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Abstract. In this work, by using weighted Jensen inclusion, we establish some new weighted Hermite–
Hadamard type inclusions involving two real parameters for interval-valued convex functions. In addition,
some extensions of Hermite–Hadamard inclusion are obtained by special choices of parameters. Moreover,
we give some examples to illustrate the main results of this work.

1. Introduction

Over the last century, integral inequalities have been attracted interest of many researchers because of
the importance in applied and pure mathematics. For example, Hermite–Hadamard inequalities, based on
convex functions, have an important place in many areas of mathematics, specifically optimization theory.
These inequalities, introduced by C. Hermite and J. Hadamard, express that if ϕ : I → R is a convex
mapping on the interval I of real numbers and a, b ∈ I with a < b, then

ϕ

(
a + b

2

)
≤

1
b − a

b∫
a

ϕ(x)dx ≤
ϕ (a) + ϕ(b)

2
. (1)

If ϕ is concave, both of the inequalities provide the opposite direction. The best known results associ-
ated with these inequalities are Midpoint and Trapezoid inequalities which are frequently used in special
means and estimation errors (see [8, 14]). Afterwards, many authors obtained new results related to these
inequalities under various conditions of the mappings. Also, some researchers examined generalizations,
refinements and counterparts of the inequalities (1).

The weighted version of the inequality (1), which is also named Hermite–Hadamard-Fejér inequality,
was established by Fejér in [9] as follows:

Theorem 1.1. Let ϕ : [a, b] → R be a convex function and let ϖ : [a, b] → R be a non-negative, integrable, and
symmetric about x = a+b

2 (i.e. ϖ(x) = ϖ(a + b − x)). Then, we have the inequalities

ϕ

(
a + b

2

) b∫
a

ϖ(x)dx ≤

b∫
a

ϕ(x)ϖ(x)dx ≤
ϕ (a) + ϕ (b)

2

b∫
a

ϖ(x)dx. (2)
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Many mathematicians established some generalizations and new results involving fractional integrals
regarding to the inequality (2) to obtain new bounds for the left and right sides of the inequality (2). We
refer the reader to Refs. [1, 21–23] and the references therein. On the other side, interval analysis handled as
one of the methods of solving interval uncertainty is an important material which is used in mathematical
and computer models. Although this theory has a long history which may be dated back to Archimedes’
calculation of the circumference of a circle, a considerable study was not published in this field until 1950s.
The first book [17] about interval analysis was published by Ramon E. Moore known as the pioneer of
interval calculus in 1966. In addition to this, a great many researchers started to investigate theories and
applications of interval analysis. Recently, many authors have focused on integral inequalities obtained by
using interval-valued functions. For example, Sadowska [20] established Hermite–Hadamard inequality
for set-valued functions that is more general version of interval-valued mappings as follows:

Theorem 1.2. [20] Assume that F : [a, b]→ R+
I

is interval–valued convex function so that F(t) =
[
F(t),F(t)

]
. Then,

we have

F
(

a + b
2

)
⊇

1
b − a

(IR)

b∫
a

F(x)dx ⊇
F(a) + F(b)

2
.

Well-known inequalities such as Ostrowski, Minkowski and Beckenbach and their some applications
were provided by considering interval-valued functions in [5, 6, 10]. In addition, some inequalities involving
interval-valued Riemann-Liouville fractional integrals were derived by Budak et al. in [2]. In [15], Liu et al.
gave the definition of interval-valued harmonically convex functions, and so they obtain some Hermite–
Hadamard type inequalities including interval-valued fractional integrals. On the other hand, Budak et
al. prove some weighted Fejer type inclusions in [4]. For more details about this topic, one can refer to
[3, 7, 11–13, 16, 24].

2. Preliminaries

In this section, we give some properties of one and two variables interval-valued functions.

2.1. Integral of interval-valued functions
The notion of integral of the interval-valued mappings is mentioned. Before we can understand the

definition of integrals of interval-valued functions, we need to summarize some concepts in the following.
A function φ is said to be an interval-valued function of t on [a, b] if it assigns a non-empty interval to

each t ∈ [a, b]

φ(t) =
[
φ(t), φ(t)

]
.

A partition of [a, b] is any finite ordered subset D having the form

D : a = t0 < t1 < ... < tn = b.

The mesh of a partition D is indicated by

mesh(D) = max {ti − ti−1 : i = 1, 2, ...,n} .

We denote by D ([a, b]) the set of all partition of [a, b] . Suppose that D (δ, [a, b]) is the set of all D ∈ D ([a, b])
such that mesh(D) < δ. We take an arbitrary point ξi in interval [ti−1, ti] , i = 1, 2, ...,n, and we define the sum

S(φ,D, δ) =
n∑

i=1

φ(ξi) [ti − ti−1] .

Here, φ : [a, b]→ RI. The sum S(φ,D, δ) is said to be a Riemann sum of φ corresponding to D ∈ D (δ, [a, b]) .
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Definition 2.1. ([18],[19]) φ : [a, b]→ RI is said to be an interval Riemann integrable function (IR-integrable) on
[a, b] if there exist A ∈ P and δ > 0, for each ε > 0, so that

d
(
S(φ,D, δ),A

)
< ε

for every Riemann sum S of φ corresponding to each D ∈ D (δ, [a, b]) and independent of choice of ξi ∈ [ti−1, ti],
1 ≤ i ≤ n. In this case, A is called as the IR-integral of φ on [a, b] and is denoted by

A = (IR)

b∫
a

φ(t)dt.

The collection of all functions that are IR-integrable on [a, b] will be denote by IR([a,b]).

The next theorem describes connection between IR-integrable and Riemann integrable (R-integrable):

Theorem 2.2. Let φ : [a, b]→ RI be an interval-valued function such that φ(t) =
[
φ(t), φ(t)

]
, φ ∈ IR([a,b]) if and

only if φ(t), φ(t) ∈ R([a,b]) and

(IR)

b∫
a

φ(t)dt =

(R)

b∫
a

φ(t)dt, (R)

b∫
a

φ(t)dt

 .
Here, R([a,b]) is the all R-integrable function.

It is easy to see that if φ(t) ⊆ ψ(t) for all t ∈ [a, b], then (IR)
b∫

a
φ(t)dt ⊆ (IR)

b∫
a
ψ(t)dt.

3. Weighted Hermite–Hadamard type inclusions for interval-valued convex functions

In this section, we prove some weighted Hermite–Hadamard type inclusions for interval-valued convex
functions. First, we need to following weighted Jensen inclusion:

Theorem 3.1 (Weighted Jensen Inclusion). Suppose 1 : [a, b] → [a, b] is a function from L∞ [a, b] and suppose

also w : [a, b] → R is nonnegative functions from L1 [a, b] such that
b∫

a
w(t)dt , 0. If F : [a, b] → RI is an

interval–valued convex function so that F(t) =
[
F(t),F(t)

]
, then we have

F


1

b∫
a

w (t) dt

b∫
a

w(t)1 (t) dt

 ⊇
1

b∫
a

w (t) dt

(IR)

b∫
a

F
(
1(t)

)
w (t) dt.

Proof. The proof can be easily seen by applying the classical Jensen inequality to convex function F and
concave function F.

Theorem 3.2. If F : [a, b]→ RI is an interval–valued convex function such that F(t) =
[
F(t),F(t)

]
, then we obtain

F
(

pa + qb
p + q

)
⊇

2(
p + q

)
(b − a)2 (IR)

b∫
a

[(
p − 2q

)
a +

(
2p − q

)
b + 3

(
q − p

)
x
]

F (x) dx (3)

⊇
pF (a) + qF (b)

p + q

for 2q ≥ p ≥ q
2 > 0.
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Proof. It can be easily see that

1∫
0

[
2p − q + 3

(
q − p

)
t
]

dt =
p + q

2
, (4)

1∫
0

[
2p − q + 3

(
q − p

)
t
]

[(1 − t) a + tb] dt =
pa + qb

2
, (5)

and

1∫
0

[
2p − q + 3

(
q − p

)
t
]

[(1 − t) F (a) + tF (b)] dt =
pF (a) + qF (b)

p + q
. (6)

By applying Theorem 3.1 with 1 (t) = (1 − t) a + tb, w (t) = 2p − q + 3
(
q − p

)
t, t ∈ [0, 1] and 2q ≥ p ≥ q

2 > 0
and by using the equalities (4) and (5), we get

F
(

pa + qb
p + q

)
= F


1∫

0

[
2p − q + 3

(
q − p

)
t
]

[(1 − t) a + tb] dt∫ [
2p − q + 3

(
q − p

)
t
]

dt


⊇

(IR)
1∫

0

[
2p − q + 3

(
q − p

)
t
]

F ((1 − t) a + tb) dt∫ [
2p − q + 3

(
q − p

)
t
]

dt

=
2

p + q
(IR)

1∫
0

[
2p − q + 3

(
q − p

)
t
]

F ((1 − t) a + tb) dt

=
2(

p + q
)

(b − a)2 (IR)

b∫
a

[(
p − 2q

)
a +

(
2p − q

)
b + 3

(
q − p

)
x
]

F (x) dx,

which gives the first inclusion in (3). On the other hand, by utilizing the interval-valued convexity of F and
the inequality (6), we have

2
p + q

(IR)

1∫
0

[
2p − q + 3

(
q − p

)
t
]

F ((1 − t) a + tb) dt

⊇
2

p + q
(IR)

1∫
0

[
2p − q + 3

(
q − p

)
t
]

[(1 − t) F (a) + tF (b)] dt

=
pF (a) + qF (b)

p + q
.

This completes the proof of Theorem 3.2.

Remark 3.3. Let us consider p = q = 1
2 in Theorem 3.2. Then, Theorem 3.2 reduces to Theorem 1.2.
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Corollary 3.4. If we choose q = 1 and p = 2 in Theorem 3.2, then we have

F
(

2a + b
3

)
⊇

2

(b − a)2 (IR)

b∫
a

(b − x) F (x) dx ⊇
2F (a) + F (b)

3
. (7)

Corollary 3.5. Let us note that q = 2 and p = 1 in Theorem 3.2. Then, we obtain

F
(

a + 2b
3

)
⊇

2

(b − a)2 (IR)

b∫
a

(x − a) F (x) dx ⊇
F (a) + 2F (b)

3
. (8)

Corollary 3.6. Under the conditions of Theorem 3.2, we have

F
(

a + b
2

)
⊇

1
2

[
F
(

2a + b
3

)
+ F

(
a + 2b

3

)]
⊇

1
b − a

(IR)

b∫
a

F(x)dx ⊇
F(a) + F(b)

2
. (9)

Proof. By adding (7) and (8), we can write

1
2

[
F
(

2a + b
3

)
+ F

(
a + 2b

3

)]
⊇

1
b − a

(IR)

b∫
a

F(x)dx ⊇
F(a) + F(b)

2
.

Since F is an interval-valued convex function, we get

F
(

a + b
2

)
= F

(
1
2

(
2a + b

3

)
+

1
2

(
a + 2b

3

))
⊇

1
2

[
F
(

2a + b
3

)
+ F

(
a + 2b

3

)]
,

which completes the proof.

Example 3.7. Define a function F : [0, 1] → R+I by F (t) =
[
t2, 2 − t2

]
, then F(t) is an interval-valued convex

function. By applying Corollary 3.6, the first expression of (9) becomes

F
(

a + b
2

)
= F

(1
2

)
=

[1
4
,

7
4

]
.

The second expression of (9) becomes

1
2

[
F
(

2a + b
3

)
+ F

(
a + 2b

3

)]
=

1
2

[[1
9
,

17
9

]
+

[4
9
,

14
9

]]
=

[ 5
18
,

31
18

]
.

By using the definition of integral for interval-valued function, the third expression of (9), we obtain

1
b − a

(IR)

b∫
a

F (t) dt =


1∫

0

t2dt,

1∫
0

(
2 − t2

)
dt


=

[1
3
,

5
3

]
.
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And then fourth expression of (9), we get

F (a) + F (b)
2

=
[0, 2] + [1, 1]

2
=

[1
2
,

3
2

]
.

It is clear that[1
4
,

7
4

]
⊇

[ 5
18
,

31
18

]
⊇

[1
3
,

5
3

]
⊇

[1
2
,

3
2

]
,

which demonstrates the result described in Corollary 3.6.

Corollary 3.8. With the help of the conditions of Theorem 3.2, we have

F
(

a + b
2

)
⊇

1
2

[
F
(

5a + 3b
8

)
+ F

(
3a + 5b

8

)]
⊇

1
b − a

(IR)

b∫
a

F(x)dx ⊇
F(a) + F(b)

2
. (10)

Proof. If we assign q = 5, p = 3 and q = 3, p = 5 in Theorem 3.2, then we have

F
(

3a + 5b
8

)
⊇

1

4 (b − a)2

b∫
a

(−7a + b + 6x) F (x) dx ⊇
3F (a) + 5F (b)

8
, (11)

and

F
(

5a + 3b
8

)
⊇

1

4 (b − a)2

b∫
a

(−a + 7b − 6x) F (x) dx ⊇
5F (a) + 3F (b)

8
, (12)

respectively. By adding (11) and (12), we get

1
2

[
F
(

5a + 3b
8

)
+ F

(
3a + 5b

8

)]
⊇

1
b − a

(IR)

b∫
a

F(x)dx ⊇
F(a) + F(b)

2
.

By using interval-valued convexity of F, we get,

F
(

a + b
2

)
= F

(
1
2
·

(
5a + 3b

8

)
+

1
2
·

(
3a + 5b

8

))
⊇

1
2

[
F
(

5a + 3b
8

)
+ F

(
3a + 5b

8

)]
.

This is the end of the proof of Corollary 3.8.

Example 3.9. Let us consider a function F : [0, 1] → R+I by F (t) =
[
t3, 3 − t3

]
. Then, F(t) is an interval-valued

convex function. By applying Corollary 3.8, the first expression of (10) becomes

F
(

a + b
2

)
= F

(1
2

)
=

[1
8
,

23
8

]
.

The second expression of (10) becomes

1
2

[
F
(

5a + 3b
8

)
+ F

(
3a + 5b

8

)]
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=
1
2

[[ 27
512

,
1509
512

]
+

[125
512

,
1411
512

]]
=

[ 19
128

,
365
128

]
.

By using the definition of integral for interval-valued function and the third expression of (10), we have

1
b − a

(IR)

b∫
a

F (t) dt =


1∫

0

t3dt,

1∫
0

(
3 − t3

)
dt


=

[1
4
,

11
4

]
.

By using the fourth expression of (10), we get

F (a) + F (b)
2

=
[0, 3] + [1, 2]

2
=

[1
2
, 2

]
.

It is clear that[1
8
,

23
8

]
⊇

[ 19
128

,
365
128

]
⊇

[1
4
,

11
4

]
⊇

[1
2
, 2

]
,

which demonstrates the result described in Corollary 3.8.

Theorem 3.10. Let us note that F : [a, b] → RI is an interval–valued convex function so that F(t) =
[
F(t),F(t)

]
.

Then, we have the inclusions

F
( (

3p + q
)

a +
(
p + 3q

)
b

4
(
p + q

) )
(13)

⊇
1
2

[
F
( (

2p + q
)

a + qb
2
(
p + q

) )
+ F

(
pa +

(
p + 2q

)
b

2
(
p + q

) )]

⊇
2(

p + q
)

(b − a)2 (IR)

a+b
2∫

a

[(
4p − 5q

)
a +

(
2p − q

)
b + 6

(
q − p

)
x
]

F (x) dx

+
2(

p + q
)

(b − a)2 (IR)

b∫
a+b

2

[(
p − 2q

)
a +

(
5p − 4q

)
b + 6

(
q − p

)
x
]

F (x) dx

⊇

pF (a) + qF
(

a+b
2

)
+ pF

(
a+b

2

)
+ qF (b)

2
(
p + q

)
⊇

(
3p + q

)
F (a) +

(
p + 3q

)
F (b)

4
(
p + q

)
for 2q ≥ p ≥ q

2 > 0.

Proof. Since F is interval–valued convex function on [a, b], then F is interval-valued convex function on the
subintervals

[
a, a+b

2

]
and

[
a+b

2 , b
]
. Then, by applying the Theorem 3.2 to a subinterval

[
a, a+b

2

]
, we have

F
( (

2p + q
)

a + qb
2
(
p + q

) )
(14)

⊇
4(

p + q
)

(b − a)2 (IR)

a+b
2∫

a

[(
4p − 5q

)
a +

(
2p − q

)
b + 6

(
q − p

)
x
]

F (x) dx
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⊇

pF (a) + qF
(

a+b
2

)
p + q

⊇

(
2p + q

)
F (a) + qF (b)

2
(
p + q

) .

Similarly, by applying the Theorem 3.2 to a subinterval
[

a+b
2 , b

]
, we get

F
(

pa +
(
p + 2q

)
b

2
(
p + q

) )
(15)

⊇
4(

p + q
)

(b − a)2 (IR)

b∫
a+b

2

[(
p − 2q

)
a +

(
5p − 4q

)
b + 6

(
q − p

)
x
]

F (x) dx

⊇

pF
(

a+b
2

)
+ qF (b)

p + q

⊇
pF (a) +

(
p + 2q

)
F (b)

2
(
p + q

) .

By summing the inequalities (14) and (15), we have

1
2

[
F
( (

2p + q
)

a + qb
2
(
p + q

) )
+ F

(
pa +

(
p + 2q

)
b

2
(
p + q

) )]

⊇
2(

p + q
)

(b − a)2 (IR)

a+b
2∫

a

[(
4p − 5q

)
a +

(
2p − q

)
b + 6

(
q − p

)
x
]

F (x) dx

+
2(

p + q
)

(b − a)2 (IR)

b∫
a+b

2

[(
p − 2q

)
a +

(
5p − 4q

)
b + 6

(
q − p

)
x
]

F (x) dx

⊇

pF (a) + qF
(

a+b
2

)
+ pF

(
a+b

2

)
+ qF (b)

2
(
p + q

)
⊇

(
3p + q

)
F (a) +

(
p + 3q

)
F (b)

4
(
p + q

) .

This gives the second, third, and fourth inequality in (13). The first inequality in (13) can be seen easily by
interval-valued convexity of F.

Corollary 3.11. Considering p = q = 1 in Theorem 3.10, we have the inclusions

F
(

a + b
2

)
⊇

1
2

[
F
(

3a + b
4

)
+ F

(
a + 3b

4

)]
(16)

⊇
1

(b − a)
(IR)

a+b
2∫

a

F (x) dx

⊇

F (a) + 2F
(

a+b
2

)
+ F (b)

4

⊇
F (a) + F (b)

2
.
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Example 3.12. Let us define a function F : [0, π] → R+I by F (t) = [1 − sin t, 2 + sin t] . Then, F(t) is an interval-
valued convex function. By applying Corollary 3.11, the first expression of (16) is expressed as follows

F
(

a + b
2

)
= F

(
π
2

)
= [0, 3] .

The second expression of (16) becomes

1
2

[
F
(

3a + b
4

)
+ F

(
a + 3b

4

)]
=

1
2

[[
1 −

√
2

2
, 2 +

√
2

2

]
+

[
1 −

√
2

2
, 2 +

√
2

2

]]
=

[
1 −

√
2

2
, 2 +

√
2

2

]
.

By using the definition of integral for interval-valued function and the third expression of (16), we obtain

1
b − a

(IR)

b∫
a

F (t) dt =
1
π


π∫

0

(1 − sin t) dt,

π∫
0

(2 + sin t) dt


=

[
1 −

2
π
, 2 +

2
π

]
.

With the help of the fourth expression of (16), we get

F (a) + 2F
(

a+b
2

)
+ F (b)

4
=

[1, 2] + [0, 6] + [1, 2]
4

=
[
1,

5
2

]
.

By using the fifth expression of (16), we have

F (a) + F (b)
2

=
[1, 2] + [1, 2]

2
= [1, 2] .

It is clear that

[0, 3] ⊇
[
1 −

√
2

2
, 2 +

√
2

2

]
⊇

[
1 −

2
π
, 2 +

2
π

]
⊇

[
1,

5
2

]
⊇ [1, 2] ,

which demonstrates the result described in Corollary 3.11.
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