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Abstract. Normal ordering in the Weyl algebra is related to the Stirling numbers of the second kind, while
normal ordering in the shift algebra is related to the unsigned Stirling numbers of the first kind. The Ore
algebra – this name was introduced recently by Patrias and Pylyavskyy – is an algebra closely related to
the Weyl algebra and the shift algebra. We consider a two-parameter family of generalized Ore algebras
which comprises all algebras mentioned by specializing the parameters suitably. Analogs of the Stirling
numbers – called Ore-Stirling numbers – are introduced as normal ordering coefficients in the generalized
Ore algebra. In the limit where one parameter vanishes they reduce to the Stirling numbers of the second
kind or the unsigned Stirling numbers of the first kind. Choosing the parameters appropriately, a one-
parameter family of Ore-Stirling numbers interpolating between Stirling numbers of the second kind and
unsigned Stirling numbers of the first kind is found. Several properties of the Ore-Stirling numbers as well
as the associated Ore-Bell numbers are discussed.

1. Introduction

The Weyl algebraW is the (complex) unital algebra generated by letters D and U satisfying the commuta-
tion relation DU−UD = I, where I denotes the identity. A word ω in the letters D,U can always be brought
into normal ordered form where all letters D stand to the right of all the letters U. Upon normal ordering,
certain combinatorial coefficients appear, the normal ordering coefficients. The most famous example due
to Scherk from 1823 [31] (see the discussion in [1, 25]) concerns ω = (UD)n where one has

(UD)n =

n∑
k=0

S(n, k)UkDk, (1)

where S(n, k) denotes the Stirling numbers of the second kind (A008277 in [37]). The numbers S(n, k) count
the number of set partitions of a set of n elements into k nonempty disjoint subsets and are among the most
important combinatorial numbers, see, e.g., [12, 24, 25]. In fact, Scherk considered the representation in
terms of the multiplication and differentiation operator on smooth functions of a real variable, U 7→ X,D 7→
D̂, where (X f )(x) = x f (x) and (D̂ f )(x) = d f

dx (x). Due to this connection to operational calculus, normal
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ordering in the Weyl algebra (and certain variants of it) has been studied closely, see, e.g., [1, 25, 33] and
the many references therein. A related algebra is the shift algebra S which is the (complex) unital algebra
generated by letters D and U satisfying DU − UD = D. This algebra has also been considered from the
perspective of normal ordering, see, e.g., [25, 33] and the references therein. The analog of (1) is that in S
one has

(UD)n =

n∑
k=0

|s(n, k)|UkDn, (2)

where |s(n, k)| denotes the unsigned Stirling numbers of the first kind (see A008275) in [37]). The numbers
|s(n, k)| count the number of permutations of n elements with exactly k cycles, see [12].

Recently, Patrias and Pylyavskyy [30] considered the Ore algebra O as the (complex) unital algebra
generated by letters D and U satisfying the commutation relation DU − UD = D + I. Thus, in a certain
sense, it combines the Weyl algebra and the shift algebra. It is natural to introduce two parameters λ, µ ∈ C
and consider the familyAλ,µ of generalized Ore algebras generated by D and U satisfying

DU −UD = λD + µI. (3)

By choosing the parameters appropriately, one recoversW,S andO from above. Now, it is natural to define
in Aλ,µ analogs of the Stirling numbers – called Ore-Stirling numbers – as normal ordering coefficients of
(UD)n in Aλ,µ (where D,U satisfy (3)) and consider their properties and their connection to S(n, k) and
|s(n, k)|. This is what we start in the present paper. Let us point out that Levandovskyy et al. [22] considered
the following four-parameter family of algebras given by letters x, y (their notation) and commutation
relation

yx − qxy = αx + βy + γ. (4)

The algebra satisfying (4) was said to be of type (q, α, β, γ). They showed that there exist exactly five
isomorphism classes. The representatives of theses classes were called model algebras. The algebrasW and
S are model algebras while Aλ,µ – which is of type (1, 0, λ, µ) – is not a model algebra, but belongs to the
isomorphism class of S. In Table 1 of [22], one can find the corresponding isomorphism and some basic
normal ordering results, which we will use in the following. Since our main motivation is to study the
Ore-Stirling numbers and their connection to the conventional Stirling numbers, we restrict to the family
Aλ,µ mentioned above.

By considering the normal ordering coefficients of other words in D,U in the Weyl algebraW, many
generalizsations of the Stirling numbers of the second kind have been considered, see [1, 25, 33]. For
example, if r, s ∈ N, then considering (UrDs)n leads to the generalized Stirling numbers of the second kind
Sr,s(n, k) (with r = s = 1 reducing to (1)), considering (UD)(UD − λ) · · · (UD − (n − 1)λ) leads to degenerate
Stirling numbers Sλ(n, k) [15], and considering (mUD + r)n leads to the r-Whitney numbers Wm,r(n, k) [23].
Recently, by using normal ordering techniques in the Weyl algebra (represented by boson operators),
properties of degenerate r-Stirling numbers [17], degenerate r-Whitney numbers [18] and degenerate r-Bell
numbers [19] have been studied. See also [20] for further applications of normal ordering in this context
and [16] for further properties of degenerate r-Whitney numbers and their relatives. Basic information and
combinatorial interpretations for the numbers mentioned can be found in [29].

In a similar fashion, generalized Stirling numbers of the first kind were introduced recently by one of the
authors [35] as normal ordering coefficients of (UrDs)n in the shift algebra S (with r = s = 1 reducing to (2)).
Considering the word (UD)n where D,U satisfy the closely related commutation relation DU−UD = hUm led
to the introduction of generalized Stirling numbers [26, 27] which turned out to be a particular subfamily of
the generalized Stirling numbers of Hsu and Shiue [13], see also [2–4]. Using a similar approach, generalized
Stirling numbers were defined recently as normal ordering coefficients in the n-th Weyl algebra [6, 8]. A
beautiful combinatorial interpretation for the normal ordering coefficients of arbitrary words in the n-th
Weyl algebra was given in [9, 10], providing, in particular, a combinatorial interpretation for the generalized
Stirling numbers introduced in [6, 8]. Finally, we want to point out that normal ordering in the Weyl algebra
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has also been studied intensely in the physics literature since the commutation relation is the same as the
one of a single bosonic degree of freedom, see [25] and the references therein.

The structure of the paper is as follows. In Section 2, the generalized Ore algebraAλ,µ is introduced and
the Ore-Stirling numbers Sλ,µ(n; j, k) as well as the associated Ore-Bell numbers Bλ,µ(n) are defined. Also,
some more context is given and some basic normal ordering results from [22] are recalled. In Section 3, the
Ore-Stirling numbers are examined and basic properties like the recurrence relation and explicit expressions
are derived. A connection to rook numbers and file numbers is drawn in Section 4. In the final Section 5,
some conclusions and a list of avenues for future research are presented.

2. Definitions and basic results

As mentioned in the Introduction, we are interested in a particular two-parameter family of algebras
generalizing the Weyl algebraW and the shift algebra S simultaneously.

Definition 2.1 (Generalized Ore algebra). Let µ, ν ∈ C. The generalized Ore algebra Aλ,µ is the complex
unital algebra generated by letters D and U satisfying the commutation relation

DU −UD = λD + µI, (5)

where I denotes the identity (in the following, κI will also be identified with κ).

We will be interested mostly in the case (λ, µ) ∈ [0, 1] × [0, 1] since all combinatorial consequences appear
already here. Noting thatA0,0 = C[D,U], the commutative ring of polynomials in two variables, the family
Aλ,µ with (λ, µ) ∈ R ×R can be nicely interpreted as a two-parameter deformation of the polynomial ring
C[D,U] (see Figure 1):

• The algebraA0,1 is the first Weyl algebraW where DU −UD = I.

• The algebraA1,0 is the shift algebra Swhere DU −UD = D.

• The algebraA1,1 is the Ore algebra O (as defined in [30]) where DU −UD = D + I.

OW

SC[D,U]

A2,1

λ

µ

Figure 1: The family of generalized Ore algebrasAλ,µ.

Observe that for µ = 1 − λ one has a one-parameter family of algebrasAλ,1−λ which “interpolates” for
λ ∈ [0, 1] between the Weyl algebraW (λ = 0) and the shift algebra S (λ = 1):

W = A0,1 −→ Aλ,1−λ −→ A1,0 = S. (6)

This corresponds to the dotted arrow in Figure 1.
Recall from the Introduction that the Stirling numbers of the second kind S(n, k) can be defined as normal

ordering coefficients of (UD)n inW = A0,1, and that the unsigned Stirling numbers of the first kind |s(n, k)|
are normal ordering coefficients of (UD)n in S = A1,0. This motivates the following definition.
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Definition 2.2 (Ore-Stirling numbers). The Ore-Stirling numbers Sλ,µ(n; j, k) are defined as normal ordering
coefficients of (UD)n inAλ,µ, i.e., by

(UD)n =

n∑
j=0

n∑
k=0

Sλ,µ(n; j, k)U jDk, (7)

where D and U satisfy (5). The associated Ore-Bell numbers are defined by

Bλ,µ(n) =
n∑

j=0

n∑
k=0

Sλ,µ(n; j, k).

Clearly, for most of the vertices of the unit square of Figure 1 the Ore-Stirling numbers are known:

• S0,0(n; j, k) = δ j,kδn,k (Kronecker delta). The associated Ore-Bell numbers are trivial,

B0,0(n) =
n∑

j=0

n∑
k=0

δ j,kδn,k = 1.

• S0,1(n; j, k) = δ j,kS(n, k). The associated Ore-Bell numbers are given by the conventional Bell numbers
(A000110 in [37]),

B0,1(n) =
n∑

k=0

S(n, k) = Bn.

• S1,0(n; j, k) = δk,n|s(n, j)|. The associated Ore-Bell numbers are given by factorials (A000142 in [37]),

B1,0(n) =
n∑

j=0

|s(n, j)| = n!

The case S1,1(n; j, k) corresponding to the Ore algebra O remains to be determined. From (6), one obtains
a one-parameter family of Ore-Stirling numbers Sλ,1−λ(n; j, k) interpolating between Stirling numbers of the
second kind and unsigned Stirling numbers of the first kind:

S(n, k)δ j,k = S0,1(n; j, k) −→ Sλ,1−λ(n; j, k) −→ S1,0(n; j, k) = |s(n, j)|δk,n. (8)

Turning to the associated Ore-Bell numbers, one obtains a one-parameter family of Ore-Bell numbers
Bλ,1−λ(n) interpolating between Bell numbers Bn = B0,1(n) and factorials n! = B1,0(n).

Remark 2.3. Recall from the Introduction that in the Weyl algebra W = A0,1 and in the shift algebra S = A1,0
generalized Stirling numbers are defined as normal ordering coefficients of (UrDs)n where r, s ∈ N. Clearly, in the
same fashion one can introduce generalized Ore-Stirling numbers S(r,s)

λ,µ (n; j, k) as normal ordering coefficients of
(UrDs)n in Aλ,µ. In particular, the normal ordering coefficients of (U2D)n in W are given by (unsigned) Lah
numbers (A008297 in [37]), so the case r = 2, s = 1 might also be particularly interesting inAλ,µ, yielding Ore-Lah
numbers S(2,1)

λ,µ (n; j, k).

As mentioned in the Introduction, Levandovskyy et al. [22] considered the algebra of type (q, α, β, γ)
generated by x and y satisfying yx− qxy = αx+ βy+ γ, see (4). The algebrasAλ,µ are of type (1, 0, λ, µ), and
we have the correspondence

x←→ U, y←→ D, β←→ λ, γ←→ µ. (9)

As mentioned in Table 1 of [22], the algebra of type (1, 0, λ, µ), i.e.,Aλ,µ is isomorphic to the shift algebra S
(as one of the 5 model algebras), given by YX = XY + Y. Indeed, inserting

X = λ−1U, Y = λD + µ (10)

into YX = XY + Y, one recovers (5).



T. Mansour, M. Schork / Filomat 37:18 (2023), 6115–6131 6119

Remark 2.4. In S, one has (XY)n =
∑n

k=1 |s(n, k)|XkYn, see (2). Inserting (10), one finds inAλ,µ the relation

(UD + λ−1µU)n =

n∑
k=1

|s(n, k)|λ−kUk(λD + µ)n.

However, UD and U do not satisfy a simple commutation relation inAλ,µ (i.e, (UD)U −U(UD) = λUD + µD), so
it does not seem to be straightforward to expand the left-hand side and obtain a formula for the powers (UD)n.

For the convenience of the reader, we present in the following proposition some expansions mentioned
by Levandoskyy et al. [22] in terms of the variables used here, see (9).

Proposition 2.5 ([22]). For m,n ∈N and λ , 0, one has inAλ,µ the following expansions

DmU =UDm +mDm−1(λD + µ), (11)

DUn =
1
λ

(
(U + λ)n(λD + µ) − µUn) , (12)

DmUn =
1
λm

m∑
j=0

(
m
j

)
(−µ)m− j(U + jλ)n(λD + µ) j. (13)

By expanding the binomial and rearranging, we can write (12) equivalently as

DUn = UnD +
n−1∑
ℓ=0

(
n
ℓ

)
λn−ℓUℓ(D + λ−1µ). (14)

From this formula, one can read off that the expansion makes sense for λ→ 0, too.

3. The Ore-Stirling numbers

In this section, we examine the Ore-Stirling numbers closer and derive some of their properties. Note
that, for given n ∈N, there exist (n+1)2 Ore-Stirling numbers Sλ,µ(n; j, k). For small n, they can be determined
directly from their definition as normal ordering coefficients. For example,

(UD)2 = UDUD = U(UD + λD + µI)D = U2D2 + λUD2 + µUD,

showing Sλ,µ(2; 2, 2) = 1,Sλ,µ(2; 1, 2) = λ,Sλ,µ(2; 1, 1) = µ, and the remaining 6 numbers Sλ,µ(2; j, k) vanish.
In the same fashion, one finds

(UD)3 = U3D3 + 3λU2D3 + 2λ2UD3 + 3µU2D2 + 3λµUD2 + µ2UD,

and the resulting Ore-Stirling numbers Sλ,µ(3; j, k) are displayed in Table 1. Observe that for (λ, µ) = (0, 1)
all summands in the expansion of (UD)3 proportional to λ vanish, implying (UD)3 = U3D3 + 3U2D2 +UD,
in accordance with (1) and S0,1(n; j, k) = S(n, k)δ j,k. Thus, in Table 1, we find the Stirling numbers of the
second kind on the diagonal (for µ = 1). On the other hand, choosing (λ, µ) = (1, 0), we find (UD)3 =
U3D3 + 3U2D3 + 2UD3, in accordance with (2) and S1,0(n; j, k) = |s(n, j)|δk,n. Thus, in Table 1, we find the
unsigned Stirling numbers of the first kind in the last column (for λ = 1).

A slightly more cumbersome calculation gives

(UD)4 =U4D4 + 6λU3D4 + 11λ2U2D4 + 6λ3UD4 + 6µU3D3 + 18λµU2D3 + 12λ2µUD3 + 7µ2U2D2

+ 7λµ2UD2 + µ3UD.

The Sλ,µ(4; j, k) are displayed in Table 2. For (λ, µ) = (0, 1), one finds (UD)4 = U4D4 + 6U3D3 + 7U2D2 +UD,
again in accordance with (1) and S0,1(n; j, k) = S(n, k)δ j,k. Similarly, for (λ, µ) = (1, 0), one finds (UD)4 =

U4D4 + 6U3D4 + 11U2D4 + 6UD4, in accordance with (2) and S1,0(n; j, k) = |s(n, j)|δk,n. In Table 2, one can
recognize the Stirling numbers of the second kind on the diagonal and the unsigned Stirling numbers of
the first kind in the last column.

From the first few values of the Ore-Stirling numbers, one reads off the following properties.



T. Mansour, M. Schork / Filomat 37:18 (2023), 6115–6131 6120

j\k 1 2 3
1 1µ2 3λµ 2λ2

2 3µ 3λ
3 1

Table 1: The nonvanishing Ore-Stirling numbers Sλ,µ(3; j, k).

j\k 1 2 3 4
1 1µ3 7λµ2 12λ2µ 6λ3

2 7µ2 18λµ 11λ2

3 6µ 6λ
4 1

Table 2: The nonvanishing Ore-Stirling numbers Sλ,µ(4; j, k).

Proposition 3.1. Let n ∈N. The Ore-Stirling numbers satisfy the following properties.

1. Sλ,µ(n; n,n) = 1,
2. Sλ,µ(n; 1, 1) = µn−1,
3. Sλ,µ(n; j, k) = 0, if j > k,
4. Sλ,µ(n; j, k) = 0, if n ≥ 2 and jk = 0.

Proof. We prove these properties by induction, using (14). Since all properties mentioned hold true for
n ≤ 3 we can assume that n ≥ 3. Writing (UD)n+1 = UD(UD)n, using (7) as well as the induction hypothesis
for 4, one has

(UD)n+1 =

n∑
j=1

n∑
k=1

Sλ,µ(n; j, k)U(DU j)Dk.

Using (14) for DU j, this yields

(UD)n+1 =

n∑
j=1

n∑
k=1

Sλ,µ(n; j, k)

U j+1Dk+1 +

j−1∑
ℓ=0

(
j
ℓ

)
λ j−ℓUℓ+1(D + λ−1µ)Dk

 . (15)

From this, one reads off that no summands of the form U jD0 or U0Dk appear, showing 4. The coefficient
Sλ,µ(n+1; n+1,n+1) of Un+1Dn+1 in (15) is given by Sλ,µ(n; n,n) which equals 1 by the induction hypothesis,
showing 1. Property 3 holds for n ≤ 3, and if it holds true for n, then (15) shows that it holds true also for
n+1. Finally, to show 2 we determine the coefficient Sλ,µ(n+1; 1, 1) of UD in (15) to be Sλ,µ(n; 1, 1)λ1(λ−1µ) =
µSλ,µ(n; 1, 1) which by the induction hypothesis equals µn, showing 2.

After having considered some particular Ore-Stirling numbers, we derive their recurrence relation.

Proposition 3.2. Let n,m, k ∈N with m, k ≤ n. The Ore-Stirling numbers satisfy the recurrence relation

Sλ,µ(n + 1; m, k) = Sλ,µ(n; m − 1, k − 1) +
n∑

j=m

(
j

m − 1

)
λ j−m

{
λSλ,µ(n; j, k − 1) + µSλ,µ(n; j, k)

}
. (16)

Proof. Let us consider (UD)n+1. From the definition in (7), one has

(UD)n+1 =

n+1∑
j=1

n+1∑
k=1

Sλ,µ(n + 1; j, k)U jDk.
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On the other hand, expanding the right-hand side of (15), one obtains for (UD)n+1 the sum

n+1∑
j=1

n+1∑
k=1

Sλ,µ(n; j − 1, k − 1)U jDk +

n∑
j=1

n∑
k=1

j−1∑
ℓ=0

(
j
ℓ

)
Sλ,µ(n; j, k)λ j−ℓ(Uℓ+1Dk+1 + λ−1µUℓ+1Dk).

Rearranging the summands in the second sum, one has

n∑
j=1

n∑
k=1

j−1∑
ℓ=0

(
j
ℓ

)
Sλ,µ(n; j, k)λ j−ℓUℓ+1Dk+1 =

n∑
m=1

n+1∑
k=1

n∑
j=m

(
j

m − 1

)
Sλ,µ(n; j, k − 1)λ j−m+1UmDk.

In a similar fashion, one may write

n∑
j=1

n∑
k=1

j−1∑
ℓ=0

(
j
ℓ

)
Sλ,µ(n; j, k)λ j−ℓUℓ+1Dk =

n∑
m=1

n∑
k=1

n∑
j=m

(
j

m − 1

)
Sλ,µ(n; j, k)λ j−m+1UmDk.

Comparing the two expressions for (UD)n+1, one finds

n+1∑
m=1

n+1∑
k=1

Sλ,µ(n + 1; m, k)UmDk =

n+1∑
m=1

n+1∑
k=1

Sλ,µ(n; m − 1, k − 1)UmDk

+

n∑
m=1

n+1∑
k=1

n∑
j=m

(
j

m − 1

)
Sλ,µ(n; j, k − 1)λ j−m+1UmDk

+ λ−1µ
n∑

m=1

n∑
k=1

n∑
j=m

(
j

m − 1

)
Sλ,µ(n; j, k)λ j−m+1UmDk.

Thus, by comparing coefficients, one obtains the recurrence relation

Sλ,µ(n + 1; m, k) = Sλ,µ(n; m − 1, k − 1) +
n∑

j=m

(
j

m − 1

)
λ j−m

{
λSλ,µ(n; j, k − 1) + µSλ,µ(n; j, k)

}
,

as asserted.

Remark 3.3. Let us check (16) by considering (λ, µ) = (0, 1). The recurrence (16) reduces to

S0,1(n + 1; m, k) = S0,1(n; m − 1, k − 1) +mS0,1(n; m, k)

since only the summand j = m does not vanish. Recalling S0,1(n; j, k) = δ j,kS(n, k), this equals δm,kS(n + 1, k) =
δm,kS(n, k − 1) + mδm,kS(n, k), thereby recovering the recurrence relation of the Stirling numbers of the second kind,
S(n + 1, k) = S(n, k − 1) + kS(n, k). On the other hand, letting (λ, µ) = (1, 0), the recurrence (16) reduces to

S1,0(n + 1; m, k) = S1,0(n; m − 1, k − 1) +
n∑

j=m

(
j

m − 1

)
S1,0(n; j, k − 1).

Recalling S1,0(n; j, k) = δk,n|s(n, j)| (and cancelling the factor δk,n+1 on both sides), one finds

|s(n + 1,m)| = |s(n,m − 1)| +
n∑

j=m

(
j

m − 1

)
|s(n, j)|.
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This is not the expected recurrence relation |s(n + 1,m)| = |s(n,m − 1)| + n|s(n,m)| of the unsigned Stirling numbers
of the first kind, but in the form

|s(n + 1,m)| =
n∑

j=m−1

(
j

m − 1

)
|s(n, j)| (17)

a well-known identity, see, e.g., (6.16) in [12].

From the above explicit values for Sλ,µ(n; j, k) with n ≤ 4 we see that the dependence on (λ, µ) can be
separated from a numerical coefficient. This holds true in general.

Proposition 3.4. Let n ∈N. The Ore-Stirling numbers can be written, for all j ≤ k ≤ n, in the form

Sλ,µ(n; j, k) = S(n; j, k)λk− jµn−k (18)

for some coefficients S(n; j, k). These coefficients satisfy the recurrence relation

S(n + 1; m, k) = S(n; m − 1, k − 1) +
n∑

j=m

(
j

m − 1

) {
S(n; j, k − 1) + S(n; j, k)

}
. (19)

Proof. Both claims follow by induction using the recurrence (16). If the factorization (18) holds true for
Sλ,µ(n; j, k), then inserting this into the right-hand side of (16) yields an expression of the form λk− jµn+1−k(· · · )
(inside the brackets there is no dependence on λ, µ), showing that Sλ,µ(n + 1; j, k) has also the factorized
form claimed. Cancelling the factors λk− jµn+1−k on both sides, the recurrence relation (19) results.

The Ore-algebraO corresponds to the case (λ, µ) = (1, 1). In this case, the Ore-Stirling numbers S1,1(n; j, k)
are given by the numerical coefficients S(n; j, k) due to (18) and satisfy the recurrence (19). Using this
interpretation, the Ore-Stirling numbers for arbitrary parameters (λ, µ) are just scaled versions of the ones
with parameters (1, 1), i.e.,

Sλ,µ(n; j, k) = S1,1(n; j, k)λk− jµn−k. (20)

The values of the Ore-Stirling numbers S1,1(n; j, k) for n ≤ 4 were given above (see Table 1 and Table 2).
Let us consider, for 1 ≤ n ≤ 4, the sum of the rows, i.e., consider

β(n, j) =
n∑

k=1

S1,1(n; j, k).

If we sum also over j, we obtain the Ore-Bell numbers, B1,1(n) =
∑n

j=1 β(n, j). The result is displayed in
Table 3.

n\ j 1 2 3 4 B1,1(n)
1 1 1
2 2 1 3
3 6 6 1 13
4 26 36 12 1 75

Table 3: The row sums β(n, j) of the S1,1(n; j, k) and the Ore-Bell numbers B1,1(n).

These four lines are equal to A079641 in [37]. This sequence is the matrix product of the Stirling numbers
of the second kind and the unsigned Stirling numbers of the first kind, see [21]. In particular, B1,1(n) counts
preferential arrangements of n objects and is equal to the Fubini number Fn (or ordered Bell number), A000670
in [37], see the discussion by Knuth [21] for an interpretation of β(n, j) and a recent different combinatorial
interpretation in [11]. Algebraically, one thus has β(n, j) =

∑n
k= j S(n, k)|s(k, j)| for n ≤ 4. In general, we have

the following result.
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Theorem 3.5. Let n ∈N. The Ore-Stirling numbers are given, for 1 ≤ j ≤ k ≤ n, by

S1,1(n; j, k) = S(n, k)|s(k, j)|. (21)

Combining this with (20), one has for arbitrary parameters λ, µ ∈ C the result

Sλ,µ(n; j, k) = S(n, k)|s(k, j)|λk− jµn−k. (22)

Proof. It only remains to show (21). As discussed above, the relation holds true for n ≤ 4. To show it holds
true in general, we use the recurrence relation (19). Using the induction hypothesis on the right-hand side
for n, the recurrence relation becomes

S1,1(n + 1; m, k) =S(n, k − 1)|s(k − 1,m − 1)|

+

n∑
j=m

(
j

m − 1

) {
S(n, k − 1)|s(k − 1, j)| + S(n, k)|s(k, j)|

}
=S(n, k − 1)|s(k − 1,m − 1)|

+ S(n, k − 1)

 n∑
j=m−1

(
j

m − 1

)
|s(k − 1, j)| − |s(k − 1,m − 1)|


+ S(n, k)

 n∑
j=m−1

(
j

m − 1

)
|s(k, j)| − |s(k,m − 1)|

 .
Using identity (17), one obtains

S1,1(n + 1; m, k) =S(n, k − 1) (|s(k − 1,m − 1)| + |s(k,m)| − |s(k − 1,m − 1)|)
+ S(n, k) (|s(k + 1,m)| − |s(k,m − 1)|)
=S(n, k − 1)|s(k,m)| + S(n, k)k|s(k,m)|,

where we used in the last step the recurrence relation for |s(k + 1,m)|. Using now the recurrence relation
S(n + 1, k) = S(n, k − 1) + kS(n, k), the last equation becomes S1,1(n + 1; m, k) = S(n + 1, k)|s(k,m)|, showing the
assertion for n + 1.

Remark 3.6. Above we observed that S(n, k) resp. |s(n, j)| appear as coefficients on the diagonal resp. last column
in Table 1 (n = 3) and Table 2 (n = 4). Note first that (22) implies Sλ,µ(n; j, j) = S(n, j)µn− j, explaining the first
observation. Similarly, Sλ,µ(n; j,n) = |s(n, j)|λn− j, explaining the second observation.

Note that choosing µ = 1 − λ in (22) gives

Sλ,1−λ(n; j, k) = S(n, k)|s(k, j)|λk− j(1 − λ)n−k. (23)

This is the one-parameter interpolation sought-after in (8). Indeed, one easily checks that for λ→ 0 one has
Sλ,1−λ(n; j, k)→ S(n, k)δ j,k, and that Sλ,1−λ(n; j, k)→ |s(n, j)|δk,n for λ→ 1.

Let us turn to the Ore-Bell numbers. Using the above expression for S1,1(n; j, k), we can determine the
Ore-Bell numbers B1,1(n) in the Ore algebra O. Patrias and Pylyavskyy [30] already found the connection
to the Fubini numbers Fn in the context of dual filtered graphs.

Corollary 3.7 ([30]). Let n ∈N. The Ore-Bell numbers B1,1(n) are given by the Fubini numbers Fn.

Proof. Inserting (21) into the definition of B1,1(n), one obtains

B1,1(n) =
n∑

j=1

n∑
k= j

S(n, k)|s(k, j)| =
n∑

k=1

S(n, k)
k∑

j=1

|s(k, j)| =
n∑

k=1

S(n, k)k! = Fn,

where we used that
∑k

j=1 |s(k, j)| = k! (and the last equation is the defining equation of the Fubini num-
bers).
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What about the Ore-Bell numbers in general? Using (22), one finds (for λµ , 0)

Bλ,µ(n) =
n∑

j=1

n∑
k= j

S(n, k)|s(k, j)|λk− jµn−k = µn
n∑

k=1

S(n, k)
(
λ
µ

)k k∑
j=1

|s(k, j)|λ− j.

For λ = 1, it is straightforward to continue. Recalling that the Fubini polynomials (or ordered Bell
polynomials) are defined by Fn(x) =

∑n
k=1 S(n, k)k!xk (with Fn(1) = Fn), one finds (for µ , 0)

B1,µ(n) = µn
n∑

k=1

S(n, k)
(

1
µ

)k

k! = µnFn(
1
µ

),

which reduces for µ = 1 to B1,1(n) = Fn from above. For µ→ 0, only the summand k = n survives, yielding
B1,0(n) = S(n,n)n! = n!, as mentioned above. In general, we use the expansion of the rising factorial,
xn̄ =

∑n
j=0 |s(n, j)|x j (see, e.g., (6.11) in [12]), to obtain the following result.

Corollary 3.8. Let n ∈N. For λµ , 0, the Ore-Bell numbers are given by

Bλ,µ(n) = µn
n∑

k=1

S(n, k)
(
λ
µ

)k ( 1
λ

)k̄

.

Remark 3.9. From above, one obtains for the one-parameter family of Ore-Bell numbers that

Bλ,1−λ(n) =
n∑

j=1

n∑
k= j

S(n, k)|s(k, j)|λk− j(1 − λ)n−k.

Using again that λk− j(1 − λ)n−k
→ δ j,k for λ→ 0 (resp. δk,n for λ→ 1), one easily checks that Bλ,1−λ(n)→ B(n) for

λ→ 0 (resp. n! for λ→ 1), as expected. However, it would be nice to have a more explicit expression for Bλ,1−λ(n).

As alternative to the above derivation of the explicit value of Sλ,µ(n; j, k) we can start from (16) and use
generating functions. Define Sλ,µ(n; m; v) =

∑n
k=m Sλ,µ(n; m, k)vk. Then (16) gives

Sλ,µ(n + 1; m; v) = vSλ,µ(n; m − 1; v) + (λv + µ)
n∑

j=m

(
j

m − 1

)
λ j−mSλ,µ(n; j; v).

Define Sλ,µ(n; u, v) =
∑n

m=1 Sλ,µ(n; m; v)um. By multiplying with um and summing over m = 1, 2, . . . ,n+ 1, we
obtain

Sλ,µ(n + 1; u, v) = uvSλ,µ(n; u, v) + (λv + µ)
n∑

m=1

n∑
j=m

(
j

m − 1

)
λ j−mumSλ,µ(n; j; v)

= uvSλ,µ(n; u, v) + (λv + µ)
n∑

j=1

j∑
m=1

(
j

m − 1

)
λ j−mumSλ,µ(n; j; v)

= uvSλ,µ(n; u, v) + (uv +
µu
λ

)
n∑

j=1

((u + λ) j
− u j)Sλ,µ(n; j; v)

= uvSλ,µ(n; u, v) + (uv +
µu
λ

)(Sλ,µ(n; u + λ, v) − Sλ,µ(n; u, v)).

Define Sλ,µ(x,u, v) =
∑

n≥1 Sλ,µ(n; u, v)xn. The above recurrence can then be written as

Sλ,µ(x,u, v) − uvx = uvxSλ,µ(x,u, v) + (uv +
µu
λ

)x(Sλ,µ(x,u + λ, v) − Sλ,µ(x,u, v)),
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which leads to

Sλ,µ(x,u, v) =
uvx

1 + µux
λ

+
(uv + µu

λ )x

1 + µux
λ

Sλ,µ(x,u + λ, v).

By iterating this equation an infinite number of times, we obtain the following formula,

Sλ,µ(x,u, v) = vx
∑
j≥0

(vλ + µ) jx j
j∏

i=0

u + iλ
λ + µ(u + iλ)x

. (24)

For example,

Sλ,µ(x,u, v) =uvx + uv(uv + vλ + µ)x2 + uv(u2v2 + 3uv2λ + 2v2λ2 + 3µuv + 3µvλ + µ2)x3

+ uv(u3v3 + 6u2v3λ + 11uv3λ2 + 6v3λ3 + 6µu2v2 + 18µuv2λ + 12µv2λ2 + 7µ2uv

+ 7µ2vλ + µ3)x4 + · · · .

Recall that the Stirling numbers of the first, respectively second kind are given by

k−1∏
j=0

(x + j) =
k∑

a=0

(−1)k−as(k, a)xa,
xk∏k

j=1(1 − jx)
=

∑
a≥k

S(a, k)xa.

Hence,

Sλ,µ(x,u, v) = λvx
∑
j≥0

(vλ + µ) jx jλ j

(λ + µux) j+1

j∏
i=0

u/λ + i

1 + λµx
λ+µux i

= v
∑
j≥0

∑
a≥ j

j+1∑
b=0

(−1)a+1−bs( j + 1, b)S(a, j)
ubλ j+1−bµa− j(v + µ/λ) jxa+1

(1 + µux/λ)a+1 .

By finding the coefficient of xn, we have

Sλ,µ(n; u, v) = v
n−1∑
j=0

n−1∑
a= j

j+1∑
b=0

(−1)n−as( j + 1, b)S(a, j)
(
n − 1

a

)
ub+n−1−aλ j−b−n+2+a(v + µ/λ) jµn−1− j.

Thus, by finding the coefficient of um, we obtain

Sλ,µ(n; m; v) = v
n−1∑
j=0

n−1∑
a= j

(−1)m+1+as( j + 1,m + a + 1 − n)S(a, j)
(
n − 1

a

)
λ j+1−mµn−1− j(v + µ/λ) j.

Finally, by finding the coefficient of vk, we obtain the following result.

Theorem 3.10. For all 1 ≤ m ≤ k ≤ n, the Ore-Stirling numbers are given by

Sλ,µ(n; m, k) =
n−1∑
j=0

n−1∑
a= j

(−1)m+1+as( j + 1,m + a + 1 − n)S(a, j)
(
n − 1

a

)(
j

k − 1

)
λk−mµn−k.

Moreover, their generating function is given by (24).
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By comparing the expression given in Theorem 3.10 with the one given in (22), we obtain, using |s(k,m)| =
(−1)k−ms(k,m), the following identity,

(−1)kS(n, k)s(k,m) =
n−1∑
j=0

n−1∑
a= j

(−1)a+1s( j + 1,m + a + 1 − n)S(a, j)
(
n − 1

a

)(
j

k − 1

)
.

Before turning to a combinatorial interpretation of the Ore-Stirling numbers, we consider briefly the
first nontrivial examples of the Ore-Lah numbers S(2,1)

λ,µ (n; j, k) introduced in Remark 2.3. For n = 2, one finds

(U2D)2 = U4D2 + 2λU3D2 + 2µU3D + λ2U2D2 + λµU2D,

showing that one has more nonvanishing Ore-Lah numbers than Ore-Stirling numbers, see Table 4. In
general, one may use an induction and (14) to show that one has an expansion (U2D)n = U2nDn+· · ·+λµU2D,
yielding many nonvanishing numbers S(2,1)

λ,µ (n; j, k).

j\k 1 2
2 λµ λ2

3 2µ 2λ
4 1

Table 4: The nonvanishing Ore-Lah numbers S(2,1)
λ,µ

(2; j, k).

4. Concerning a combinatorial interpretation

Due to the simple product structure (22) for the generalized Ore-Stirling numbers Sλ,µ(n; j, k) we are led
to a simple interpretation for Sλ,µ(n; j, k) in terms of rook numbers and file numbers. Let us recall some
terminology following [39]. For n ∈ N, we let [n] = {1, 2, . . . ,n}. A board B is a subset of [n] × [m] ⊂ Z2,
where n and m are positive integers, see Figure 2. Intuitively, we think of a board as an array of squares
arranged in rows and columns. An element (i, j) ∈ B is then represented by a square in the i-th column and
j-th row. We consider the columns numbered from left to right, and rows numbered from bottom to top, so
that the square (1, 1) appears in the left corner on the bottom (note that this is different from [39]). A board
B is a Ferrers board if there is a non-increasing sequence of positive integers h(B) = (h1, h2, . . . , hn) such that
B = {(i, j) | i ≤ n and h1 − hi + 1 ≤ j ≤ h1}. For example, the board in Figure 2 is a Ferrers board with height
vector (3, 2, 2, 1). Given a Ferrers board B, we call a placement of k rooks in B such that there is at most one
rook in each row a file placement of k rooks, or also a k-file placement, see Figure 2 for an example.

Figure 2: A Ferrers board with a 3-file placement which is not a 3-rook placement.

The set of all k-file placements on B will be denoted by Fk(B), and fk(B) = |Fk(B)| will be called k-th file
number of B.

Remark 4.1. Note that due to our convention of drawing the boards we have to consider the rows for a file-placement.
In the literature, one finds another convention of drawing boards and considers then the columns for file-placements,
see, e.g., [5, 32].
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A k-rook placement is a special kind of k-file placement where in addition no two rooks are in the same
column. The set of all k-rook placements on B will be denoted by Rk(B), and rk(B) = |Rk(B)| will be called
k-th rook number of B.

Example 4.2. The staircase board Jn is defined by its height vector (n − 1,n − 2, . . . , 2, 1) (i.e., h1(Jn) = n − 1 and
hk+1(Jn) = hk(Jn) − 1, for k = 1, . . . ,n − 1). It is well known (see, e.g., [5]) that

rn−k(Jn) = S(n, k), fn−k(Jn) = |s(n, k)|. (25)

To any word ω in letters D,U one can associate a Ferrers board Bω outlined by the path Γω associated
to ω. The path Γω results by starting in (0, 0), and reading the word ω from left to right, associating to D
(resp. U) a step to the right (resp. up); the board Bω lies above Γω. For example, the board associated to
ω = DUDDUDU is shown in Figure 2 (with Γω drawn in bold). As another example, if ω = (UD)n, then the
associated board is the staircase board Jn = B(UD)n . Thus, inserting (22) into (7) and using (25), we can write

(UD)n =

n∑
j=1

n∑
k= j

S(n, k)|s(k, j)|λk− jµn−kU jDk

=

n∑
j=1

n∑
k= j

rn−k(Jn)µn−k fk− j(Jk)λk− jU jDk. (26)

Introducing l = n− j and σ = k− (n− l), and switching the order of summation, this shows the following
result.

Theorem 4.3. Let the letters D,U satisfy (5). Then the normal ordering coefficients of ω = (UD)n inAλ,µ are given
by

(UD)n =

n−1∑
σ=0

n−1∑
l=σ

rσ(Jn)µσ fl−σ(Jn−σ)λl−σ Un−lDn−σ. (27)

For λ→ 0, only coefficients with l = σ do not vanish, implying (with µ = 1) inA0,1 =W that

(UD)n =

n−1∑
σ=0

rσ(Jn) Un−σDn−σ, (28)

which is due to (25) the correct result for the Weyl algebra, see (1). Note that one has for arbitrary words ω
in the Weyl algebra containing m letters U and n letters D (with m ≤ n) that

ω =
m∑
σ=0

rσ(Bω) Um−σDn−σ, (29)

where Bω is the Ferrers board outlined by ω, see [39]. Similarly, for µ → 0, only coefficients with σ = 0 do
not vanish, implying (with λ = 1) inA1,0 = S that

(UD)n =

n−1∑
l=0

fl(Jn) Un−lDn, (30)

which is due to (25) the correct result for the shift algebra, see (2). For arbitrary words ω in the shift algebra
containing m letters U and n letters D (with m ≤ n) one has that

ω =
m∑
σ=0

fσ(Bω) Um−σDn, (31)
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see [32]. Thus, (27) is the common generalization of (28) and (30). Turning from the particular words
ω = (UD)n to arbitrary words, one has the normal ordering result (29) inW and (31) in S, and it would be
interesting to find their common generalization, i.e., an interpretation for the normal ordering coefficients
of ω inAλ,µ in terms of rook numbers and file numbers of the board Bω. However, as (27) shows, already
in the case ω = (UD)n not only the board Jn = B(UD)n is involved, but also some other “derived” boards Jn−σ.

Remark 4.4. Let us consider the word ω = D2U2 in A1,1 = O with associated board B = Bω = (2, 2). Using (5)
(with λ = µ = 1) repeatedly, one finds

D2U2 = (U2 + 4U + 4)D2 + (4U + 6)D + 2I. (32)

On the other hand, the rook numbers and file numbers of B are easy to determine,

r0(B) = 1, r1(B) = 4, r2(B) = 2, f0(B) = 1, f1(B) = 4, f2(B) = 4.

Let us denote by Bσ the (unknown) “derived” board from B (i.e., the analog of Jn−σ in (27)), and let us assume that the
sought-after formula has a similar structure like (27). Thus, one expects

D2U2 =

2∑
σ=0

2∑
l=σ

rσ(B) fl−σ(Bσ)U2−lD2−σ.

Using rσ(B) from above and noting that B0 = B, this would imply ( f0(B) = 1 for any board B)

D2U2 = (U2 + 4U + 4)D2 + (4U + 4 f1(B1))D + 2I. (33)

Comparing (32) with (33) shows that the “derived” board B1 should satisfy 4 f1(B1) = 6 – which is impossible. Thus,
the simple product structure for the coefficients of U2−lD2−σ does not hold true. Presumably, it has to be replaced for
the general case by a sum which reduces for the staircase board to a single summand.

5. Conclusion and avenues for future research

In the present paper, we introduced Ore-Stirling numbers as normal ordering coefficients in the gen-
eralized Ore algebra Aλ,µ (where A1,1 is the Ore algebra of [30]), thereby unifying considerations in the
Weyl algebra (W = A0,1) and the shift algeba (S = A1,0). Several properties of the Ore-Stirling numbers
as well as the associated Ore-Bell numbers were derived. However, many topics were not touched. In the
following list, we mention – with different amount of detail – some natural questions which in our opinion
merit closer inspection.

1. Derive a recurrence relation for the Ore-Bell numbers Bλ,ν(n).
2. As generalization of the last point, derive an analog of Spivey’s formula for Bλ,ν(n). That is, express

Bλ,ν(n+m) in terms of Bλ,ν(k),Sλ,ν(m; r, s) and other combinatorial numbers, like binomial coefficients.
The original Spivey identity due to Spivey [38] is the following identity for the Bell numbers, Bn+m =∑n

k=0
∑m

j=0 jn−k(n
k
)
S(m, j)Bk. Equivalently,

B0,1(n +m) =
n∑

k=0

m∑
j=0

jn−k
(
n
k

)
S0,1(m; j, j)B0,1(k).

On the other hand, one has the “dual Spivey identity”, derived by Mező [28], where one has (n +
m)! =

∑n
k=0

∑m
j=0 mn−k

|s(m, j)|
(n

k
)
k! Recalling n! = B1,0(n) and |s(m, j)| = S1,0(m; j,m), this can be written

equivalently as

B1,0(n +m) =
n∑

k=0

m∑
j=0

mn−k
(
n
k

)
S1,0(m; j,m)B1,0(k).
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For both identities, one has proofs using normal ordering (for the first identity in the Weyl algebra
W = A0,1 [14], for the second identity in the shift algebra S = A1,0 [34]), so one should try to derive
the sought-after identity for Bλ,ν(n + m) using normal ordering in the generalized Ore algebra Aλ,µ.
For some different generalizations, see [36].

3. Derive an analog of the Dobiński formula for Bλ,ν(n). Recall that the classical Dobiński formula for
the Bell numbers is given by Bn =

1
e
∑
∞

k=1
kn

k! , see [25] for more details and some history of this formula,
as well as several generalizations of it.

4. Derive properties of the generalized Ore-Stirling numbers mentioned in Remark 2.3.
5. Generalize Theorem 4.3 to arbitrary words ω ∈ Aλ,µ, i.e., give an interpretation for the normal

ordering coefficients of ω in terms of rook numbers and file numbers of the associated board Bω. As
Theorem 4.3 and the discussion in Remark 4.4 shows, some kind of “derived” boards Bσω are expected
to be relevant. Note that Bσω is a subboard of Bω so it can alternatively be interpreted as Bω where it is
forbidden to place rooks in some cells (depending on σ).

6. For the Weyl algebraW, one has a description of normal ordering in terms of contractions, see [24,
Section 10] or [1, Note 1]. Given a word ω in letters D,U we call a k-contraction (with k = 0, 1, . . .)
of ω the choice of k pairs (D,U) where D precedes U, with subsequent replacement of these letters
D,U by the symbol ∅. For example, the word ω = (UD)3 = UDUDUD has exactly one 0-contraction
(leaving ω as it is), 3 possible 1-contractions (U∅∅DUD,U∅UD∅D,UDU∅∅D), and one 2-contraction
(U∅∅∅∅D). Let us denote the set of k-contractions of ω by Ck(ω), and let C(ω) = ∪kCk(ω). If π ∈ C(ω),
then : π : means that all symbols ∅ are deleted and all letters U are written to the left of all letters D (as
if they would commute). For example, : UDU∅∅D := U2D2. Then one has the following result (Wick’s
theorem),

ω =
∑
π∈C(ω)

: π :

Contractions are closely related to set partitions, see [24]. For example, for ω = (UD)n one notes that
: π := Un−kDn−k if π ∈ Ck(ω), hence

(UD)n =

n−1∑
k=0

|Ck((UD)n)|Un−kDn−k =

n∑
ℓ=1

|Cn−ℓ((UD)n)|UℓDℓ,

showing by comparison with (1) that |Cn−ℓ((UD)n)| = S(n, ℓ). In the shift algebraS, the result analogous
to (1) is (2) where instead of S(n, k) the |s(n, k)| appear. It would be very nice to have an analog of Wick’s
theorem for normal ordering in the shift algebra. Thus, one should find an analog to contractions
and to the operation : : (the sought-after analogous structure Pk(ω) should be closely related to
permutations with k cycles for ω). Finally, the analog of Wick’s theorem for the Ore algebra O should
be considered, too

7. Study q-deformed Ore-Stirling numbers. Recall that the q-deformed Weyl algebraWq can be defined
by letters D,U satisfying DU − qUD = I. The normal ordering coefficients of (UD)n in Wq are q-
deformed Stirling numbers of the second kind Sq(n, k). Thus, it is natural to introduce the q-deformed
generalized Ore algebraAλ,µ(q) by the q-deformed variant of (5), i.e., by DU−qUD = λD+µI. Similar
to (7), the q-deformed Ore-Stirling numbers Sq

λ,µ(n; j, k) are then defined as normal ordering coefficients

of (UD)n inAλ,µ(q). For q→ 1, they should reduce to Sλ,µ(n; j, k). The limit q→ −1 of Sq
λ,µ(n; j, k) might

also be interesting.
8. Consider the three-parameter algebraAλ,µ,ν generated by D,U with commutation relation

DU −UD = λD + νU + µI.

(This corresponds to an algebra of type (1, ν, λ, µ) in [22], see (4).) For example,A1,0,1 is the excedance
algebra E where DU − UD = D + U, see [7]. One would then consider the unit cube [0, 1]3

⊂ R3 as
space of parameters (λ, µ, ν). Note that the algebra A0,0,1 – where DU − UD = U – is essentially the
shift algebra; we denote it by S∗. In a similar fashion,A0,1,1 – where DU −UD = U + I – is essentially
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the Ore algebra; we denote it by O∗. As an extension of Figure 1, we draw the unit cube of parameters
(λ, µ, ν) ∈ [0, 1] × [0, 1] × [0, 1] and label the vertices with the corresponding algebras in Figure 3.
Clearly, one can ask questions analogous to the ones considered above. For example, by considering

O
∗

A1,1,1

S
∗

E

W O

C[D,U] S

Figure 3: The unit cube of parameters (λ, µ, ν) and resulting algebrasAλ,µ,ν.

normal ordering (UD)n in Aλ,µ,ν, one can define numbers Sλ,µ,ν(n; j, k, l) and study their properties.
Recall that choosing (λ, 1 − λ, 0) corresponds to an interpolation between W and S, see (6), hence
between Stirling numbers of the second kind and unsigned Stirling numbers of the first kind, see (23).
In a similar fashion, by letting ν = 1 − µ, one obtains an interpolationAλ,µ,1−µ between E = A1,0,1 and
O = A1,1,0. Normal ordering in the excedance algebra E was considered by Clark and Ehrenborg [7],
and a combinatorial interpretation for the normal ordering coefficients was given by them. They also
established a connection to Genocchi numbers (A001469 in [37]).
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