Inertial iterative method for a generalized mixed equilibrium, variational inequality and a fixed point problems for a family of quasi- ϕ-nonexpansive mappings

Mohammad Farid ${ }^{\text {a }}$, Rehan Ali $^{\text {b }}$,*, Kaleem Raza Kazmi ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
${ }^{b}$ Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India
${ }^{\text {c }}$ Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Abstract

We introduce an inertial type gradient projection hybrid iterative method for finding a common solution of generalized mixed equilibrium, variational inequality and fixed point problems in a twouniformly convex and uniformly smooth Banach space. Next, we analyze the strong convergence for a common solution of problem. Furthermore, we carry out some consequences and present a numerical example to show and tell the applicability of main theorem. Our result improves, unifies, generalizes and extends ones from several earlier works.

1. Introduction

Let Y^{*} denotes the dual space of a real Banach space Y. We denote the value of the functional $j \in Y^{*}$ at $x_{1} \in Y$ by $\left\langle x_{1}, j\right\rangle$ and the norm of Y or Y^{*} by $\|$.$\| . Let P \neq \emptyset$ be a subset of Y. A mapping $J: Y \rightarrow 2^{\Upsilon^{*}}$ such that

$$
J x_{1}=\left\{x_{2} \in Y^{*}:\left\langle x_{2}, x_{1}\right\rangle=\left\|x_{1}\right\|^{2}=\left\|x_{2}\right\|^{2}\right\}, \quad \forall x_{1} \in Y
$$

is called normalized duality mapping.
Let $\mathbb{G}: P \times P \rightarrow \mathbb{R}, b: P \times P \rightarrow \mathbb{R}$ be bifunctions and $D: P \rightarrow Y^{*}$ be a nonlinear mapping, where \mathbb{R} is the set of all real numbers. In this paper, we consider generalized mixed equilibrium problem (in brief, GMEP)as: Find $u_{1} \in P$ such that

$$
\begin{equation*}
\mathrm{G}\left(u_{1}, u_{2}\right)+\left\langle D u_{1}, u_{2}-u_{1}\right\rangle+b\left(u_{1}, u_{2}\right)-b\left(u_{1}, u_{1}\right) \geq 0, \quad \forall u_{2} \in P . \tag{1}
\end{equation*}
$$

The solution set of $\operatorname{GMEP}(1)$ is denoted by $\operatorname{Sol}(\operatorname{GMEP}(1))$.
If $D \equiv 0$ then GMEP(1) convert to generalized equilibrium problem (in brief, GEP): Find $u_{1} \in P$ such that

$$
\begin{equation*}
G\left(u_{1}, u_{2}\right)+b\left(u_{1}, u_{2}\right)-b\left(u_{1}, u_{1}\right) \geq 0, \quad \forall u_{2} \in P \tag{2}
\end{equation*}
$$

[^0]The solution set of $\operatorname{GEP}(2)$ is denoted by $\operatorname{Sol}(\operatorname{GEP}(2))$.
If $D \equiv 0$ and $b \equiv 0$ then GMEP(1) becomes equilibrium problem (in brief, EP): Find $u_{1} \in P$ such that

$$
\begin{equation*}
\mathbb{G}\left(u_{1}, u_{2}\right) \geq 0, \quad \forall u_{2} \in P \tag{3}
\end{equation*}
$$

The solution set of $\mathrm{EP}(3)$ is denoted by $\operatorname{Sol}(\mathrm{EP}(3))$ and (3) introduced by Blum and Oettli [2].
The variational inequality problem (in brief, VIP): Find $u_{1} \in P$ such that

$$
\begin{equation*}
\left\langle u_{2}-u_{1}, B u_{1}\right\rangle \geq 0, \quad \forall u_{2} \in P \tag{4}
\end{equation*}
$$

where $B: P \rightarrow Y^{*}$ be a nonlinear mapping. VIP(4) is studied by Hartmann and Stampacchia [9] and Sol(VIP(4)) denotes its solution.

Let $T: P \rightarrow P$ be a nonlinear mapping. we define fixed point problem (in brief, FPP): Find $u_{1} \in P$ such that

$$
\begin{equation*}
F(T)=\left\{u_{1} \in P: T u_{1}=u_{1}\right\} . \tag{5}
\end{equation*}
$$

Takahashi et al. [18] proposed an algorithm in 2009 as:

$$
\begin{align*}
& x_{0} \in P \\
& u_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right) \tag{6}\\
& z_{n} \in P \text { such that } g\left(z_{n}, v\right)+\frac{1}{r_{n}}\left\langle v-z_{n}, J z_{n}-J u_{n}\right\rangle \geq 0, \forall v \in P \\
& P_{n}=\left\{w \in P: \phi\left(w, z_{n}\right) \leq \phi\left(w, x_{n}\right)\right\} \\
& Q_{n}=\left\{w \in P:\left\langle x_{n}-w, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
& x_{n+1}=\prod_{P_{n}} \cap Q_{n} x_{0} .
\end{align*}
$$

Recently, Kazmi and Ali [14], studied an iterative result for finding a common solution of EP (3) and FPP (5) for an asymptotically quasi- ϕ-nonexpansive mapping. For further study of some generalizations of algorithms (6), see[7, 8, 10-12, 20].

In 2008, Mainge [15] development and studied the following inertial method:

$$
\left.\begin{array}{ll}
z_{n} & =u_{n}+\theta_{n}\left(u_{n}-u_{n-1}\right), \tag{7}\\
u_{n+1} & =\left(1-\alpha_{n}\right) z_{n}+\alpha_{n} T z_{n} .
\end{array}\right\}
$$

In a short while ago, Dong et al. $[4,5]$ studied inertial iterative result in Hilbert space frame.
It is important to highlight that in the framework of Banach space, the inertial iterative algorithm is still unexplored.

Therefore, inspired and motivated by the endeavor of Dong et al. [5], Mainge [15] and Takahashi et al. [18], we proposed an inertial type gradient projection hybrid iterative algorithm for finding a common solution of GMEP(1), VIP(4) for a γ-ism and FPP(5) for a family of quasi- ϕ-nonexpansive mappings in two-uniformly convex and uniformly smooth Banach space. Next, we analyze the strong convergence for a common solution of problem. Furthermore, we carry out some consequences and present a numerical example to show and tell the applicability of main theorem.

2. Preliminaries

We offered some necessary definitions and results which are needed in succession.

Let $S=\left\{x_{1} \in Y:\left\|x_{1}\right\|=1\right\}$ be the unit sphere of Y and if $\frac{\left\|x_{1}+x_{2}\right\|}{2}<1, \forall x_{1}, x_{2} \in S$ with $x_{1} \neq x_{2}$ then Y is said to be strictly convex. If for any $\varepsilon \in(0,2]$ there exists a $\delta>0$ such that

$$
\left\|x_{1}-x_{2}\right\| \geq \varepsilon \text { implies } \frac{\left\|x_{1}+x_{2}\right\|}{2} \leq 1-\delta, \quad \forall x_{1}, x_{2} \in S
$$

then Y is called uniformly convex. Note that it is strictly convex and reflexive.
The space Y is called smooth if $\lim _{s \rightarrow 0} \frac{\left\|x_{1}+s x_{2}\right\|-\left\|x_{1}\right\|}{s}$ exists, $\forall x_{1}, x_{2} \in S$ and uniformly smooth if the limit is attained uniformly, $\forall x_{1}, x_{2} \in S$. The space Y enjoys Kadec-Klee property if for any $\left\{x_{n}\right\} \subset Y$ and $x_{1} \in Y$ with $x_{n} \rightharpoonup x_{1}$ and $\left\|x_{n}\right\| \rightarrow\left\|x_{1}\right\|$ then $\left\|x_{n}-x_{1}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

A mapping $\phi: Y \times Y \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\phi\left(x_{1}, x_{2}\right)=\left\|x_{1}\right\|^{2}-2\left\langle x_{1}, J x_{2}\right\rangle+\left\|x_{2}\right\|^{2}, \quad \forall x_{1}, x_{2} \in Y \tag{8}
\end{equation*}
$$

is called Lyapunov function.
From (8), we have

$$
\begin{align*}
& \left(\left\|x_{1}\right\|-\left\|x_{2}\right\|\right)^{2} \leq \phi\left(x_{1}, x_{2}\right) \leq\left(\left\|x_{1}\right\|+\left\|x_{2}\right\|\right)^{2}, \quad \forall x_{1}, x_{2} \in Y \tag{9}\\
& \phi\left(x_{1}, J^{-1}\left(\lambda J x_{2}+(1-\lambda) J x_{3}\right)\right) \leq \lambda \phi\left(x_{1}, x_{2}\right)+(1-\lambda) \phi\left(x_{1}, x_{3}\right), \quad \forall x_{1}, x_{2} \in Y, \lambda \in[0,1] \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\phi\left(x_{1}, x_{2}\right)=\left\|x_{1}\right\|\| \| x_{1}-J x_{2}\|+\| x_{2}\| \| x_{1}-x_{2} \|, \quad \forall x_{1}, x_{2} \in Y \tag{11}
\end{equation*}
$$

Remark 2.1. $\phi\left(x_{1}, x_{2}\right)=0 \Leftrightarrow x_{1}=x_{2}, \forall x_{1}, x_{2} \in Y$ provided Y be smooth, reflexive and strictly convex Banach space.

Definition 2.2. A function $T: P \rightarrow Y^{*}$ is known as
(i) monotone if $\left\langle x_{1}-x_{2}, T x_{1}-T x_{2}\right\rangle \geq 0, \quad \forall x_{1}, x_{2} \in Y$;
(ii) γ-inverse strongly monotone (in short, ism) if $\exists \gamma>0$ such that $\left\langle x_{1}-x_{2}, T x_{1}-T x_{2}\right\rangle \geq \gamma\left\|T x_{1}-T x_{2}\right\|^{2}, \forall x_{1}, x_{2} \in$ Y;
(iii) Lipschitz continuous if $\exists L>0$ such that $\left\|T x_{1}-T x_{2}\right\| \leq L\left\|x_{1}-x_{2}\right\|$.

If T is γ - ism then it is Lipschitz continuous with $\frac{1}{\gamma}$ as a constant.
Lemma 2.3. [21] Let Y be a 2-uniformly convex and smooth Banach space. Then, $\forall x_{1}, x_{2} \in Y, \phi\left(x_{1}, x_{2}\right) \geq c\left\|x_{1}-x_{2}\right\|^{2}$, where $0<c \leq 1$ and called two-uniformly convex constant.

Lemma 2.4. [21] Let Y be a two-uniformly convex Banach space, then

$$
\left\|x_{1}-x_{2}\right\| \leq \frac{2}{c}\left\|J x_{1}-J x_{2}\right\|, \quad \forall x_{1}, x_{2} \in Y
$$

where c be defined in Lemma 2.3.
Lemma 2.5. [13] Let Y be an uniformly convex and smooth Banach space and let $\left\{u_{n}\right\},\left\{v_{n}\right\} \subset Y$ with either $\left\{u_{n}\right\}$ or $\left\{v_{n}\right\}$ is bounded. If $\lim _{n \rightarrow \infty} \phi\left(u_{n}, v_{n}\right)=0$ then $\lim _{n \rightarrow \infty}\left\|u_{n}-v_{n}\right\|=0$.

Remark 2.6. Using (11), it is accessible that the converse of Lemma 2.5 is correct provided $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ both are bounded.

Definition 2.7. [3, 16] Assume $T: P \rightarrow P$ be a function. Then:
(i) a point $u_{0} \in P$ is called an asymptotic fixed point of T if $\left\{u_{n}\right\} \subset P$ with $u_{n} \rightharpoonup u_{0}$ such that $\lim _{n \rightarrow \infty}\left\|T u_{n}-u_{n}\right\|=0$. $\widehat{F}(T)$ denotes asymptotic fixed points of T.
(ii) T is called relatively nonexpansive if $\widehat{F}(T)=F(T) \neq \emptyset$ and $\phi\left(u_{0}, T u\right) \leq \phi\left(u_{0}, u\right), \quad \forall u \in P, u_{0} \in F(T)$.
(iii) T is called quasi- ϕ-nonexpansive if $F(T) \neq \emptyset$ and $\phi\left(u_{0}, T u\right) \leq \phi\left(u_{0}, u\right), \quad \forall u \in P, u_{0} \in F(T)$.

Lemma 2.8. [19] Let Y be a uniformly convex and smooth Banach space, $P \subset Y$ be closed convex and $T: P \rightarrow P$ be closed and quasi- ϕ-nonexpansive function. Then, $F(T)$ is closed and convex.

Lemma 2.9. [13] Let Y be an uniformly and smooth convex Banach space. Then, $\exists g:[0,2 r] \rightarrow \mathbb{R}$ a strictly increasing, continuous and convex function, for $r>0$ such that $g(0)=0$ and $g\left(\left\|x_{1}-x_{2}\right\|\right) \leq \phi\left(x_{1}, x_{2}\right), \forall x_{1}, x_{2} \in B_{r}$, where B_{r} be the closed ball of Y.

Lemma 2.10. [22] Let $B_{r}(0)$ be a closed ball of a uniformly convex Banach space Y, where $r>0$. For $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset$ $B_{r}(0)$ and $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\}$ be positive numbers with $\sum_{i=1}^{N} \lambda_{i}=1, \exists g:[0,2 r) \rightarrow[0, \infty)$ a continuous strictly increasing and convex function with $g(0)=0$ such that

$$
\left\|\sum_{n=1}^{N} \lambda_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{N} \lambda_{n}\left\|x_{n}\right\|^{2}-\lambda_{i} \lambda_{j} g\left(\left\|x_{i}-x_{j}\right\|\right), \quad i, j=1,2, \ldots, N, i<j
$$

Lemma 2.11. [17] Let $P \neq \emptyset$ be closed convex subset of Y and $B: P \rightarrow Y^{*}$ be monotone and hemicontinuous function. Then, VIP(4) is closed and convex.
Lemma 2.12. [13] Let $P \neq \emptyset$ be closed convex subset of a strictly convex, reflexive and smooth Banach space Y. Then, \exists a unique element $x_{0} \in P$ such that $\phi\left(x_{0}, x_{1}\right)=\inf _{u \in P} \phi\left(u, x_{1}\right)$, for $x_{1} \in Y$.

Definition 2.13. [1] A map $\Pi_{P}: Y \rightarrow P$ is said to be generalized projection if $\Pi_{P} x_{1}=u_{0}$, for any $x_{1} \in Y$ and u_{0} be the solution of $\phi\left(u_{0}, x_{1}\right)=\inf _{u \in P} \phi\left(u, x_{1}\right)$.

Lemma 2.14. [1] Let $P \neq \emptyset$ be closed convex subset of a strictly convex, reflexive and smooth Banach space Y. Then

$$
\phi\left(u, \Pi_{P} x_{1}\right)+\phi\left(\Pi_{P} x_{1}, x_{1}\right) \leq \phi\left(u, x_{1}\right), \quad \forall u \in P \quad \text { and } \quad x_{1} \in Y
$$

Also, for $x_{1} \in Y$ and $u \in P$,

$$
u=\Pi_{P} x_{1} \Longleftrightarrow\left\langle u-v, J x_{1}-J u\right\rangle \geq 0, \quad \forall v \in P .
$$

Assumption 2.15. The bifunction $\mathbb{G}: P \times P \longrightarrow \mathbb{R}$ satisfies as:
(i) $\mathbb{G}(u, u)=0, \quad \forall u \in P$;
(ii) $\mathbb{G}(u, v)+\mathbb{G}(v, u) \leq 0, \forall u \in P$ i.e., \mathbb{G} is monotone;
(iii) the mapping $u \mapsto G(u, v)$ is upper hemicontinuity, $\forall v \in P$;
(iv) the mapping $v \mapsto \mathbb{G}(u, v), \forall u \in P$ is lower semicontinuous and convex.

Assumption 2.16. The bifunction $b: P \times P \rightarrow \mathbb{R}$ satisfies as:
(i) $b(u, u)-b(u, v)-b(v, u)+b(v, v) \geq 0, \forall u, v \in P$, i.e., skew-symmetric;
(ii) convex in second argument and continuous.

Lemma 2.17. [6] Let Y be a strictly convex, uniformly smooth and reflexive Banach space and $P \subset Y$ be closed convex. Let $D: P \rightarrow Y^{*}$ be a continuous and monotone mapping, let $G: P \times P \longrightarrow \mathbb{R}$ and $b: P \times P \rightarrow \mathbb{R}$ be bifunctions satisfying Assumption 2.15 and 2.16, respectively. For $x_{1} \in Y$ and $r>0$, define $\mathbb{T}_{r}: Y \rightarrow P$ such that:

$$
\begin{equation*}
\mathbb{T}_{r} x_{1}=\left\{v \in P: \mathbb{G}(v, u)+\langle D v, u-v\rangle+b(v, u)-b(v, v)+\frac{1}{r}\left\langle u-v, J v-J x_{1}\right\rangle \geq 0, \forall u \in P\right\} . \tag{12}
\end{equation*}
$$

Then the following holds:
(a) \mathbb{T}_{r} is single valued;
(b) \mathbb{T}_{r} is firmly nonexpansive, i.e., $\forall x_{1}, x_{2} \in Y$,

$$
\left\langle\mathbb{T}_{r} x_{1}-\mathbb{T}_{r} x_{2}, J \mathbb{T}_{r} x_{1}-J \mathbb{T}_{r} x_{2}\right\rangle \leq\left\langle\mathbb{T}_{r} x_{1}-\mathbb{T}_{r} x_{2}, J x_{1}-J x_{2}\right\rangle ;
$$

(c) $F\left(\mathbb{T}_{r}\right)=\operatorname{Sol}(\operatorname{GMEP}(1))$ is closed and convex;
(d) \mathbb{T}_{r} is quasi- ϕ-nonexpansive;
(e) $\phi\left(u_{0}, \mathbb{T}_{r} x_{1}\right)+\phi\left(\mathbb{T}_{r} x_{1}, x_{1}\right) \leq \phi\left(u_{0}, x_{1}\right), \quad \forall u_{0} \in F\left(\mathbb{T}_{r}\right)$.

In continuation, the mapping $\Phi: Y \times Y^{*} \rightarrow \mathbb{R}$, defined by

$$
\Phi\left(x_{1}, x_{1}^{*}\right)=\left\|x_{1}\right\|^{2}-\left\langle x_{1}, x_{1}^{*}\right\rangle+\left\|x_{1}^{*}\right\|^{2}
$$

Examine that $\Phi\left(x_{1}, x_{1}^{*}\right)=\phi\left(x_{1}, J^{-1} x_{1}^{*}\right)$.
Lemma 2.18. [1] Let Y be a strictly convex, smooth and reflexive Banach space. Then,

$$
\Phi\left(x_{1}, x_{1}^{*}\right)+2\left\langle J^{-1} x_{1}^{*}-x_{1}, x_{2}^{*}\right\rangle \leq \Phi\left(x_{1}, x_{1}^{*}+x_{2}^{*}\right), \quad \forall x_{1} \in Y, x_{1}^{*}, x_{2}^{*} \in Y^{*}
$$

3. Main Result

In this section, we provided our main theorem:
Theorem 3.1. Let Y be a 2-uniformly convex and uniformly smooth real Banach space with dual Y^{*} and let $P \subset Y$ be nonempty closed and convex. Let $B: P \rightarrow Y^{*}$ be a γ - ism mapping with constant $\gamma \in(0,1)$. Let $\mathbb{G}: P \times P \rightarrow \mathbb{R}$ and $b: P \times P \rightarrow \mathbb{R}$ be bifunctions satisfying Assumptions 2.15 and 2.16 , respectively and $D: P \rightarrow Y^{*}$ be a continuous and monotone mapping,. For each $i=1,2, \ldots, N$, let $T_{i}: P \rightarrow P$ be closed quasi- ϕ nonexpansive mappings such that $\Gamma:=\operatorname{Sol}(\operatorname{GMEP}(1)) \cap \operatorname{Sol}(\operatorname{VIP}(4)) \cap\left(\bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right)\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ generated by schemes:

$$
\begin{align*}
& x_{0}, x_{1} \in P, \quad P_{1}:=P \\
& w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right), \\
& y_{n}=\Pi_{C} J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right), \\
& v_{n}=J^{-1}\left(\alpha_{n, 0} J w_{n}+\sum_{i=1}^{N} \alpha_{n, i} J T_{i} w_{n}\right), \tag{13}\\
& z_{n}=J^{-1}\left(\delta_{n} J y_{n}+\left(1-\delta_{n}\right) J v_{n}\right), \\
& u_{n}=\mathbb{T}_{r_{n}} z_{n}, \\
& P_{n}=\left\{z \in P: \phi\left(z, u_{n}\right) \leq \phi\left(z, w_{n}\right)\right\}, \\
& Q_{n}=\left\{z \in P:\left\langle x_{n}-z, J x_{n}-J x_{0}\right\rangle \leq 0\right\}, \\
& x_{n+1}=\prod_{P_{n} \cap Q_{n}} x_{0}, \quad \forall n \geq 1 .
\end{align*}
$$

Consider $\left\{\alpha_{n, i}\right\}$ and $\left\{\delta_{n}\right\}$ be sequences in $[0,1]$ and $\left\{\theta_{n}\right\} \subset(0,1)$ satisfying:
(i) $\sum_{i=0}^{N} \alpha_{n, i}=1$;
(ii) $\liminf _{n \rightarrow \infty} \alpha_{n, 0} \alpha_{n, i} \geq 0$;
(iii) $\lim \sup _{n \rightarrow \infty} \delta_{n}<1$;
(iv) $r_{n} \in[a, \infty)$, for some $a>0$;
(v) $\left\{\mu_{n}\right\} \subset(0, \infty)$ satisfying the condition $0<\liminf _{n \rightarrow \infty} \mu_{n} \leq \lim _{\sup _{n \rightarrow \infty}} \mu_{n}<\frac{c^{2} \gamma}{2}$, where c be defined in Lemma 2.3.

Then, $\left\{x_{n}\right\}$ strongly converges to x^{*}, where $x^{*}=\Pi_{\Gamma} x_{0}$, generalized projection of Y onto Γ.

Proof. We divide the proof into several steps.
Step 1. First, we prove that Γ is closed and convex.
By Lemmas 2.8, 2.11 and 2.17, $\Gamma \neq \emptyset$ be closed and convex and thus $\Pi_{\Gamma} x_{0}$ is well defined.
Step 2. Next, prove that $P_{n} \cap Q_{n}$ is closed and convex. From (13), it is obvious that Q_{n} is closed and convex. Clearly, $P_{1}=P$ is closed and convex. Moreover, P_{n} be closed. Next, we prove the convexity of P_{n}. For $q_{1}, q_{2} \in P_{n}$, we see that $q_{1}, q_{2} \in P$. This adopt $t q_{1}+(1-t) q_{2} \in P$, where $t \in(0,1)$, and thus

$$
\begin{equation*}
\phi\left(q_{1}, u_{n}\right) \leq \phi\left(q_{1}, w_{n}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi\left(q_{2}, u_{n}\right) \leq \phi\left(q_{2}, w_{n}\right) \tag{15}
\end{equation*}
$$

The above two inequalities are equivalent to

$$
\begin{equation*}
2\left\langle q_{1}, J w_{n}\right\rangle-2\left\langle q_{1}, J u_{n}\right\rangle \leq\left\|w_{n}\right\|^{2}-\left\|u_{n}\right\|^{2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left\langle q_{2}, J w_{n}\right\rangle-2\left\langle q_{2}, J u_{n}\right\rangle \leq\left\|w_{n}\right\|^{2}-\left\|u_{n}\right\|^{2} \tag{17}
\end{equation*}
$$

By (16) and (17), we have

$$
\begin{equation*}
2\left\langle t q_{1}+(1-t) q_{2}, J w_{n}\right\rangle-2\left\langle t q_{1}+(1-t) q_{2}, J u_{n}\right\rangle \leq\left\|w_{n}\right\|^{2}-\left\|u_{n}\right\|^{2} \tag{18}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\phi\left(t q_{1}+(1-t) q_{2}, u_{n}\right) \leq \phi\left(t q_{1}+(1-t) q_{2}, w_{n}\right) \tag{19}
\end{equation*}
$$

This implies that $t q_{1}+(1-t) q_{2} \in P_{n}$ and hence P_{n} is closed and convex. So, $P_{n} \cap Q_{n}$ is closed and convex, $\forall n \geq 1$.
Step 3. We claim that $\Gamma \subset P_{n} \cap Q_{n}, \forall n \geq 1$.
Let $x^{*} \in \Gamma$ and so

$$
\begin{align*}
\phi\left(x^{*}, u_{n}\right) & =\phi\left(x^{*}, \mathbb{T}_{r_{n}} z_{n}\right) \\
& \leq \phi\left(x^{*}, z_{n}\right) \tag{20}\\
& =\phi\left(x^{*}, J^{-1}\left(\delta_{n} J y_{n}+\left(1-\delta_{n}\right) J v_{n}\right)\right) \\
& \leq \delta_{n} \phi\left(x^{*}, y_{n}\right)+\left(1-\delta_{n}\right) \phi\left(x^{*}, v_{n}\right) \tag{21}
\end{align*}
$$

Using Lemma 2.10, we compute

$$
\begin{aligned}
\phi\left(x^{*}, v_{n}\right)= & \phi\left(x^{*}, J^{-1}\left(\alpha_{n, 0} J w_{n}+\sum_{i=1}^{N} \alpha_{n, i} J T_{i} w_{n}\right)\right) \\
= & \left\|x^{*}\right\|^{2}-2\left\langle x^{*}, \alpha_{n, 0} J w_{n}+\sum_{i=1}^{N} \alpha_{n, i} J T_{i} w_{n}\right\rangle+\left\|\alpha_{n, 0} J w_{n}+\sum_{i=1}^{N} \alpha_{n, i} J T_{i} w_{n}\right\|^{2} \\
\leq & \left\|x^{*}\right\|^{2}-2 \alpha_{n, 0}\left\langle x^{*}, J w_{n}\right\rangle-2 \sum_{i=1}^{N} \alpha_{n, i}\left\langle x^{*}, J T_{i} w_{n}\right\rangle \\
& +\alpha_{n, 0}\left\|J w_{n}\right\|^{2}+\sum_{i=1}^{N} \alpha_{n, i}\left\|J T_{i} w_{n}\right\|^{2}-\alpha_{n, 0} \alpha_{n, i} g\left\|J w_{n}-J T_{i} w_{n}\right\| \\
= & \left\|x^{*}\right\|^{2}-2 \alpha_{n, 0}\left\langle x^{*}, J w_{n}\right\rangle+\alpha_{n, 0}\left\|J w_{n}\right\|^{2} \\
& +\sum_{i=1}^{N} \alpha_{n, i}\left\|J T_{i} w_{n}\right\|^{2}-\alpha_{n, 0} \alpha_{n, j} g\left\|J w_{n}-J T_{i} w_{n}\right\|
\end{aligned}
$$

$=\alpha_{n, 0} \phi\left(x^{*}, w_{n}\right)+\sum_{i=1}^{N} \alpha_{n, i} \phi\left(x^{*}, T_{i} w_{n}\right)-\alpha_{n, 0} \alpha_{n, j} g\left\|J w_{n}-J T_{i} w_{n}\right\|$
$\leq \alpha_{n, 0} \phi\left(p, w_{n}\right)+\sum_{i=1}^{N} \alpha_{n, i} \phi\left(p, w_{n}\right)-\alpha_{n, 0} \alpha_{n, i} g\left\|J w_{n}-J T_{i} w_{n}\right\|$
$\leq \sum_{i=0}^{N} \alpha_{n, i} \phi\left(x^{*}, w_{n}\right)-\alpha_{n, 0} \alpha_{n, i} g\left\|J w_{n}-J T_{i} w_{n}\right\|$
$\leq \phi\left(x^{*}, w_{n}\right)-\alpha_{n, 0} \alpha_{n, i} g\left\|J w_{n}-J T_{i} w_{n}\right\|$.
$\leq \phi\left(x^{*}, w_{n}\right)$
Using Lemmas 2.4 and 2.18, we compute

$$
\begin{align*}
\phi\left(x^{*}, y_{n}\right) & =\phi\left(x^{*}, \Pi_{C} J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)\right) \\
& \leq \phi\left(x^{*}, J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)\right) \\
& =\Phi\left(x^{*}, J w_{n}-\mu_{n} B w_{n}\right) \\
& \leq \Phi\left(x^{*},\left(J w_{n}-\mu_{n} B w_{n}\right)+\mu_{n} B w_{n}\right)-2\left\langle J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-x^{*}, \mu_{n} B w_{n}\right\rangle \\
& =\Phi\left(x^{*}, J w_{n}\right)-2 \mu_{n}\left\langle J^{-1}\left(J w_{n}-\mu_{n} D w_{n}\right)-x^{*}, B w_{n}\right\rangle \\
& =\phi\left(x^{*}, w_{n}\right)-2\left\langle w_{n}-x^{*}, B w_{n}\right\rangle-2 \mu_{n}\left\langle J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-w_{n}, B w_{n}\right\rangle \\
& =\phi\left(x^{*}, w_{n}\right)-2\left\langle w_{n}-x^{*}, B w_{n}-B x^{*}\right\rangle-2 \mu_{n}\left\langle J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-w_{n}, B w_{n}\right\rangle \\
& \leq \phi\left(x^{*}, w_{n}\right)-2 \mu_{n} \gamma\left\|B w_{n}\right\|^{2}+2 \mu_{n}\left\|J^{-1}\left(J w_{n}-B w_{n}\right)-J^{-1} J w_{n}\right\|\left\|B w_{n}\right\|^{2} \\
& \leq \phi\left(x^{*}, w_{n}\right)-2 \mu_{n} \gamma\left\|B w_{n}\right\|^{2}+\frac{4 \mu_{n}^{2}}{c^{2}}\left\|B w_{n}\right\|^{2} \\
& =\phi\left(x^{*}, w_{n}\right)-2 \mu_{n}\left(\gamma-\frac{2 \mu_{n}}{c^{2}}\right)\left\|B w_{n}\right\|^{2} \tag{24}
\end{align*}
$$

which combined with $\mu_{n}<\frac{c^{2} \gamma}{2}$, we have that

$$
\begin{equation*}
\phi\left(x^{*}, y_{n}\right) \leq \phi\left(x^{*}, w_{n}\right) . \tag{25}
\end{equation*}
$$

By (21) (23) and (25) we observe that

$$
\begin{equation*}
\phi\left(x^{*}, u_{n}\right) \leq \phi\left(x^{*}, w_{n}\right) . \tag{26}
\end{equation*}
$$

This implies that $x^{*} \in P_{n}$. Therefore, $\Gamma \subset P_{n}, \forall n \geq 1$.
After a while, by using induction we prove that $\Gamma \subset P_{n} \cap Q_{n}, \forall n \geq 1$. From $Q_{1}=P$, we get $\Gamma \subset P_{1} \cap Q_{1}$. Let $\Gamma \subset P_{j} \cap Q_{j}$, for arbitrary $j \in N$. So, $\exists x_{j+1} \in P_{j} \cap Q_{j}$ such that $x_{j+1}=\prod_{P_{j} \cap Q_{j}} x$. From the concept of x_{j+1}, we get, for all $x^{*} \in P_{j} \cap Q_{j}$,

$$
\left\langle x_{j+1}-x^{*}, J x_{0}-J x_{j+1}\right\rangle \geq 0
$$

Since $\Gamma \subset P_{j} \cap Q_{j}$, we have

$$
\begin{equation*}
\left\langle x_{j+1}-x^{*}, J x_{0}-J x_{j+1}\right\rangle \geq 0, \quad \forall x^{*} \in \Gamma \tag{27}
\end{equation*}
$$

and hence $x^{*} \in Q_{j+1}$. So, we have $\Gamma \subset Q_{j+1}$. Therefore, we obtain $\Gamma \subset P_{j+1} \cap Q_{j+1}$. Thus, $\Gamma \subset P_{n} \cap Q_{n}, \forall n \geq 1$. This means that $\left\{x_{n}\right\}$ is well-defined.
Step 4. Next, claim that $\left\{x_{n}\right\},\left\{w_{n}\right\},\left\{y_{n}\right\},,\left\{v_{n}\right\},\left\{z_{n}\right\},\left\{u_{n}\right\}$ are bounded, $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$ exists and $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=$ 0 .

By (13), we get $x_{n}=\Pi_{Q_{n}} x_{0}$. From $x_{n}=\Pi_{Q_{n}} x_{0}$ and Lemma 2.14, we get

$$
\begin{aligned}
\phi\left(x_{n}, x_{0}\right) & =\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \\
& \leq \phi\left(u, x_{0}\right)-\phi\left(u, \Pi_{Q_{n}} x_{0}\right) \leq \phi\left(u, x_{0}\right), \quad \forall u \in \Gamma \subset Q_{n} .
\end{aligned}
$$

This implies that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded and hence, $\left\{x_{n}\right\}$ is bounded because of (9). Further,

$$
\begin{aligned}
\phi\left(x^{*}, x_{n}\right) & =\phi\left(x^{*}, \Pi_{P_{n-1} \cap Q_{n-1}} x_{0}\right) \\
& =\phi\left(x^{*}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right),
\end{aligned}
$$

implies that $\left\{\phi\left(x^{*}, x_{n}\right)\right\}$ is bounded. Hence, $\left\{T_{i} x_{n}\right\}$ is also bounded because of the fact $\phi\left(x^{*}, T_{i} x_{n}\right) \leq$ $\phi\left(x^{*}, x_{n}\right), \forall p \in \Gamma$. Thus, $\left\{w_{n}\right\}$ is also bounded. From (23), it follows that $\left\{v_{n}\right\}$ is also bounded. By (25) and (26), $\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ are also bounded.

From $x_{n+1}=\Pi_{P_{n} \cap Q_{n}} x_{0} \in Q_{n}$ and $x_{n} \in \Pi_{Q_{n}} x_{0}$, we get

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right), \quad \forall n \geq 1 .
$$

This prove that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing. Thus, $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$ exists because of the boundedness of $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$. Further, we get

$$
\begin{aligned}
\phi\left(x_{n+1}, x_{n}\right) & =\phi\left(x_{n+1}, \Pi_{Q_{n}} x_{0}\right) \\
& \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \\
& =\phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right), \quad \forall n \geq 1
\end{aligned}
$$

which intends

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{28}
\end{equation*}
$$

Using Lemma 2.5, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{29}
\end{equation*}
$$

Step 5. We prove that $x_{n} \rightarrow x^{*}, z_{n} \rightarrow x^{*}$ and $u_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, where x^{*} be an arbitrary point in P.
As Y is reflexive and $\left\{x_{n}\right\}$ is bounded, \exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup x^{*}$. On account of, $P_{n} \cap Q_{n}$ is closed and convex therefore $x^{*} \in P_{n} \cap Q_{n}$. Using weakly lower semicontinuity of $\|\cdot\|^{2}$, we get

$$
\begin{aligned}
\phi\left(x^{*}, x_{0}\right) & =\left\|x^{*}\right\|^{2}-2\left\langle x^{*}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2} \\
& \leq \liminf _{k \rightarrow \infty}\left(\left\|x_{n_{k}}\right\|^{2}-2\left\langle x_{n_{k}}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2}\right) \\
& =\liminf _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right) \\
& \leq \limsup _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right) \\
& \leq \phi\left(x^{*}, x_{0}\right)
\end{aligned}
$$

which implies that $\lim _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right)=\phi\left(x^{*}, x_{0}\right)$. Hence, $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|=\left\|x^{*}\right\|$. Further, $x_{n_{k}} \rightarrow x^{*}$ as $k \rightarrow \infty$ because of Kadec-Klee property of Y. Since $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$ exists therefore it yield that $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)=\phi\left(x^{*}, x_{0}\right)$. If \exists subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ with $x_{n_{j}} \rightarrow \tilde{x}$ as $j \rightarrow \infty$, then

$$
\begin{aligned}
\phi\left(x^{*}, \tilde{x}\right) & =\lim _{k, j \rightarrow \infty} \phi\left(x_{n_{k}}, x_{n_{j}}\right) \\
& =\lim _{k, j \rightarrow \infty} \phi\left(x_{n_{k}}, \Pi_{Q_{n_{j}}} x_{0}\right) \\
& \leq \lim _{k, j \rightarrow \infty}\left\{\phi\left(x_{n_{k}}, x_{0}\right)-\phi\left(x_{n_{j}}, x_{0}\right)\right\}=0
\end{aligned}
$$

that is, $x^{*}=\tilde{x}$ and thus $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.
Since $\left\|w_{n}-x_{n}\right\|=\left\|\theta_{n}\left(x_{n}-x_{n-1}\right)\right\| \leq\left\|x_{n}-x_{n-1}\right\|$ and using (29), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0 \tag{30}
\end{equation*}
$$

By Remark 2.6 and using bundedness of $\left\{w_{n}\right\}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n}, w_{n}\right)=0 \tag{31}
\end{equation*}
$$

By (29) and (30), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-w_{n}\right\|=0 \tag{32}
\end{equation*}
$$

it follows from Remark 2.6

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, w_{n}\right)=0 \tag{33}
\end{equation*}
$$

As $x_{n+1}=\prod_{P_{n} \cap Q_{n}} x_{0} \in P_{n}$, we have

$$
\phi\left(x_{n+1}, u_{n}\right) \leq \phi\left(x_{n+1}, w_{n}\right)
$$

Using (33), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, u_{n}\right)=0 \tag{34}
\end{equation*}
$$

By (9), we have

$$
\lim _{n \rightarrow \infty}\left(\left\|x_{n+1}\right\|-\left\|u_{n}\right\|\right)=0
$$

which intend

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=\left\|x^{*}\right\|, \text { provided } \lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\left\|x^{*}\right\| \tag{35}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=\left\|x^{*}\right\|=\left\|J x^{*}\right\|, \tag{36}
\end{equation*}
$$

which suggest that $\left\{\left\|J u_{n}\right\|\right\}$ is bounded. Since Y and Y^{*} are reflexive, we may consider $J u_{n} \rightharpoonup y^{*} \in Y^{*}$. Thanks to the reflexivity of $Y, J(Y)=Y^{*}$, i.e., $\exists y \in Y$ such that $J y=y^{*}$, which intend

$$
\begin{gathered}
\phi\left(x_{n+1}, u_{n}\right)=\left\|x_{n+1}\right\|^{2}-2\left\langle x_{n+1}, J u_{n}\right\rangle+\left\|u_{n}\right\|^{2} \\
\phi\left(x_{n+1}, u_{n}\right)=\left\|x_{n+1}\right\|^{2}-2\left\langle x_{n+1}, J u_{n}\right\rangle+\left\|J u_{n}\right\|^{2} .
\end{gathered}
$$

Further, in above equation taking limit infimum as $n \rightarrow \infty$, we have

$$
\begin{aligned}
0 & \geq\left\|x^{*}\right\|^{2}-2\left\langle x^{*} x, y^{*}\right\rangle+\left\|y^{*}\right\|^{2} \\
& =\left\|x^{*}\right\|^{2}-2\left\langle x^{*}, J y\right\rangle+\|J y\|^{2} \\
& =\left\|x^{*}\right\|^{2}-2\left\langle x^{*}, J y\right\rangle+\|y\|^{2} \\
& =\phi\left(x^{*}, y\right),
\end{aligned}
$$

i.e., $x^{*}=y$ and hence, $y^{*}=J x^{*}$. Thus, $J u_{n} \rightharpoonup J x^{*} \in Y^{*}$. Thanks to Kadec-Klee property of Y^{*} and (36), we get

$$
\lim _{n \rightarrow \infty}\left\|J u_{n}-J x^{*}\right\|=0
$$

By the demicontinuity of J^{-1}, we have $u_{n} \rightharpoonup x^{*}$. Thanks to Kadec-Klee property of Y and (35), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}=x^{*} \tag{37}
\end{equation*}
$$

By the weakly lower semicontinuity of $\|\cdot\|^{2}$ and for any $\hat{x} \in \Gamma$, we calculate

$$
\begin{aligned}
\phi\left(\hat{x}, x^{*}\right) & =\|\hat{x}\|^{2}-2\left\langle\hat{x}, J x^{*}\right\rangle+\left\|x^{*}\right\|^{2} \\
& \leq \liminf _{n \rightarrow \infty}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J u_{n}\right\rangle+\left\|u_{n}\right\|^{2}\right) \\
& =\liminf _{n \rightarrow \infty} \phi\left(\hat{x}, u_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty} \phi\left(\hat{x}, u_{n}\right) \\
& =\limsup _{n \rightarrow \infty}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J u_{n}\right\rangle+\left\|u_{n}\right\|^{2}\right) \\
& \leq \phi\left(\hat{x}, x^{*}\right),
\end{aligned}
$$

which intend

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(\hat{x}, u_{n}\right)=\phi\left(\hat{x}, x^{*}\right) . \tag{38}
\end{equation*}
$$

As $x_{n} \rightarrow x^{*}, n \rightarrow \infty$ and (37), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{39}
\end{equation*}
$$

By the uniform continuity of J, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J u_{n}\right\|=0 \tag{40}
\end{equation*}
$$

By the concept of ϕ and for any $\hat{x} \in \Gamma$, we calculate

$$
\begin{aligned}
\phi\left(\hat{x}, x_{n}\right)-\phi\left(\hat{x}, u_{n}\right) & =\left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}-2\left\langle\hat{x}, J x_{n}-J u_{n}\right\rangle \\
& \leq\left\|x_{n}-u_{n}\right\|\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right)+2\|\hat{x}\|\left\|J x_{n}-J u_{n}\right\| .
\end{aligned}
$$

By (39) and (40), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\phi\left(\hat{x}, x_{n}\right)-\phi\left(\hat{x}, u_{n}\right)\right\}=0 \tag{41}
\end{equation*}
$$

By (38) and (41), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(\hat{x}, x_{n}\right)=\phi\left(\hat{x}, x^{*}\right) \tag{42}
\end{equation*}
$$

Again, by using weakly lower semicontinuity of $\|\cdot\|^{2}$ and for any $\hat{x} \in \Gamma$, we get

$$
\begin{aligned}
\phi\left(\hat{x}, x^{*}\right) & =\|\hat{x}\|^{2}-2\left\langle\hat{x}, J x^{*}\right\rangle+\left\|x^{*}\right\|^{2} \\
& \leq \liminf _{n \rightarrow \infty}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J w_{n}\right\rangle+\left\|w_{n}\right\|^{2}\right) \\
& =\liminf _{n \rightarrow \infty} \phi\left(\hat{x}, w_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty} \phi\left(\hat{x}, w_{n}\right) \\
& =\limsup _{n \rightarrow \infty}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J w_{n}\right\rangle+\left\|w_{n}\right\|^{2}\right) \\
& \leq \phi\left(\hat{x}, x^{*}\right)
\end{aligned}
$$

which yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(\hat{x}, w_{n}\right)=\phi\left(\hat{x}, x^{*}\right) \tag{43}
\end{equation*}
$$

Hence, for any $\hat{x} \in \Gamma \subset P_{n}$ and by (23), we have

$$
\begin{equation*}
\phi\left(\hat{x}, v_{n}\right) \leq \phi\left(\hat{x}, w_{n}\right) \tag{44}
\end{equation*}
$$

Using (43) and (44), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(\hat{x}, v_{n}\right)=\phi\left(\hat{x}, x^{*}\right) \tag{45}
\end{equation*}
$$

By (20), (26), Lemma 2.17(e) and $u_{n}=\mathbb{T}_{r_{n}} z_{n}$, we have for any $\hat{x} \in \Gamma$

$$
\begin{aligned}
\phi\left(u_{n}, z_{n}\right) & =\phi\left(\mathbb{T}_{r_{n}} z_{n}, z_{n}\right) \\
& \leq \phi\left(\hat{x}, z_{n}\right)-\phi\left(\hat{x}, \mathbb{T}_{r_{n}} z_{n}\right) \\
& =\phi\left(\hat{x}, w_{n}\right)-\phi\left(\hat{x}, u_{n}\right) .
\end{aligned}
$$

By (38), (43) and taking $n \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(u_{n}, z_{n}\right)=0 \tag{46}
\end{equation*}
$$

and hence from (9), we have

$$
\lim _{n \rightarrow \infty}\left(\left\|u_{n}\right\|-\left\|z_{n}\right\|\right)=0
$$

By relation (35), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}\right\|=\left\|x^{*}\right\| \tag{47}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J z_{n}\right\|=\left\|J x^{*}\right\| \tag{48}
\end{equation*}
$$

i.e., $\left\{\left\|J z_{n}\right\|\right\}$ is bounded in Y^{*}. By reflexivity of Y^{*}, we consider $J z_{n} \rightharpoonup y^{*} \in Y^{*}$ as $n \rightarrow \infty$. As $J(Y)=Y^{*} \exists y \in Y$ such that $J y=y^{*}$. Thus,

$$
\begin{aligned}
\phi\left(u_{n}, z_{n}\right) & =\left\|u_{n}\right\|^{2}-2\left\langle u_{n}, J z_{n}\right\rangle+\left\|z_{n}\right\|^{2} \\
& =\left\|u_{n}\right\|^{2}-2\left\langle u_{n}, J z_{n}\right\rangle+\left\|J z_{n}\right\|^{2}
\end{aligned}
$$

Taking $\lim \inf _{n \rightarrow \infty}$ in above equation, we have

$$
\begin{aligned}
0 & \geq\left\|x^{*}\right\|^{2}-2\left\langle x^{*}, y^{*}\right\rangle+\left\|y^{*}\right\|^{2} \\
& =\left\|x^{*}\right\|^{2}-2\left\langle x^{*}, J y\right\rangle+\|J y\|^{2} \\
& =\left\|x^{*}\right\|^{2}-2\left\langle x^{*}, J y\right\rangle+\|y\|^{2} \\
& =\phi\left(x^{*}, y\right) .
\end{aligned}
$$

From Remark 2.1, we have $x^{*}=y$, i.e., $y^{*}=J x^{*}$. Thus, $J z_{n} \rightharpoonup J x^{*} \in Y^{*}$. Thanks to Kadec-Klee property of Y^{*} and (48)

$$
\lim _{n \rightarrow \infty}\left\|J z_{n}-J x^{*}\right\|=0
$$

Using demicontinuity of J^{-1} in above yield $z_{n} \rightharpoonup x^{*}$. Thanks to Kadec-Klee property of Y and (47), we get

$$
\lim _{n \rightarrow \infty} z_{n}=x^{*}
$$

Step 6. Next, claim that $x^{*} \in \Gamma$.
By Lemma 2.5 and (46), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0 \tag{49}
\end{equation*}
$$

By the uniform continuity of J, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J u_{n}-J z_{n}\right\|=0 \tag{50}
\end{equation*}
$$

Further, by (30), (39) and (49), we get

$$
\begin{align*}
\left\|w_{n}-z_{n}\right\| & \leq\left\|w_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-z_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty \tag{51}
\end{align*}
$$

Again, by uniform continuity of J, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J w_{n}-J z_{n}\right\|=0 \tag{52}
\end{equation*}
$$

By (20), (21), (23) and (24), we obtain for any $\hat{x} \in \Gamma$

$$
\begin{align*}
\phi\left(\hat{x}, z_{n}\right) & \leq \delta_{n} \phi\left(\hat{x}, y_{n}\right)+\left(1-\delta_{n}\right) \phi\left(\hat{x}, v_{n}\right) \\
& \leq \phi\left(\hat{x}, w_{n}\right)-2 \mu_{n} \delta_{n}\left(\gamma-\frac{2 \mu_{n}}{c^{2}}\right)\left\|B w_{n}\right\|^{2} \tag{53}
\end{align*}
$$

this implies that

$$
\begin{align*}
\left.2 \mu_{n} \delta_{n}\left(\gamma-\frac{2 \mu_{n}}{c^{2}}\right)\right]\left\|B w_{n}\right\|^{2} & \leq \phi\left(\hat{x}, w_{n}\right)-\phi\left(\hat{x}, z_{n}\right) \\
& =\left\|w_{n}\right\|^{2}-\left\|z_{n}\right\|^{2}-2\left\langle\hat{x}, J w_{n}-J z_{n}\right\rangle \\
& \leq\left\|w_{n}-z_{n}\right\|\left(\left\|w_{n}\right\|+\left\|z_{n}\right\|\right)+2\|\hat{x}\|\left\|J w_{n}-J z_{n}\right\| \tag{55}
\end{align*}
$$

it follows from (51),(52), (55) and $\mu_{n} \delta_{n}\left(\gamma-\frac{2 \mu_{n}}{c^{2}}\right)>0$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|B w_{n}\right\|=0 \tag{56}
\end{equation*}
$$

Since B is γ-ism and so $\frac{1}{\gamma}$-Lipschitz continuous. It immediately follows from $\lim _{n \rightarrow \infty} w_{n}=x^{*}$ and (56) that $x^{*} \in B^{-1}(0)$. Thus, $x^{*} \in \operatorname{Sol}(V I P(4))$.

Furthermore, combining (13) with (56) yields that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x^{*}\right\| & =\lim _{n \rightarrow \infty}\left\|\Pi_{C} J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-\Pi_{\mathcal{C}} x^{*}\right\| \\
& \leq \lim _{n \rightarrow \infty}\left\|J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-x^{*}\right\| \\
& =0 \tag{57}
\end{align*}
$$

Using Lemma 2.4 and 2.18, we estimate

$$
\begin{align*}
\phi\left(w_{n}, y_{n}\right) & =\phi\left(w_{n}, \Pi_{C} J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)\right) \\
& \leq \phi\left(w_{n}, J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)\right) \\
& \leq \Phi\left(w_{n},\left(J w_{n}-\mu_{n} B w_{n}\right)\right) \\
& \leq \Phi\left(w_{n},\left(J w_{n}-\mu_{n} B w_{n}\right)+\mu_{n} B w_{n}\right)-2\left\langle J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-w_{n}, \mu_{n} B w_{n}\right\rangle \\
& =\phi\left(w_{n}, w_{n}\right)+2\left\langle J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-w_{n},-\mu_{n} B w_{n}\right\rangle \\
& =2 \mu_{n}\left\langle J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-w_{n},-B w_{n}\right\rangle \\
& \leq\left\|J^{-1}\left(J w_{n}-\mu_{n} B w_{n}\right)-J^{-1} J w_{n}\right\| \\
& \leq \frac{4}{c^{2}} \mu_{n}^{2}\left\|B w_{n}\right\|^{2}, \tag{58}
\end{align*}
$$

then using (56) we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(w_{n}, y_{n}\right)=0 \tag{59}
\end{equation*}
$$

By Lemma 2.5, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \tag{60}
\end{equation*}
$$

Further, by (37), (57) and (60), we get

$$
\begin{align*}
\left\|u_{n}-w_{n}\right\| & =\left\|u_{n}-y_{n}+y_{n}-w_{n}\right\| \\
& \leq\left\|u_{n}-y_{n}\right\|+\left\|w_{n}-y_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty \tag{61}
\end{align*}
$$

From $r_{n} \geq a$ and (50), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J u_{n}-J z_{n}\right\|}{r_{n}}=0 \tag{62}
\end{equation*}
$$

By $u_{n}=\mathbb{T}_{r_{n}} z_{n}$, we obtain

$$
G\left(u_{n}, v\right)+\left\langle D u_{n}, v-u_{n}\right\rangle+b\left(v, u_{n}\right)-b\left(u_{n}, u_{n}\right)+\frac{1}{r_{n}}\left\langle v-u_{n}, J u_{n}-J z_{n}\right\rangle \geq 0, \quad \forall v \in P
$$

Using Assumption 2.15(ii), we have

$$
\begin{aligned}
\frac{1}{r_{n}}\left\langle v-u_{n}, J u_{n}-J z_{n}\right\rangle & \geq-G\left(u_{n}, v\right)+\left\langle D u_{n}, u_{n}-v\right\rangle-b\left(v, u_{n}\right)+b\left(u_{n}, u_{n}\right) \\
& \geq \mathbb{G}\left(v, u_{n}\right)+\left\langle D u_{n}, u_{n}-v\right\rangle-b\left(v, u_{n}\right)+b\left(u_{n}, u_{n}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, from (62) and by Assumption 2.15 (iv), we obtain

$$
\mathrm{G}\left(v, x^{*}\right)+\left\langle D x^{*}, x^{*}-v\right\rangle-b\left(v, x^{*}\right)+b\left(x^{*}, x^{*}\right) \leq 0, \quad \forall v \in P .
$$

For all $t \in(0,1]$ and $v \in P$, setting $v_{t}:=t v+(1-t) x^{*}$. Hence, $v_{t} \in P$ and thus

$$
G\left(v_{t}, x^{*}\right)+\left\langle D x^{*}, x^{*}-v_{t}\right\rangle-b\left(v_{t}, x^{*}\right)+b\left(x^{*}, x^{*}\right) \leq 0 .
$$

By Assumption 2.15(i)-(iv), we get

$$
\begin{aligned}
0 & =\mathbb{G}\left(v_{t}, v_{t}\right) \\
& \leq t \mathbb{G}\left(v_{t}, v\right)+(1-t) \mathbb{G}\left(v_{t}, x^{*}\right) \\
& \leq t \mathbb{G}\left(v_{t}, v\right)+(1-t)\left[b\left(v_{t}, x^{*}\right)-b\left(x^{*}, x^{*}\right)+\left\langle D x^{*}, v_{t}-x^{*}\right\rangle\right] . \\
& \leq t \mathbb{G}\left(v_{t}, v\right)+t(1-t)\left[b\left(v, x^{*}\right)-b\left(x^{*}, x^{*}\right)+\left\langle D x^{*}, v-x^{*}\right\rangle\right]
\end{aligned}
$$

which yields

$$
G\left(x^{*}, v\right)+\left\langle D x^{*}, v-x^{*}\right\rangle+b\left(v, x^{*}\right)-b\left(x^{*}, x^{*}\right) \geq 0, \quad \forall v \in P .
$$

Thus, $x^{*} \in \operatorname{Sol}(\operatorname{GMEP}(1))$.
Further, claim that $x^{*} \in \bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right)$.
Using (21), (22) into (25), we have for any $\hat{x} \in \Gamma$

$$
\begin{aligned}
\phi\left(\hat{x}, u_{n}\right) & \leq \delta_{n} \phi\left(\hat{x}, y_{n}\right)+\left(1-\delta_{n}\right) \phi\left(\hat{x}, v_{n}\right) \\
& \leq \delta_{n} \phi\left(\hat{x}, w_{n}\right)+\left(1-\delta_{n}\right)\left[\phi\left(\hat{x}, w_{n}\right)-\alpha_{n, 0} \alpha_{n, j} g\left\|J w_{n}-J T_{i} w_{n}\right\|\right] \\
& \leq \phi\left(\hat{x}, w_{n}\right)-\left(1-\delta_{n}\right) \alpha_{n, 0} \alpha_{n, j} g\left\|J w_{n}-J T_{i} w_{n}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left(1-\delta_{n}\right) \alpha_{n, 0} \alpha_{n, j} g\left\|J w_{n}-J T_{i} w_{n}\right\| \leq \phi\left(\hat{x}, w_{n}\right)-\phi\left(\hat{x}, u_{n}\right) \tag{63}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\phi\left(\hat{x}, w_{n}\right)-\phi\left(\hat{x}, u_{n}\right) & =\left\|w_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}-2\left\langle\hat{x}, J w_{n}-J u_{n}\right\rangle \\
& \leq\left\|w_{n}-u_{n}\right\|\left(\left\|w_{n}\right\|+\left\|u_{n}\right\|\right)+2\|\hat{x}\|\left\|J w_{n}-J u_{n}\right\| .
\end{aligned}
$$

Using (61) and the property of J in above inequality, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\phi\left(\hat{x}, w_{n}\right)-\phi\left(\hat{x}, u_{n}\right)\right)=0 \tag{64}
\end{equation*}
$$

By Lemma 2.9 and given conditions in (63), we have

$$
\lim _{n \rightarrow \infty} g\left(\left\|J T_{i} w_{n}-J w_{n}\right\|\right)=0
$$

Using the concept of g

$$
\lim _{n \rightarrow \infty}\left\|J T_{i} w_{n}-J w_{n}\right\|=0
$$

which yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i} w_{n}-w_{n}\right\|=0 \tag{65}
\end{equation*}
$$

By (32), (60), (49) and (61), we observe that $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{w_{n}\right\}$ and $\left\{z_{n}\right\}$ all have the same asymptotic behaviour, hence from (65), we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i} x_{n}-x_{n}\right\|=0 \tag{66}
\end{equation*}
$$

This means that $x^{*}=T_{i} x^{*}$, i.e., $x^{*} \in \bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right)$. Then, $x^{*} \in \operatorname{Sol}(\operatorname{GMEP}(1)) \cap \operatorname{Sol}(\operatorname{VIP}(4)) \cap\left(\bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right)\right)$.
Step 7. Finally, we show $x^{*}=\Pi_{\Gamma} x_{0}$. Taking $k \rightarrow \infty$ in (27), we obtain

$$
\left\langle x^{*}-\hat{x}, J x_{0}-J x^{*}\right\rangle \geq 0, \quad \forall \hat{x} \in \Gamma .
$$

Using Lemma 2.14, we get $x^{*}=\Pi_{\Gamma} x_{0}$.
We provided some consequences from our main Theorem 3.1:
Corollary 3.2. Let Y be a uniformly convex and uniformly smooth real Banach space with dual Y^{*} and let $P \subset Y$ be nonempty closed and convex. Let $\mathbb{G}: P \times P \rightarrow \mathbb{R}$ and $b: P \times P \rightarrow \mathbb{R}$ be bifunctions satisfying Assumptions 2.15 and 2.16, respectively and $D: P \rightarrow Y^{*}$ be a continuous and monotone mapping. For each $i=1,2, \ldots, N$, let $T_{i}: P \rightarrow P$ be closed quasi- ϕ nonexpansive mappings such that $\Gamma:=\operatorname{Sol}(\operatorname{GMEP}(1)) \cap\left(\bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right)\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ generated by schemes:

$$
\begin{align*}
& x_{0}, x_{1} \in P, \quad P_{1}:=P, \\
& w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right), \\
& v_{n}=J^{-1}\left(\alpha_{n, 0} J w_{n}+\sum_{i=1}^{N} \alpha_{n, i} J T_{i} w_{n}\right), \\
& z_{n}=J^{-1}\left(\delta_{n} J w_{n}+\left(1-\delta_{n}\right) J v_{n}\right), \tag{67}\\
& u_{n}=\mathbb{T}_{r_{n}} z_{n}, \\
& P_{n}=\left\{z \in P: \phi\left(z, u_{n}\right) \leq \phi\left(z, w_{n}\right)\right\}, \\
& Q_{n}=\left\{z \in P:\left\langle x_{n}-z, J x_{n}-J x_{0}\right\rangle \leq 0\right\}, \\
& x_{n+1}=\prod_{P_{n} \cap Q_{n}} x_{0}, \quad \forall n \geq 1 .
\end{align*}
$$

Consider $\left\{\alpha_{n, i}\right\}$ and $\left\{\delta_{n}\right\}$ be sequences in $[0,1]$ and $\left\{\theta_{n}\right\} \subset(0,1)$ satisfying:
(i) $\sum_{i=0}^{N} \alpha_{n, i}=1$;
(ii) $\liminf _{n \rightarrow \infty} \alpha_{n, 0} \alpha_{n, i} \geq 0$;
(iii) $\limsup _{n \rightarrow \infty} \delta_{n}<1$;
(iv) $r_{n} \in[a, \infty)$, for some $a>0$.

Then, $\left\{x_{n}\right\}$ strongly converges to x^{*}, where $x^{*}=\Pi_{\Gamma} x_{0}$, generalized projection of Y onto Γ.

Corollary 3.3. Let Y be a uniformly convex and uniformly smooth real Banach space with dual Y^{*} and let $P \subset Y$ be nonempty closed and convex. Let $\mathbb{G}: P \times P \rightarrow \mathbb{R}$ be bifunction satisfying Assumption 2.15 and $D: P \rightarrow Y^{*}$ be a continuous and monotone mapping. For each $i=1,2, \ldots, N$, let $T_{i}: P \rightarrow P$ be closed quasi- ϕ nonexpansive mappings such that $\Gamma:=\operatorname{Sol}(\operatorname{GEP}(2)) \cap\left(\bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right)\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ generated by schemes:

$$
\begin{align*}
& x_{0}, x_{1} \in P, \quad P_{1}:=P, \\
& w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right), \\
& v_{n}=J^{-1}\left(\alpha_{n, 0} J w_{n}+\sum_{i=1}^{N} \alpha_{n, i} J T_{i} w_{n}\right), \\
& z_{n}=J^{-1}\left(\delta_{n} J w_{n}+\left(1-\delta_{n}\right) J v_{n}\right), \tag{68}\\
& u_{n}=\mathbb{T}_{r_{n}} z_{n}, \\
& P_{n}=\left\{z \in P: \phi\left(z, u_{n}\right) \leq \phi\left(z, w_{n}\right)\right\}, \\
& Q_{n}=\left\{z \in P:\left\langle x_{n}-z, J x_{n}-J x_{0}\right\rangle \leq 0\right\}, \\
& x_{n+1}=\prod_{P_{n} \cap Q_{n}} x_{0}, \quad \forall n \geq 1 .
\end{align*}
$$

Consider $\left\{\alpha_{n, i}\right\}$ and $\left\{\delta_{n}\right\}$ be sequences in $[0,1]$ and $\left\{\theta_{n}\right\} \subset(0,1)$ satisfying:
(i) $\sum_{i=0}^{N} \alpha_{n, i}=1$;
(ii) $\liminf _{n \rightarrow \infty} \alpha_{n, 0} \alpha_{n, i} \geq 0$;
(iii) $\lim \sup _{n \rightarrow \infty} \delta_{n}<1$;
(iv) $r_{n} \in[a, \infty)$, for some $a>0$.

Then, $\left\{x_{n}\right\}$ strongly converges to x^{*}, where $x^{*}=\Pi_{\Gamma} x_{0}$, generalized projection of Y onto Γ.

Remark 3.4. If Y is a Hilbert space, then we have $Y^{*}=Y, J=J^{-1}=I$, an identity mapping, $\phi\left(x_{1}, x_{2}\right)=$ $\left\|x_{1}-x_{2}\right\|^{2}$, for all $x_{1}, x_{2} \in Y, c=1$, the two uniformly convex constant, $\Pi_{P}=\mathbb{P}_{P}$, projection mapping onto P and nonexpansive mappings T_{i}, for each $i=1,2, \ldots, N$ with $\bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right) \neq \emptyset$ are quasi- ϕ nonexpansive mappings. Thus, if one replaces quasi- ϕ nonexpansive mappings into nonexpansive mappings with $\bigcap_{i=1}^{N} \mathrm{~F}\left(T_{i}\right) \neq \emptyset$ in a Hilbert space then the assertions of Theorem 3.1 remain valid.

4. Numerical Example

Example 4.1. Let $Y=\mathbb{R}, P=[a, b]$, where $a, b \in \mathbb{R}$ but fixed, and let $\mathbb{G}: P \times P \rightarrow \mathbb{R}$ be defined by $\mathbb{G}(u, v)=$ $(u-1)(v-u), \forall u, v \in P$ and $b: P \times P \rightarrow \mathbb{R}$ be defined by $b(u, v)=u v, \forall u, v \in P$; let $D: P \rightarrow \mathbb{R}$ be defined by $D(u)=u, \forall u \in P$. Let $B: P \rightarrow \mathbb{R}$ be defined by $B u=(3 u-1)$; let $T_{i}: P \rightarrow P$ be defined by $T_{i} u=\frac{u+i}{1+3 i} u$. Setting $\left\{\mu_{n}\right\}=\left\{\frac{0.9}{n}\right\}, r_{n}=\frac{1}{4}, \theta_{n}=0.9, \alpha_{n, 0}=\frac{1}{2}, \sum_{i=1}^{N} \alpha_{n, i}=\frac{1}{2}$ such that $\sum_{i=0}^{N} \alpha_{n, i}=1$ and $\left\{\delta_{n}\right\}=\left\{\frac{1}{n^{3}}\right\}, \forall n \geq 1$. Let $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ be generated by the hybrid iterative algorithm (13) converges to $x^{*}=\left\{\frac{1}{3}\right\} \in \Gamma$:

Proof. Obviously G and b satisfy Assumptions 2.15 and 2.16 , respectively and D is continuous and monotone and hence $\operatorname{Sol}(\operatorname{GMEP}(1))=\left\{\frac{1}{3}\right\} \neq \emptyset$. Also, B is $\frac{1}{3}$-ism and $\operatorname{Sol}(\operatorname{VIP}(4))=\left\{\frac{1}{3}\right\} \neq \emptyset$. And T is quasi $-\phi-$ nonexpansive with $\operatorname{Fix}\left(T_{i}\right)=\left\{\frac{1}{3}\right\}$. Thus, $\Gamma:=\operatorname{Sol}(\operatorname{GMEP}(1)) \cap \operatorname{Sol}(\operatorname{VIP}(4)) \cap \mathrm{F}\left(T_{i}\right)=\left\{\frac{1}{3}\right\} \neq \emptyset$. The iterative scheme (13) becomes following scheme after simplification: Initial values given x_{0}, x_{1},

$$
\left\{\begin{array}{l}
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) \tag{69}\\
y_{n}=\mathbb{P}_{P}\left(w_{n}-\mu_{n} B w_{n}\right)=\left\{\begin{array}{l}
0, \text { if } x<0, \\
1, \text { if } x>1, \\
w_{n}-\mu_{n} \frac{w_{n}}{2}, \\
\text { otherwise. }
\end{array}\right. \\
v_{n}=\alpha_{n, 0} w_{n}+\sum_{i=1}^{N} \alpha_{n, i} w_{n} ; \quad z_{n}=\delta_{n} y_{n}+\left(1-\delta_{n}\right) v_{n} ; \quad u_{n}=\frac{1+4 z_{n}}{7} ; \\
C_{n}=\left[e_{n}, \infty\right), \quad \text { where } e_{n}=\frac{u_{n}+w_{n}}{2} ; \\
Q_{n}=\left[x_{n}, \infty\right) ; \\
x_{n+1}=\mathbb{P}_{P_{n} \cap Q_{n}} x_{0}, \quad \forall n \geq 1, \mathbb{P} \text { denotes the metric projection. }
\end{array}\right.
$$

Finally, using the software Matlab 7.8.0, we have following figures which show that $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ converge to $\hat{x}=\left\{\frac{1}{3}\right\}$ as $n \rightarrow+\infty$.

Fig.2: Convergence of $\left\{x_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ when $x_{0}=-1, x_{1}=-4$

5. Conclusions

We proposed an inertial type gradient projection hybrid iterative algorithm for finding a common solution of $\operatorname{GMEP}(1)$, $\operatorname{VIP}(4)$ for a γ-ism and $\operatorname{FPP}(5)$ for a family of quasi- ϕ-nonexpansive mappings in two-uniformly convex and uniformly smooth Banach space. Theorem 3.1 is an upgrade of the result of [16] and [5] in the following sense:
(i) In [16], the authors studied and analyzed a convergence theorem for a relatively nonexpansive mapping whereas in our Theorem 3.1, a convergence theorem is showed for a family of quasi- ϕ nonexpansive mappings.
(ii) In [5], the authors studied convergence analysis theorem in a real Hilbert space for one nonexpansive mapping where as in our Theorem, we studied in the much more general 2-uniformly convex and uniformly smooth Banach space and for a family of quasi- ϕ nonexpansive mappings.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces, pp. 15-50; In: Properties and applications, Lect. Notes Pure Appl. Math., 1996.
[2] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145.
[3] D. Butnariu, S. Reich, A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 7 (2001), 151-174.
[4] Q. L. Dong, K. R. Kazmi, R. Ali, X. H. Li, Inertial Krasnoseski-Mann type hybrid algorithms for solving hierarchical fixed point problems, J. Fixed Point Theory Appl., (2019) 21:57.
[5] Q. L. Dong, H. B. Yuan, Y. J. Cho, Th. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12(1) (2018), 87-102.
[6] M. Farid, S. S. Irfan, M. F. Khan, S. A. Khan, Strong convergence of gradient projection method for generalized equilibrium problem in a Banach space, J. Inequal. Appl., (2017) 2017:297
[7] M. Farid, K. R. Kazmi, Common solutions to some systems of vector equilibrium problems and common fixed point problems in Banach space, Journal of Nonlinear Analysis and Optimization; Theory \& Applications, 7(1) (2016), 55-74.
[8] S. Gupta, S. Husain, V. N. Mishra, Variational inclusion governed by $\alpha \beta-H((.,),.(.,)$.$) -mixed accretive mapping, Filomat, 31(20) (2017),$ 6529-6542.
[9] P. Hartman, G. Stampacchia, On some non-linear elliptic differential-functional equation, Acta Mathenatica, 115 (1966), 271-310.
[10] S. Husain, S. Gupta, V. N. Mishra, Graph Convergence for the H(.,.)-Mixed Mapping with an Application for Solving the System of Generalized Variational Inclusions, Fixed Point Theory and Applications, (2013), 2013:304.
[11] S. Husain, S. Gupta, V. N. Mishra, An existence theorem of solutions for the system of generalized vector quasi-variational inequalities, American Journal of Operations Research (AJOR), 3 (2013), 329-336.
[12] J. Iqbal, V. N. Mishra, W. A. Mir, A. H. Dar, M. Ishtyak, L. Rathour, Generalized Resolvent Operator involving $\mathcal{G}(\cdot, \cdot)$-Co-monotone mapping for Solving Generalized Variational Inclusion Problem, Georgian Mathematical Journal, 3(4) (2022), 533-542.
[13] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithim in a Banach space, SIAM J. Optim., 13 (2002), $938-945$.
[14] K. R. Kazmi, R. Ali, Common solution to an equilibrium problem and a fixed point problem for an asymptotically quasi- ϕ-nonexpansive mapping in intermediate sense, RACSAM, 111 (2017), 877-889.
[15] P. E. Maingé, Convergence theorem for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236.
[16] S. Y. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, Journal of Approximation Theory, 134 (2005), 257-266.
[17] K. Nakajo, Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput, 271 (2017), 251-258.
[18] W. Takahashi, K. Zembayashi, Strong and weak convergence theorem for equilibrium problems and relatively nonexpansive mmapings in Banach spaces, Nonlinear Anal., 70 (2009), 45-57.
[19] X. L. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 225 (2009), 20-30.
[20] Vandana, R. Dubey, Deepmala, L. N. Mishra, V. N. Mishra, Duality relations for a class of a multiobjective fractional programming problem involving support functions, American J. Operations Research, 8 (2018), 294-311.
[21] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.
[22] S. Zhang, Generalized mixed equilibrium problem in Banach spaces, Appl. Math. Mech. (English Ed.), 30 (30) (2009), 1105-1112.

[^0]: 2020 Mathematics Subject Classification. 47H10, 47J22, 47J25
 Keywords. Quasi- ϕ-nonexpansive mapping, fixed point problem, variational inequality problem, generalized mixed equilibrium problem, inertial hybrid iterative method, Banach space

 Received: 29 October 2020; Revised: 03 September 2022; Accepted: 19 January 2023
 Communicated by Adrian Petrusel

 * Corresponding author: Rehan Ali

 Email addresses: mohdfrd55@gmail.com;m.jameel@qu.edu.sa (Mohammad Farid), rehan08amu@gmail.com (Rehan Ali), krkazmi@gmail.com (Kaleem Raza Kazmi)

