

 fi(ρi
li
+ 0), x = ρi

li
,

fi(x), x ∈ (ρi
li
,Mo];

and

f k
i (x) =


fi(ρi

k − 0), x = ρi
k,

fi(x), x ∈ (ρi
k, ρ

i
k+1),

fi(ρi
k+1 + 0), x = ρi

k+1,

k = 1, 2, ..., li − 1.

Let

Mi = max
{

max
x∈[−M0,ρi

1]
{ f 0

i (x)}, max
1≤k≤li−1

{
max

x∈[ρi
k,ρ

i
k+1]
{ f k

i (x)}
}
, max

x∈[ρi
li
,M0]
{ f li

i (x)}
}
,

mi = max
{

min
x∈[−M0,ρi

1]
{ f 0

i (x)}, min
1≤k≤li−1

{
min

x∈[ρi
k ,ρ

i
k+1]
{ f k

i (x)}
}
, min

x∈[ρi
li
,M0]
{ f li

i (x)}.
}

It is clear that

|co[ fi((A−1
i xi)(t))]| ≤ max{|Mi|, |mi|}, i = 1, 2, ...,n.

Since, γi(t) ∈ co[ fi((A−1
i xi)(t))] for a.e. t ∈ [−ς,+∞) and i = 1, 2, ...,n, we have

|γi(t)| ≤ max{|Mi|, |mi|}, for a.e. t ∈ [−ς,+∞), i = 1, 2, ...,n.

Thus,

∥γ(t)∥ ≤ max
{ n∑

i=1

|Mi|,
n∑

i=1

|mi|
}
, for a.e. t ∈ [−ς,+∞). (3.8)

Let

M = max
{
M0,

n∑
i=1

|Mi|,
n∑

i=1

|mi|
}
.



H. Qiu et al. / Filomat 37:18 (2023), 6089–6114 6100

Then, from (3.7) and (3.8), it follows that

∥x(t)∥ ≤M, ∥γ(t)∥ ≤M, t ∈ [−ς,+∞). (3.9)

Therefore, the proof is complete.

Theorem 3.2. suppose that the assumptions (H1), (H3), (H4) and the following assumption holds:

(H2*) For i = 1, 2, ...,n, fi = 1i + hi, where 1i is continuous on R and hi is continuous expect on a countable set of
isolate points ρi

k. For ∀u, v ∈ R, there exists positive constants Li such that

|1i(u) − 1i(v)| ≤ Li|u − v|, i = 1, 2, ...,n.

Moreover, hi(i = 1, 2, ...,n) is monotonically nondecreasing in R.

Then for any IVP associated to (2.7), there exists a solution [x, γ] of the neural network system (2.4) on [0,+∞),
i.e., the solution x of (2.4) is defined for t ∈ [0,+∞) and γ is defined for t ∈ [0,+∞) up to a set with measure zero.
Moreover, there exists constant M > 0 such that ∥x∥ < M for t ∈ [−ς,+∞) and ∥γ∥ < M for a.e. t ∈ [−ς,+∞).

Proof. The proof is similar to the proof of Theorem 3.1, we omit it here.
The following lemma points out that any solution of system (2.4) is asymptotically almost periodic.

Theorem 3.3. Suppose that the assumptions (H1), (H2), (H3) and (H4) are satisfied, then any solution x(t) of the
system (2.4) associated with an output γ(t) is asymptotically almost periodic, i.e., for any ϵ > 0, there exist T > 0,
l = l(ϵ) and ω = ω(ϵ) in any interval with the length of l(ϵ), such that

∥x(t + ω) − x(t)∥ ≤ ϵ, for all t ≥ T.

Proof. From (H3), it follows that, for any ϵ > 0, there exists l = l(ϵ) such that for any α ∈ R there exists
ω ∈ [ω,ω + l] satisfying the following inequalities:

|di(t + ω) − di(t)| ≤
ξmδϵ

25nMξM , |Ii(t + ω) − Ii(t)| ≤
ξmδϵ

25nξM ,

|ai j(t + ω) − ai j(t)| ≤
ξmδϵ

25n2MξM , |bi j(t + ω) − bi j(t)| ≤
ξmδϵ

25n2MξM ,

|hi j(t + ω) − hi j(t)| ≤
ξmδϵ

25n2MξM , |ci j(t + ω) − ci j(t)| ≤
ξmδϵ

25n2ςMξM ,

|σi j(t + ω) − σi j(t)| ≤
ξmδϵ

25n2cM
ij MξM

.

(3.10)

whereξm := min
1≤i≤n
{ξi} ≤ max

1≤i≤n
{ξi} := ξM.Furthermore, in view of (H1) andγ j(t) ∈ co[ f j((A−1

i xi)(t))], j = 1, 2, ...,n,

for a.e. t ∈ [−ς,+∞), then we can see that∣∣∣∣γ j(t + ω − τi j(t + ω)) − γ j(t + ω − τi j(t))
∣∣∣∣ < ξmδϵ

25nbM
ij ξ

M
, for a.e. t ∈ [−ς,+∞), (3.11)

and ∣∣∣∣ ∫ t+ω

t+ω−σi j(t+ω)
γ j(s)ds −

∫ t+ω

t+ω−σi j(t)
γ j(s)ds

∣∣∣∣ < ξmδϵ

25ncM
ij ξ

M
, for a.e. t ∈ [−ς,+∞). (3.12)
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Let

Φi(t, ω) = − [di(t + ω) − di(t)]xi(t + ω)

− [di(t + ω) − di(t)]
n∑

j=1

hi j(t + ω)(A−1
i xi)(t + ω − δi j(t + ω))

− di(t)
n∑

j=1

[hi j(t + ω) − hi j(t)](A−1
i xi)(t + ω − δi j(t + ω))

+

n∑
j=1

[ai j(t + ω) − ai j(t)]γ j(t + ω)

+

n∑
j=1

[bi j(t + ω) − bi j(t)]γ j(t + ω − τi j(t + ω))

+

n∑
j=1

[ci j(t + ω) − ci j(t)]
∫ t+ω

t+ω−σi j(t+ω)
γ j(s)ds + [Ii(t + ω) − Ii(t)],

and

Ψi(t, ω) =
n∑

j=1

bi j(t)[γ j(t + ω − τi j(t + ω)) − γ j(t + ω − τi j(t))]

+

n∑
j=1

ci j(t)
[ ∫ t+ω

t+ω−σi j(t+ω)
γ j(s)ds −

∫ t+ω

t+ω−σi j(t)
γ j(s)ds

]
.

Then, by (3.10), (3.11) and (3.12), we have

|Φi(t, ω)| ≤
ξmδϵ

5nξM +
ξmδϵ

25nξM

hM
ij + dM

i

1 −
∑n

j=1 hM
ij

, for a.e. t ∈ [−ς,+∞),

|Ψi(t, ω)| ≤
ξmδϵ

25ξM +
ξmδϵ

25ξM

≤
ξmδϵ

5nξM +
ξmδϵ

25nξM

hM
ij + dM

i

1 −
∑n

j=1 hM
ij

, for a.e. t ∈ [−ς,+∞).

(3.13)

Now, we consider the following candidate Lyapunov function:

W(t) =
n∑

i=1

ξieδt
|xi(t + ω) − xi(t)|

+

n∑
i=1

n∑
j=1

ξi

∫ t

t−τi j(t)

|bi j(φ−1
i j (u))|

1 − τ′i j(φ
−1
i j (u))

|1 j(x j(u + ω)) − 1 j(x j(u))|eδ(u+τM
ij )du

+

n∑
i=1

n∑
j=1

ξi

∫ t

t−τi j(t)

|bi j(φ−1
i j (u))|

1 − τ′i j(φ
−1
i j (u))

|η j(u + ω) − η j(u)|eδ(u+τM
ij )du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)

∫ t

t+s
|ci j(u − s)||1 j(x j(u + ω)) − 1 j(x j(u))|eδ(u−s)duds

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)

∫ t

t+s
|ci j(u − s)||η j(u + ω) − η j(u)|eδ(u−s)duds.

(3.14)



H. Qiu et al. / Filomat 37:18 (2023), 6089–6114 6102

Obviously, W(t) is regular. Meanwhile, the solutions x(t +ω), x(t) of the neural network system (2.4) are all
absolutely continuous. Then, W(t) is differential for a.e. t ≥ 0 and the time derivative can be evaluated by
Lemma 2.9 .

Define νi(t) = si1n{xi(t + ω) − xi(t)} if xi(t + ω) , xi(t); while νi(t) can be arbitrarily choosen in [−1, 1] if
xi(t + ω) = xi(t). In particular, we can choose νi(t) as follows

νi(t) =


0, xi(t + ω) − xi(t) = γi(t + ω) − γi(t) = 0,
−si1n{ηi(t + ω) − ηi(t)}, xi(t + ω) = xi(t) and γi(t + ω) , γi(t),
si1n{xi(t + ω) − xi(t)}, xi(t + ω) , xi(t).

Then, we have

νi(t){xi(t + ω) − xi(t)} = |xi(t + ω) − xi(t)|, i = 1, 2, ...,n,
νi(t){ηi(t + ω) − ηi(t)} = −|ηi(t + ω) − ηi(t)|, i = 1, 2, ...,n.

Now, by applying the chain rule in Lemma 2.9 , calculate the time derivative of V(t) along the solution
trajectories of the system (2.4) in the sense of (2.5), then we can get for a.e. t ≥ 0 that

dW(t)
dt

=

n∑
i=1

ξiδeδt
|xi(t + ω) − xi(t)| +

n∑
i=1

ξieδtνi(t)
d[xi(t + ω) − xi(t)]

dt

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

|1 j(x j(t + ω)) − 1 j(x j(t))|e
δ(t+τM

ij )

−

n∑
i=1

n∑
j=1

ξi(1 − τ′i j(t))|bi j(t)||1 j(x j(t − τi j(t) + ω)) − 1 j(x j(t − τi j(t)))|e
δ[t−τi j(t)+τM

ij ]

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

|η j(t + ω) − η j(t)|e
δ(t+τM

ij )

−

n∑
i=1

n∑
j=1

ξi(1 − τ′i j(t))|bi j(t)||η j(t − τi j(t) + ω) − η j(t − τi j(t))|e
δ[t−τi j(t)+τM

ij ]

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))||1 j(x j(u + ω)) − 1 j(x j(u))|eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)||1 j(x j(t + ω)) − 1 j(x j(t))|eδ(t−s)ds

−

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t)||1 j(x j(t + s + ω)) − 1 j(x j(t + s))|eδtds

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))||η j(u + ω) − η j(u)|eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)||η j(t + ω) − η j(t)|eδ(t−s)ds

−

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t)||η j(t + s + ω) − η j(t + s)|eδtds.

(3.15)
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Furthermore, by (2.5), we have

d[xi(t + ω) − xi(t)]
dt

= −di(t)[xi(t + ω) − xi(t)]

− di(t)
n∑

j=1

hi j(t)[(A−1
i xi)(t + ω − δi j(t + ω)) − (A−1

i xi)(t − δi j(t))]

+

n∑
j=1

ai j(t)[γ j(t + ω) − γ j(t)] +
n∑

j=1

bi j(t)[γ j(t + ω − τi j(t)) − γ j(t − τi j(t))]

+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
[γ j(s + ω) − γ j(s)]ds + Φi(t, ω) +Ψi(t, ω).

(3.16)

Substituting (3.16) into (3.15), in view of (H2) and Lemma 2.3, we have

dW(t)
dt

≤

n∑
i=1

ξiδeδt
|xi(t + ω) − xi(t)| +

n∑
i=1

ξieδt
[
|Φi(t, ω)| + |Ψi(t, ω)|

]
−

n∑
i=1

ξieδtdi(t)|xi(t + ω) − xi(t)| +
n∑

i=1

n∑
j=1

ξieδt |di(t)||hi j(t)|

1 −
∑n

j=1 hM
ij

|xi(t + ω − δi j(t + ω)) − xi(t − δi j(t))|

+

n∑
i=1

n∑
j=1

ξieδt
|ai j(t)||1 j(x j(t + ω)) − 1 j(x j(t))|

−

n∑
i=1

ξieδtaii(t)|ηi(t + ω) − ηi(t)| +
n∑

i=1

n∑
j=1, j,i

ξieδt
|ai j(t)||ηi(t + ω) − ηi(t)|

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t + ω)) − 1 j(x j(t))| + |η j(t + ω) − η j(t)|

]
eδ(t+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u + ω)) − 1 j(x j(u))| + |η j(u + ω) − η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t + ω)) − 1 j(x j(t))| + |η j(t + ω) − η j(t)|

]
eδ(t−s)ds

≤

n∑
i=1

ξiδeδt
|xi(t + ω) − xi(t)| +

n∑
i=1

ξieδt[|Φi(t, ω)| + |Ψi(t, ω)|]

−

n∑
i=1

ξieδtdi(t)|xi(t + ω) − xi(t)| +
n∑

i=1

n∑
j=1

ξieδt |di(t)||hi j(t)|

1 −
∑n

j=1 hM
ij

|xi(t + ω − δi j(t + ω)) − xi(t − δi j(t))|

+

n∑
i=1

n∑
j=1

ξieδt
|ai j(t)|L j|x j(t + ω) − x j(t)|

−

n∑
i=1

ξieδtaii(t)|ηi(t + ω) − ηi(t)| +
n∑

i=1

n∑
j=1, j,i

ξieδt
|ai j(t)||ηi(t + ω) − ηi(t)|

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
L j|x j(t + ω) − x j(t)| + |η j(t + ω) − η j(t)|

]
eδ(t+τM

ij )



H. Qiu et al. / Filomat 37:18 (2023), 6089–6114 6104

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
L j|x j(u + ω) − x j(u)| + |η j(u + ω) − η j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
L j|x j(t + ω) − x j(t)| + |η j(t + ω) − η j(t)|

]
eδ(t−s)ds

≤

n∑
i=1

ξieδt
[
|Φi(t, ω)| + |Ψi(t, ω)|

]
+

n∑
i=1

eδtΓi(t)|xi(t + ω) − xi(t)|

+

n∑
i=1

eδtΥi(t)|ηi(t + ω) − ηi(t)|.

(3.17)

It follows from the assumption (H4) that, there exists positive constants ϑi, υi(i = 1, 2, ...,n) such that for
t ≥ 0, we have

Γi(t) ≤ −ϑi < 0, Υi(t) ≤ −υi < 0, i = 1, 2, ...,n,

which together with (3.17) gives

dW(t)
dt

≤

n∑
i=1

ξieδt
[
|Φi(t, ω)| + |Ψi(t, ω)|

]
, a.e. t ≥ 0,

which together with (3.13) yields

dW(t)
dt

≤

n∑
i=1

ξieδt
[
|Φi(t, ω)| + |Ψi(t, ω)|

]
≤

n∑
i=1

ξieδt
( ξmδ

5nξM +
ξmδ

25nξM

hM
ij + dM

i

1 −
∑n

j=1 hM
ij

)
ϵ, a.e. t ≥ 0,

Thus, by (3.14), we have

ξmeδt
∥x(t + ω) − x(t)∥ ≤W(t)

≤W(0) +
n∑

i=1

eδt
(ξmδ

5n
+
ξmδ
25n

hM
ij + dM

i

1 −
∑n

j=1 hM
ij

)
ϵ,

which leads to

∥x(t + ω) − x(t)∥ ≤
1
ξm e−δtW(0) +

1
ξm e−δt

n∑
i=1

eδt
(ξmδ

5n
+
ξmδ
25n

hM
ij + dM

i

1 −
∑n

j=1 hM
ij

)
ϵ

≤
1
ξm e−δtW(0) +

(δ
5
+
δ

25

hM
ij + dM

i

1 −
∑n

j=1 hM
ij

)
ϵ.

(3.18)

Moreover, from (3.14), it follows that W(0) is a constant. Then, we can choose a sufficiently large T > 0 such
that

1
ξm e−δtW(0) ≤ ϵ, for t ≥ T,
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which together with (3.18) and the arbitrariness of ϵ gives

∥x(t + ω) − x(t)∥ ≤ ϵ, for t ≥ T.

Therefore, the proof is complete.
Now we prove that system (2.4) possesses at least one almost periodic solution.

Theorem 3.4. Suppose that the assumptions (H1), (H2), (H3) and (H4) are satisfied, then there exists at least one
almost periodic solution of the neural network system (2.4).

Proof. Let x(t) be any solution of the neural network system (2.4), that is, there exists γ = (γ1, γ2, ..., γn)⊤

such that γ j(t) ∈ co[ f j((A−1
j x j)(t))] for a.e. t ∈ [−ς, b) and

dxi(t)
dt
= −di(t)xi(t) − di(t)

n∑
j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)γ j(t)

+

n∑
j=1

bi j(t)γ j(t − τi j(t)) +
n∑

j=1

ci j(t)
∫ t

t−σi j(t)
γ j(s)ds + Ii(t), i = 1, 2, ...,n.

It follows from (3.13) that, we can select a sequence tk satisfying lim
k→+∞

tk = +∞ and

|Φi(t, tk)| ≤
1
k
, |Ψi(t, tk)| ≤

1
k
, for a.e. t ∈ [−ς,+∞). (3.19)

where

Φi(t, tk) = − [di(t + tk) − di(t)]xi(t + tk)

− [di(t + tk) − di(t)]
n∑

j=1

hi j(t + tk)(A−1
i xi)(t + tk − δi j(t + tk))

− di(t)
n∑

j=1

[hi j(t + tk) − hi j(t)](A−1
i xi)(t + tk − δi j(t + tk))

+

n∑
j=1

[ai j(t + tk) − ai j(t)]γ j(t + tk) +
n∑

j=1

[bi j(t + tk) − bi j(t)]γ j(t + tk − τi j(t + tk))

+

n∑
j=1

[ci j(t + tk) − ci j(t)]
∫ t+tk

t+tk−σi j(t+tk)
γ j(s)ds + [Ii(t + tk) − Ii(t)],

and

Ψi(t, tk) =
n∑

j=1

bi j(t)[γ j(t + tk − τi j(t + tk)) − γ j(t + tk − τi j(t))]

+

n∑
j=1

ci j(t)
[ ∫ t+tk

t+tk−σi j(t+tk)
γ j(s)ds −

∫ t+tk

t+tk−σi j(t)
γ j(s)ds

]
.

Furthermore, by (3.9), it is easy to see that there exists M′ > 0 such that ∥x′i∥ ≤ M′ for a.e. t ∈ [−ς,+∞).
Thus, the sequence {x(t+ t+ k)}k∈N is equi-continuous and uniformly bounded. By using the Arzela-Ascoli
theorem and diagonal selection principle, we can select a sub-sequence of {tk}(still denoted by {tk}), such that
x(t + tk) uniformly converges to a continuous function x ∗ (t) on any compact set of (−∞,+∞). In addition,
from (3.9), for any t ∈ [−ς,+∞), we can see that {γ(t + tk)}k∈N is uniformly bounded. Therefore, for any
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t ∈ [−ς,+∞), we can select a sub-sequence of {tk}(still denoted by {tk}), such that γ(t + tk) converges weakly
to a measurable function γ ∗ (t).

In order to prove that x∗ is a solution of system (2.4) on t ∈ [−ς,+∞), we firstly claim that γ∗j(t) ∈
co[ f j((A−1

j x j)(t))]. Indeed, based on the following facts: (1) co[ f j(·)] is upper semi-continuous set-valued
map; (2) for any t ∈ [−ς,+∞), lim

k→+∞
x(t + tk) = x∗(t), we know that, for any ϵ > 0, there exists N > 0 such that

co[ fi((A−1
i xi)(t + tk))] ⊆ co[ fi((A−1

i xi)(t))] + ϵΛ, for k > N, t ∈ [−ς,+∞),

where Λ = {x ∈ Rn : ∥x∥ ≤ 1}. Thus, for any k > N, we have

γi(t + tk) ∈ co[ fi((A−1
i xi)(t))] + ϵΛ.

Then, by the compactness of co[ fi((A−1
i xi)(t))] + ϵΛ, we have

γ∗(t) = lim
k→+∞

γ(t + tk) ∈ co[ fi((A−1
i xi)(t))] + ϵΛ,

which leads to γ∗i (t) ∈ co[ fi((A−1
i xi)(t))] for a.e. t ∈ [−ς,+∞) by the arbitrariness of ϵ.

Next, we prove that x∗(t) is a solution of system (2.4). In fact, for any t ∈ [−ς,+∞) and ∆t ∈ R, by
Lebesgue’s dominated convergence theorem, we have

x∗i (t + ∆t) − x∗i (t) = lim
k→+∞

∫ t+∆t

t

[
Φi(θ, tk) +Ψi(θ, tk) − di(θ)xi(θ + tk)

− di(θ)
n∑

j=1

hi j(θ + tk)(A−1
i xi)(θ + tk − δi j(θ + tk))

+ di(θ)
n∑

j=1

[hi j(θ + tk) − hi j(θ)](A−1
i xi)(θ + tk − δi j(θ + tk)) +

n∑
j=1

ai j(θ)γ j(θ + tk)

+

n∑
j=1

bi j(θ)γ j(θ + tk − τi j(θ)) +
n∑

j=1

ci j(θ)
∫ θ

θ−σi j(θ)
γ j(s + tk)ds + Ii(θ)

]
dθ

=

∫ t+∆t

t

[
− di(θ)x∗i (θ) − di(θ)

n∑
j=1

hi j(θ)(A−1
i x∗i )(θ − δi j(θ)) +

n∑
j=1

ai j(θ)γ∗j(θ)

+

n∑
j=1

bi j(θ)γ∗j(θ − τi j(θ)) +
n∑

j=1

ci j(θ)
∫ θ

θ−σi j(θ)
γ∗j(s)ds + Ii(θ)

]
dθ

+ lim
k→+∞

∫ t+∆t

t

[
Φi(θ, tk) +Ψi(θ, tk)

]
dθ,

(3.20)

which together with (3.19) yields

x∗i (t + ∆t) − x∗i (t) =
∫ t+∆t

t

[
− di(θ)x∗i (θ) − di(θ)

n∑
j=1

hi j(θ)(A−1
i x∗i )(θ − δi j(θ))

+

n∑
j=1

ai j(θ)γ∗j(θ) +
n∑

j=1

bi j(θ)γ∗j(θ − τi j(θ))

+

n∑
j=1

ci j(θ)
∫ θ

θ−σi j(θ)
γ∗j(s)ds + Ii(θ)

]
dθ,
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which shows that x∗(t) is a solution of system (2.4).
At last, we show that x∗(t) is the almost periodic solution of the system (2.4). By Theorem 3.3, we know

that for any ϵ > 0, there exist T > 0, l = l(ϵ) and ω = ω(ϵ) in any interval with the length of l(ϵ), such that

∥x(t + ω) − x(t)∥ < ϵ, for all t ≥ T.

Then, there exists sufficiently large constant K > 0 such that

∥x(t + tk + ω) − x(t + tk)∥ < ϵ, for all t ≥ [−ς,+∞), k > K,

let k→ +∞, we can have

∥x∗(t + ω) − x∗(t)∥ < ϵ, for all t ≥ [−ς,+∞),

which implies that x∗(t) is the almost periodic solution of the system (2.4). Therefore, the proof is complete.

4. Uniqueness and global exponential stability

In this section, we shall study the uniqueness and global exponential stability of the almost periodic
solution for the neural network system (2.4).

Theorem 4.1. Suppose that the assumptions (H1), (H2), (H3) and (H4) are satisfied, then the unique almost periodic
solution of neural network system (2.4) is globally exponentially stable.

Proof. Let x(t) and x̃(t) be any two solutions of the neural network system (2.4) associated with outputs
γ(t) and γ̃(t), [ϕ,φ] and [ϕ̃, φ̃] are the corresponding initial values, respectively. From (H2), it follows that
fi = 1i+hi. There exist two vectors variable η(t) = (η1(t), η2(t), ..., ηn(t))⊤ and η̃(t) = (η̃1(t), η̃2(t), ..., η̃n(t))⊤, such
that ηi(t)+1i(xi(t)) = γi(t) and η̃i(t)+1i(x̃i(t)) = γ̃i(t) where ηi(t) ∈ co[ fi((A−1

i xi)(t))] and η̃i(t) ∈ co[ fi((A−1
i x̃i)(t))]

for a.e. t ∈ [−ς,+∞), respectively.
Consider the following candidate Lyapunov function:

U(t) =
n∑

i=1

ξieδt
|xi(t) − x̃i(t)|

+

n∑
i=1

n∑
j=1

ξi

∫ t

t−τi j(t)

|bi j(φ−1
i j (u))|

1 − τ′i j(φ
−1
i j (u))

|1 j(x j(u)) − 1 j(x̃ j(u))|eδ(u+τM
ij )du

+

n∑
i=1

n∑
j=1

ξi

∫ t

t−τi j(t)

|bi j(φ−1
i j (u))|

1 − τ′i j(φ
−1
i j (u))

|η j(u) − η̃ j(u)|eδ(u+τM
ij )du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)

∫ t

t+s
|ci j(u − s)||1 j(x j(u)) − 1 j(x̃ j(u))|eδ(u−s)duds

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)

∫ t

t+s
|ci j(u − s)||η j(u) − η̃ j(u)|eδ(u−s)duds.

(4.1)

Obviously, U(t) is regular. Meanwhile, the solutions x(t + ω), x(t) of the neural network system (2.4) are all
absolutely continuous. Then, U(t) is differential for a.e. t ≥ 0 and the time derivative can be evaluated by
Lemma 2.9 .

Define νi(t) = si1n{xi(t)− x̃i(t)} if xi(t) , x̃i(t); while νi(t) can be arbitrarily choosen in [−1, 1] if xi(t) = x̃i(t).
In particular, we can choose νi(t) as follows

νi(t) =


0, xi(t) − x̃i(t) = γi(t) − γ̃i(t) = 0,
−si1n{ηi(t) − η̃i(t)}, xi(t) = x̃i(t) and γi(t) , γ̃i(t),
si1n{xi(t) − x̃i(t)}, xi(t) , x̃i(t).
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Then, we have

νi(t){xi(t) − x̃i(t)} = |xi(t) − x̃i(t)|, i = 1, 2, ...,n,
νi(t){ηi(t) − η̃i(t)} = −|ηi(t) − η̃i(t)|, i = 1, 2, ...,n.

(4.2)

Now, by applying the chain rule in Lemma 2.9 , calculate the time derivative of U(t) along the solution
trajectories of the system (2.4) in the sense of (2.5), then we can get for a.e. t ≥ 0 that

dU(t)
dt
=

n∑
i=1

ξiδeδt
|xi(t) − x̃i(t)| +

n∑
i=1

ξieδtνi(t)
d[xi(t) − x̃i(t)]

dt

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t)) − 1 j(x̃ j(t))| + |η j(t) − η̃ j(t)|

]
eδ(t+τM

ij )

−

n∑
i=1

n∑
j=1

ξi|bi j(t)|
[
|1 j(x j(t − τi j(t))) − 1 j(x̃ j(t − τi j(t)))| + |η j(t − τi j(t)) − η̃ j(t − τi j(t))|

]
eδ(t−τi j(t)+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u)) − 1 j(x̃ j(u))| + |η j(u) − η̃ j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t)) − 1 j(x̃ j(t))| + |η j(t) − η̃ j(t)|

]
eδ(t−s)ds

−

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t)|

[
|1 j(x j(t + s)) − 1 j(x̃ j(t + s))| + |η j(t + s) − η̃ j(t + s)|

]
eδtds.

(4.3)

Mote that, by (2.5), we have

d[xi(t) − x̃i(t)]
dt

= −di(t)xi(t) − di(t)
n∑

j=1

hi j(t)(A−1
i xi)(t − δi j(t)) +

n∑
j=1

ai j(t)γ j(t)

+

n∑
j=1

bi j(t)γ j(t − τi j(t)) +
n∑

j=1

ci j(t)
∫ t

t−σi j(t)
γ j(s)ds + Ii(t)

−

[
− di(t)x̃i(t) − di(t)

n∑
j=1

hi j(t)(A−1
i x̃i)(t − δi j(t)) +

n∑
j=1

ai j(t)γ̃ j(t)

+

n∑
j=1

bi j(t)γ̃ j(t − τi j(t)) +
n∑

j=1

ci j(t)
∫ t

t−σi j(t)
γ̃ j(s)ds + Ii(t)

]
= −di(t)[xi(t) − x̃i(t)] − di(t)hi j(t)[(A−1

i xi)(t − δi j(t)) − (A−1
i x̃i)(t − δi j(t))]

+

n∑
j=1

ai j(t)[γ j(t) − γ̃ j(t)] +
n∑

j=1

bi j(t)[γ j(t − τi j(t)) − γ̃ j(t − τi j(t))]

+

n∑
j=1

ci j(t)
∫ t

t−σi j(t)
[γ j(s) − γ̃ j(s)]ds.

(4.4)
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Substituting (4.4) into (4.3), in view of (4.2) and (H4), we have

dU(t)
dt
≤

n∑
i=1

ξiδeδt
|xi(t) − x̃i(t)| − di(t)

n∑
i=1

ξieδt
|xi(t) − x̃i(t)|

+

n∑
i=1

ξieδt
|di(t)||hi j(t)||(A−1

i xi)(t − δi j(t)) − (A−1
i x̃i)(t − δi j(t))|

+

n∑
i=1

n∑
j=1

ξieδt
|ai j(t)||1 j(x j(t)) − 1 j(x̃ j(t))|

−

n∑
i=1

ξieδtaii(t)|ηi(t) − η̃i(t)| +
n∑

i=1

n∑
j=1, j,i

ξieδt
|ai j(t)||η j(t) − η̃ j(t)|

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
|1 j(x j(t)) − 1 j(x̃ j(t))| + |η j(t) − η̃ j(t)|

]
eδ(t+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
|1 j(x j(u)) − 1 j(x̃ j(u))| + |η j(u) − η̃ j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
|1 j(x j(t)) − 1 j(x̃ j(t))| + |η j(t) − η̃ j(t)|

]
eδ(t−s)ds,

which together with Lemma 2.3 and (H2) further gives

dU(t)
dt
≤

n∑
i=1

ξiδeδt
|xi(t) − x̃i(t)| − di(t)

n∑
i=1

ξieδt
|xi(t) − x̃i(t)|

+

n∑
i=1

ξieδt |di(t)||hi j(t)|

1 −
∑n

j=1 hM
ij

|xi(t − δi j(t)) − x̃i(t − δi j(t))| +
n∑

i=1

n∑
j=1

ξieδt
|ai j(t)|L j|x j(t) − x̃ j(t)|

−

n∑
i=1

ξieδtaii(t)|ηi(t) − η̃i(t)| +
n∑

i=1

n∑
j=1, j,i

ξieδt
|ai j(t)||η j(t) − η̃ j(t)|

+

n∑
i=1

n∑
j=1

ξi

|bi j(φ−1
i j (t))|

1 − τ′i j(φ
−1
i j (t))

[
L j|x j(t) − x̃ j(t)| + |η j(t) − η̃ j(t)|

]
eδ(t+τM

ij )

+

n∑
i=1

n∑
j=1

ξiσ
′

i j(t)
∫ t

t−σi j(t)
|ci j(u + σi j(t))|

[
L j|x j(u) − x̃ j(u)| + |η j(u) − η̃ j(u)|

]
eδ(u+σi j(t))du

+

n∑
i=1

n∑
j=1

ξi

∫ 0

−σi j(t)
|ci j(t − s)|

[
L j|x j(t) − x̃ j(t)| + |η j(t) − η̃ j(t)|

]
eδ(t−s)ds

≤

n∑
i=1

eδtΓi(t)|xi(t) − x̃i(t)| +
n∑

i=1

eδtΥi(t)|ηi(t) − η̃i(t)| < 0, for a.e. t ≥ 0.

Furthermore, from (4.1), it follows that

U(t) ≥
n∑

i=1

ξieδt
|xi(t) − x̃i(t)|,
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thus,

∥x(t) − x̃(t)∥ =
n∑

i=1

|xi(t) − x̃i(t)| ≤
e−δt

ξm U(t) ≤
e−δt

ξm U(0),

where ξm := min
1≤i≤n
{ξi} > 0. Moreover, since U(0) is a constant. Thus, by Definition 2.6, we can conclude

that the unique almost periodic solution of neural network system (2.4) is globally exponentially stable.
Therefore, the proof is complete.

5. Numerical Examples

In this section, we present two topical examples to demonstrate the results obtained in previous sections.

Example 5.1. Consider the following neutral-type neural networks with discontinuous activations and mixed delays:



(A1x1)′(t) = −x1(t) + 0.3 f1(x1(t)) − 0.01 f2(x2(t)) + 0.01 f1(x1(t − τ11(t)))
−0.01 f2(x2(t − τ12(t))) + c11(t)

∫ t

t−0.1 cos t f1(x1(s))ds
+c12(t)

∫ t

t−0.1 cos t f2(x2(s))ds + 0.2 sin
√

2t + 0.1 sin
√

5t,
(A2x2)′(t) = −x2(t) + 0.01 f1(x1(t)) + 0.3 f2(x2(t)) + 0.01 f1(x1(t − τ21(t)))

−0.01 f2(x2(t − τ22(t))) + c21(t)
∫ t

t−0.1 cos t f1(x1(s))ds
+c22(t)

∫ t

t−0.1 cos t f2(x2(s))ds + 0.3 cos
√

3t − 0.1 sin t,

(5.1)

where Aixi(t) = xi(t) −
∑2

j=1 hi j(t)xi(t − δi j(t)), i = 1, 2, and di(t) = 1, a11(t) = 0.3, a12(t) = −0.01, a21(t) = 0.01,
a22(t) = 0.3, b11(t) = 0.01, b12(t) = −0.01, b21(t) = 0.01, b22(t) = −0.01, c11(t) = 0.03, c12(t) = −0.02, c21(t) = 0.04,
c22(t) = −0.03, hi j(t) = 0.1 + 0.1 sin t, δi j(t) = 0.2 + 0.1 cos t, τi j(t) = 0.3 + 0.2 cos t, σi j(t) = 0.1 cos t, I1(t) =
0.2 sin

√
2t + 0.1 sin

√
5t, I2(t) = 0.3 cos

√
3t − 0.1 sin t, and

f1(x) =


sin x + x2, x < −1,
sin x, |x| ≤ 1,
sin x − x2, x > 1.

f2(x) =


e−x + arctan x, x < −1,
arctan x, |x| ≤ 1,
−e−x + arctan x, x > 1.

It is easy to see that the activation functions f1(x) and f2(x) are discontinuous, unbounded, non-monotonic, and
super linear growth condition (In fact, f2(x) satisfies the exponential growth condition). Meanwhile, for the activation
functions f1(x) and f2(x), the unilateral Lipschitz-like condition does not be satisfied. Moreover, the activation
functions f1(x) and f2(x) are discontinuous at x = ±1. Consider the IVP of the system (5.1) with random initial
conditions. It is easy to verify that the system (5.1) satisfies all the assumptions in Theorem 3.1. Therefore, by Theorem
3.1, Theorem 3.3 and Theorem 4.1, we can see that the neutral-type neural network system (5.1) has a unique almost
periodic solution which is globally exponentially stable. This fact can be presented in the following Figure 1.
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Figure 1: (a) Time-domain behavior of the state variables x1 and x2 for system (5.1) with random initial conditions for t ∈ [−0.5, 0]; (b)
Phase plane behavior of the state variables x1 and x2 for system (5.1); (c) Three-dimensional trajectory of state variables x1 and x2 for
system (5.1).

Example 5.2. Let σi j(t) ≡ 0 and further consider the following neutral-type neural networks with discontinuous
activations and discrete time-varying delays:


(A1x1)′(t) = −x1(t) + 0.3 f1(x1(t)) − 0.01 f2(x2(t)) + 0.01 f1(x1(t − τ11(t)))

−0.01 f2(x2(t − τ12(t))) + 0.2 sin
√

2t + 0.1 sin
√

5t,
(A2x2)′(t) = −x2(t) + 0.01 f1(x1(t)) + 0.3 f2(x2(t)) + 0.01 f1(x1(t − τ21(t)))

−0.01 f2(x2(t − τ22(t))) + 0.3 cos
√

3t − 0.1 sin t,

(5.2)

where Aixi(t) = xi(t) −
∑2

j=1 hi j(t)xi(t − δi j(t)), i = 1, 2, di(t) = 1, a11(t) = 0.3, a12(t) = −0.01, a21(t) = 0.01,
a22(t) = 0.3,

b11(t) = 0.01, b12(t) = −0.01, b21(t) = 0.01, b22(t) = −0.01,
hi j(t) = 0.1 + 0.1 sin t, δi j(t) = 0.2 + 0.1 cos t, τi j(t) = 0.3 + 0.2 cos t,

I1(t) = 0.2 sin
√

2t + 0.1 sin
√

5t, I2(t) = 0.3 cos
√

3t − 0.1 sin t,

f1(x) = f2(x) =

 0.2x
x2+1 , x < 1;
0.2x−1
x2+1 , x > 1.

It is easy to see that the activation function f (x) = ( f1(x1), f2(x2))⊤ is discontinuous, bounded, monotonically
nondecreasing. Meanwhile, 1 is a discontinuous point of the activation function fi(s), fi(1+) < fi(1−) and co[ fi(1)] =
[ fi(1+), fi(1−)] = [−0.4, 0.1], i = 1, 2.

Consider the IVP of the system (5.2) with random initial conditions. It is easy to verify that the system (5.2)
satisfies all the assumptions in Theorem 3.1. Therefore, by Theorem 3.1, Theorem 3.3 and Theorem 4.1, we can see that
the neutral-type neural network system (5.2) has a unique almost periodic solution which is globally exponentially
stable. This fact can be presented in the following Figure 2 .
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Figure 2: (a) Time-domain behavior of the state variables x1 and x2 for system (5.1) with random initial conditions for t ∈ [−0.5, 0]; (b)
Phase plane behavior of the state variables x1 and x2 for system (5.2); (c) Three-dimensional trajectory of state variables x1 and x2 for
system (5.2).

Remark 5.3. In the Example 5.2, the distributed time-varying delay σi j(t) ≡ 0 for all i, j = 1, 2, and a class of
neutral-type neural networks with discontinuous activations and discrete time-varying delays is considered which is
different from the neural model studied in Example 5.1. By using the results established in the paper, we can see that
the neutral-type neural network system (5.2) has a unique almost periodic solution which is globally exponentially
stable. Figure 2 can show the fact.

Remark 5.4. For all we know, there is no research on the existence, uniqueness and global exponential stability of
almost periodic solutions for the neutral-type neural networks with mixed delays. We also mention that all results
in the [7], [8], [9], [20], [21], [22], [23], [39], [49], [52], [54] and the related references therein cannot be directly
applied to imply the existence, uniqueness and global exponential stability of almost periodic solutions of (5.1) and
(5.2). This implies that the results of this paper are essentially new.

6. Conclusion

In this paper, we investigate a class of neutral-type neural networks with discontinuous activations
and mixed delays. The considered neural networks shows the neutral character by the neutral operator
Ai(i = 1, 2, ...,n) and the activation functions with time-varying delays of the considered neural networks
are discontinuous continuous, which are different from the corresponding ones known in the literature.
Different from the existing approaches to study the neutral-type neural networks with continuous activa-
tions, in this paper, under the concept of Filippov solution, by means of differential inclusions theory, the
non-smooth analysis theory with Lyapunov-like approach, we employ a novel argument and the easily
verifiable sufficient conditions have been provided to determine the existence, uniqueness, global exponen-
tial stability of the almost periodic solutions for the considered neural networks. It should be pointed out
that it is the first time to investigate almost periodic dynamic behavior of the neutral-type neural networks
with discontinuous activations and mixed delays. Finally, two numerical examples and the corresponding
simulations have been presented at the end of this paper to illustrate the effectiveness and feasibility of the
proposed criterion. Consequently, our results can enrich and extend the corresponding ones known in the
literature.
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