The maximal spectral radius of the uniform unicyclic hypergraphs with perfect matchings

Rui Sun ${ }^{\text {a }}$, Wen-Huan Wang ${ }^{\text {a,* }}$, Zhen-Yu Ni ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Shanghai University, Shanghai 200444, China

Abstract

Let $\mathcal{U}(n, k)$ and $\Gamma(n, k)$ be respectively the sets of the k-uniform connected linear and nonlinear unicyclic hypergraphs having perfect matchings with n vertices, where $n \geq k(k-1)$ and $k \geq 3$. By using some techniques of transformations and constructing the incidence matrices for the hypergraphs considered, we get the hypergraphs with the maximal spectral radii among three kinds of hypergraphs, namely $\mathcal{U}(n, k)$ with $n=2 k(k-1)$ and $n \geq 9 k(k-1), \Gamma(n, k)$ with $n \geq k(k-1)$, and $\mathcal{U}(n, k) \cup \Gamma(n, k)$ with $n \geq 2 k(k-1)$, where $k \geq 3$.

1. Introduction

Let $G=(V, E)$ be a simple (i.e., no loops or multiple edges) hypergraph, where $V=V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is the vertex set and $E=E(G)=\left\{e_{1}, e_{2}, \cdots, e_{a}\right\}$ is the edge set with $e_{i} \subseteq V(G)$ for $i=1, \cdots, a . e_{i}$ with $1 \leq i \leq a$ is called an edge of G. If $\left|e_{i}\right|=k$ for $1 \leq i \leq a$, then G is called a k-uniform hypergraph. If any two edges in G intersect on at most one common vertex, then G is called a linear hypergraph. Let $u, v \in V(G)$. A path between u and v is denoted by $P=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{p}, e_{p}, v_{p+1}\right)$, where $v_{1}=u, v_{p+1}=v$, all v_{i} and all e_{i} are distinct, and $v_{i}, v_{i+1} \in e_{i}$ for $1 \leq i \leq p$. We say that u and v are connected if there exists a path in G between them. A hypergraph G is connected if every pair of vertices in $V(G)$ is connected. For $p \geq 2$, a cycle of length p of G is obtained from a path P of length p by identifying v_{1} with v_{p+1}.

For a k-uniform hypergraph G, if $a(k-1)-n+\omega(G)=r(G)$, then we call G an $r(G)$-cyclic hypergraph [1], where $a, n, \omega(G)$, and $r(G)$ are the numbers of edges, vertices, components, and cyclomatics of G, respectively. If $r(G)=1$, then G is a unicyclic hypergraph. In this paper, we consider k-uniform connected linear and nonlinear unicyclic hypergraphs.

For $u, v \in V(G)$ and $e \in E(G)$, if $\{u, v\} \subseteq e$, then we say that u and v are adjacent and v is incident with e. We denote by $d_{G}(v)$ the degree of v. Namely $d_{G}(v)$ is the number of the edges in G incident with v. If $d_{G}(v)=0$, then we call v an isolated vertex. If $d_{G}(v)=1$, then we call v a core vertex. If $d_{G}(v) \geq 2$, then we say that v is an intersection vertex. For $e=\left\{v_{1}, \ldots, v_{r}\right\} \in E(G)$, if $d_{G}\left(v_{1}\right) \geq 2$ and $d_{G}\left(v_{i}\right)=1$ for $2 \leq i \leq r$, then e is called a pendent edge at v_{1} of G.

Let \mathbb{R} and \mathbb{C} be the sets of real and complex numbers, respectively. A real tensor (or hypermatrix) $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$ of r-order and n-dimension is a multi-dimensional array with entries $a_{i_{1} i_{2} \cdots i_{r}}$ such that $a_{i_{1} i_{2} \cdots i_{r}} \in \mathbb{R}$,

[^0]where $i_{1}, i_{2}, \cdots, i_{r} \in[n]$ with $[n]=\{1,2, \cdots, n\}$. In 2005, Qi [2] and Lim [3] independently introduced the concept of tensor eigenvalues and the spectra of tensors as follows. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n}$ be an n-dimensional complex column vector. Let $x^{[r-1]}=\left(x_{1}^{r-1}, x_{2}^{r-1}, \cdots, x_{n}^{r-1}\right)^{\mathrm{T}}$, where r is a positive integer. Then $\mathcal{A} x$ is a vector in \mathbb{C}^{n} whose i-th component is given by
\[

$$
\begin{equation*}
(\mathcal{A} x)_{i}=\sum_{i_{2}, \ldots, i_{r}=1}^{n} a_{i i_{2} \cdots i_{r}} x_{i_{2}} \cdots x_{i_{r}} \text {, for each } i \in[n] \tag{1}
\end{equation*}
$$

\]

If there exists a number $\lambda \in \mathbb{C}$ and a nonzero vector $x \in \mathbb{C}^{n}$ such that $\mathcal{A} x=\lambda x^{[r-1]}$, then λ is called an eigenvalue of \mathcal{A} and x is called an eigenvector of \mathcal{A} corresponding to the eigenvalue λ. The spectral radius of \mathcal{A} is the largest modulus of the eigenvalues of \mathcal{A}, i.e., $\rho(\mathcal{A})=\max \{|\lambda| \mid \lambda$ is an eigenvalue of $\mathcal{A}\}$.

For a hypergraph G, there are a few tensors associated with G. The most important tensor associated with G is the adjacency tensor which was proposed by Cooper and Dutle [4] in 2012 as follows. Let G be a k-uniform hypergraph with n vertices. The adjacency tensor of G is the k-ordered and n-dimensional adjacency tensor $\mathcal{A}(G)=\left(a_{i_{1} i_{2} \cdots i_{k}}\right)$ whose $\left(i_{1} i_{2} \cdots i_{k}\right)$-entry is

$$
a_{i_{1} i_{2} \cdots i_{k}}= \begin{cases}\frac{1}{(k-1)!}, & \text { if }\left\{i_{1}, i_{2}, \cdots, i_{k}\right\} \in E(G) \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

The spectral radius of $\mathcal{A}(G)$ of a k-uniform hypergraph G, denoted by $\rho(G)$, is called the spectral radius of G. For a k-uniform hypergraph G with n vertices, if G is connected, then there exists a unique positive eigenvector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ corresponding to $\rho(G)$ with $\sum_{i=1}^{n} x_{i}^{k}=1[5,6]$. Such a positive eigenvector is called the principal eigenvector of $G[5,6]$. In this paper, we will consider the principal eigenvector x as a mapping $x: V(G) \rightarrow \mathbb{R}^{n}$. The principal eigenvector x plays a key role in the spectral hypergraph theory.

The research on the spectra of hypergraphs via tensors has drawn increasingly extensive interest. In recent years, many interesting results about the characterization of the k-uniform hypergraphs with the extremal spectral radii have been obtained. Xiao and Wang [7] determined the hypergraphs with the maximal spectral radii among all the uniform supertrees and among all the uniform connected unicyclic hypergraphs with a given number of pendent edges. Fan et al. [1] characterized the hypergraph(s) with the maximal spectral radius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs with a given girth, and linear or power bicyclic hypergraphs. Kang et al. [8] obtained the hypergraph with the maximal spectral radius among the linear bicyclic uniform hypergraphs. Ouyang et al. [9] deduced the first five hypergraphs with the maximal spectral radii among all unicyclic hypergraphs and the first three ones over all bicyclic hypergraphs. Among the set of supertrees [10-12] and the set of supertrees with given parameters, such as a fixed diameter [13], a given degree sequence [14], a perfect matching [15], a given number of pendent vertices [16], a given size of matching [17, 18], and two vertices of maximum degree [19], etc, the hypergraphs with the extremal spectral radii were also characterized.

A k-matching of G is a union of k independent edges in G, where $k \geq 0$. A perfect matching of G is a matching that covers $V(G)$. Namely, a set $\left\{S_{1}, S_{2} \cdots, S_{h}\right\}$ of pairwise vertex disjoint edges of G with $V(G)=S_{1} \cup S_{2} \cup \cdots \cup S_{h}$ is called a perfect matching of G. It is known that hypergraphs can be classified into two groups: one group which has a perfect matching and the other group which does not have perfect matchings. Since the hypergraphs with a perfect matching have many applications in graph theory, they are of great significance and attract a lot of people's attention. A large number of literatures are concerned with some properties of hypergraphs with a perfect matching. For example, some authors investigated the condition that ensure a perfect matching in hypergraphs [20-22].

Motivated by the preceding work on the hypergraphs with the extremal spectral radii, we consider, in this paper, the hypergraph with the maximal spectral radius among the set of the k-uniform connected unicyclic hypergraphs having perfect matchings.

Let G be a k-uniform connected unicyclic hypergraph having perfect matchings. Let $Q(G)=E(G)-M(G)$, where $M(G)$ is a perfect matching of G. An independent edge of $M(G)$ is called a perfect matching edge of G. Let \widehat{G} be the hypergraph induced by $Q(G)$, that is, $\widehat{G}=G-M(G)-S_{0}$, where S_{0} is the set of isolated
vertices in $G-M(G)$. We call \widehat{G} the capped hypergraph of G and G the original hypergraph of \widehat{G}. Let $|M(G)|$ and $|Q(G)|$ be the numbers of the edges in $M(G)$ and $Q(G)$, respectively.

We denote by $\mathcal{U}(n, k)$ the set of the k-uniform connected linear unicyclic hypergraphs having perfect matchings with n vertices, where $k \geq 3$. Let G be an arbitrary hypergraph in $\mathcal{U}(n, k)$. A vertex of G is saturated if it is incident with a perfect matching edge of G. Since each vertex of G is saturated, we have $|M(G)|=\frac{n}{k}$, where n is divisible by k and $k \geq 3$. Thus, it follows from $n=|E(G)|(k-1)$ that $|Q(G)|=|E(G)|-\frac{n}{k}=\frac{n}{k(k-1)}$, where n is divisible by $k(k-1)$. For simplicity, let $|Q(G)|=m$. Namely, m is the number of the edges of \widehat{G}. Thus, in $\mathcal{U}(n, k)$, we get $n=m k(k-1)$, where m is an integer not less than 2 and $k \geq 3$.

Let $\Gamma(n, k)$ be the set of the k-uniform connected nonlinear unicyclic hypergraphs having perfect matchings with n vertices, where $k \geq 3$. Obviously, for each $G \in \Gamma(n, k)$, we have $n=m k(k-1)$, where $m \geq 1$ and m is the number of the edges of \widehat{G}.

This paper is organized as follows. In Section 2, relevant notations and some lemmas which are useful for subsequent proofs are introduced. In Section 3, by using some transformations and constructing the incidence matrices for the hypergraphs considered, the hypergraph with the maximal spectral radius is derived among $\mathcal{U}(n, k)$ for $n \geq 2 k(k-1)$ and $k \geq 3$. Furthermore, in Section 4 , the hypergraphs with the maximal spectral radii are characterized among $\Gamma(n, k)$ with $n \geq k(k-1)$ and among $\mathcal{U}(n, k) \cup \Gamma(n, k)$ with $n \geq 2 k(k-1)$, where $k \geq 3$.

2. Preliminaries

In Section 2, we introduce some relevant definitions and necessary lemmas which are useful for us to obtain the results.

Definition 2.1. [10] Let $G=(V, E)$ be a hypergraph with $u \in V$ and $e_{1}, \ldots, e_{r} \in E$ such that $u \notin e_{i}$ for $i=1, \ldots, r$, where $r \geq 1$. Suppose that $v_{i} \in e_{i}$ and write $e_{i}^{\prime}=\left(e_{i} \backslash\left\{v_{i}\right\}\right) \cup\{u\}(i=1, \ldots, r)$. The vertices v_{1}, \ldots, v_{r} need not be distinct. Let $G^{\prime}=\left(V, E^{\prime}\right)$ be the hypergraph with $E^{\prime}=\left(E \backslash\left\{e_{1}, \ldots, e_{r}\right\}\right) \cup\left\{e_{1}^{\prime}, \ldots, e_{r}^{\prime}\right\}$. Then we say that G^{\prime} is obtained from G by moving edges $\left(e_{1}, \ldots, e_{r}\right)$ from $\left(v_{1}, \ldots, v_{r}\right)$ to u.

In G, if there exist two edges (denoted by e and e^{\prime}) such that e and e^{\prime} have the same vertices, then we say that e and e^{\prime} are two multiple edges.

Lemma 2.2. [10] Let G and G^{\prime} be the two connected hypergraphs as defined in Definition 2.1. Suppose that G^{\prime} contains no multiple edges. If x is the principal eigenvector of $\mathcal{A}(G)$ corresponding to $\rho(\mathcal{A}(G))$ and $x_{u} \geq \max _{1 \leq i \leq r}\left\{x_{v_{i}}\right\}$, then $\rho\left(\mathcal{A}\left(G^{\prime}\right)\right)>\rho(\mathcal{A}(G))$.

Lemma 2.3. [9] Let G be a connected k-uniform hypergraph having two adjacent vertices u_{1} and u_{2}. Let G^{\prime} be the hypergraph obtained from G by moving all incident edges of u_{2} (except for all common edges shared by u_{1} and u_{2}) from u_{2} to u_{1}. If $G^{\prime} \not \approx G$, then $\rho\left(G^{\prime}\right)>\rho(G)$.

Li et al. [10] proposed the edge-releasing operation for the k-uniform linear hypergraphs. In this paper, we generalize the edge-releasing operation to the k-uniform hypergraphs, which is shown in Definition 2.4.

Definition 2.4. Let G be a k-uniform hypergraph, where $k \geq 3$. Let e be a non-pendent edge of G and $\left\{e_{1}, \cdots, e_{r}\right\}$ be all the edges of G adjacent to e, where e_{i} and e share a common vertex which is denoted by $v_{i}(i=1, \ldots, r)$. Let u be an arbitrary vertex of e. Let G^{\prime} be the hypergraph obtained from G by moving edges $\left(e_{1}, \ldots, e_{r}\right)$ (except for all the edges which are incident with u) from $\left(v_{1}, \cdots, v_{r}\right)$ to u, where $v_{i} \neq u$ with $i=1, \cdots, r$. Then G^{\prime} is said to be obtained from G by the edge-releasing operation on e at u.

Lemma 2.5. Let G and G^{\prime} be the two connected hypergraphs as defined in Definition 2.4. If G^{\prime} does not have multiple edges, then we have $\rho\left(G^{\prime}\right)>\rho(G)$.

Proof: Let G and G^{\prime} be the two hypergraphs as defined in Definition 2.4. Since e is a non-pendent edge of G, there exist some vertices in e which have degrees not less than 2 . We denote these vertices by v_{1}, \cdots, v_{r}, where $2 \leq r \leq k$. By repeatedly using Lemma 2.3, we get $\rho\left(G^{\prime}\right)>\rho(G)$.

Let B_{G} be a weighted incidence matrix of a hypergraph G. We denote by $B_{G}(v, e)$ the entry of B_{G} corresponding to v and e, where $v \in V(G)$ and $e \in E(G)$.

Definition 2.6. [23] A weighted incidence matrix B_{G} of a hypergraph G is a $|V| \times|E|$ matrix such that for any vertex $v \in V(G)$ and any edge $e \in E(G)$, the entry $B_{G}(v, e)>0$ if $v \in e$ and $B_{G}(v, e)=0$ if $v \notin e$.

Let $E_{G}(v)$ be the set of the edges which are incident with v, where $v \in V(G)$.
Definition 2.7. [23] A hypergraph G is α-normal if there exists a weighted incidence matrix B_{G} satisfying
(i). $\sum_{e: e \in E_{G}(v)} B_{G}(v, e)=1$, for any $v \in V(G)$.
(ii). $\prod_{v: v \in e} B_{G}(v, e)=\alpha$, for any $e \in E(G)$.

Moreover, the incidence matrix B_{G} is said to be consistent if for any cycle $v_{0} e_{1} v_{1} \cdots v_{l}\left(v_{l}=v_{0}\right)$

$$
\prod_{i=1}^{l} \frac{B_{G}\left(v_{i}, e_{i}\right)}{B_{G}\left(v_{i-1}, e_{i}\right)}=1
$$

In this case, we say that G is consistently α-normal.
Definition 2.8. [23] A hypergraph G is α-subnormal if there exists a weighted incidence matrix B_{G} satisfying
(i). $\sum_{e: e \in E_{G}(v)} B_{G}(v, e) \leq 1$, for any $v \in V(G)$.
(ii). $\prod_{v: v \in e} B_{G}(v, e) \geq \alpha$, for any $e \in E(G)$.

Moreover, G is strictly α-subnormal if it is α-subnormal but not α-normal.
Lemma 2.9. [23] Let G be a connected k-uniform hypergraph.
(i) G is consistently α-normal if and only if (iff) $\rho(G)=\alpha^{-\frac{1}{k}}$.
(ii) If G is α-subnormal, then $\rho(G) \leq \alpha^{-\frac{1}{k}}$. Moreover, if G is strictly α-subnormal, then $\rho(G)<\alpha^{-\frac{1}{k}}$.

For the k-uniform connected linear and nonlinear unicyclic hypergraphs having perfect matchings with n vertices, we give a characterization of their perfect matchings as follows.

Property 2.10. Let $G \in \mathcal{U}(n, k) \cup \Gamma(n, k)$, where $n \geq k(k-1)$ and $k \geq 3$. The perfect matching $M(G)$ of G is unique.
Proof: Let $G \in \mathcal{U}(n, k) \cup \Gamma(n, k)$, where $n \geq k(k-1)$ and $k \geq 3$. Let C_{l} be the cycle contained in G, where $l \geq 2$. Since G has a perfect matching, obviously, at least one vertex in C_{l} of G is attached by a hypertree. Let u be an arbitrary vertex in C_{l} of G which is attached by a hypertree. We denote by T_{u} the hypertree attached at u. Since the perfect matching of T_{u} is unique, we get that the perfect matching edge incident with u is unique. Thus, for an arbitrary vertex in C_{l} of G (except for u), the perfect matching edge incident with it must be unique too. Therefore, Property 2.10 has been proved.

3. The hypergraph with the maximal spectral radius among $\mathcal{U}(n, k)$

In Section 3, we will deduce the hypergraph with the maximal spectral radius among $\mathcal{U}(n, k)$, where $n=m k(k-1), m \geq 2$ and $k \geq 3$. Some definitions are given first.

Let $\mathcal{U}(n, k, l)$ be a subset of $\mathcal{U}(n, k)$ in which each hypergraph has a cycle C_{l}, where l is an integer with $l \geq 3$. Let $C_{l}=v_{1} e_{1} v_{2} e_{2} v_{3} \cdots v_{l} e_{l} v_{1}$, where $e_{i}=\left\{v_{i}, v_{i, 1}, \ldots, v_{i, k-2}, v_{i+1}\right\}$ with $1 \leq i \leq l-1$ and $e_{l}=\left\{v_{l}, v_{l, 1}, \ldots, v_{l, k-2}, v_{1}\right\}$. Let $G \in \mathcal{U}(n, k, l)$ and $M(G)$ be a perfect matching of G. According to the fact whether C_{l} of G has at least one perfect matching edge or not, we classify $\mathcal{U}(n, k, l)$ into two subsets which are denoted by $\mathcal{U}_{1}(n, k, l)$ and $\mathcal{U}_{2}(n, k, l)$, where $\mathcal{U}_{1}(n, k, l)$ satisfies that each hypergraph G in it has no perfect matching edges on C_{l} of G and $\mathcal{U}_{2}(n, k, l)$ satisfies that each hypergraph G in it has at least one perfect matching edge on C_{l} of G. Obviously, $\mathcal{U}(n, k)=\bigcup_{l \geq 3}\left(\mathcal{U}_{1}(n, k, l) \cup \mathcal{U}_{2}(n, k, l)\right)$.

Let $\overline{\mathcal{U}}_{1}(n, k, 3)$ be a subset of $\mathcal{U}_{1}(n, k, 3)$ in which each hypergraph satisfies two conditions: (i) each vertex in C_{3} must be attached by a pendent edge; and (ii) at most one of the vertices in $\left\{v_{1}, v_{2}, v_{3}\right\}$ is attached by a hypertree which has at least k edges, where $k \geq 3$.

Let $\overline{\mathcal{U}}_{2}(n, k, 3)$ be a subset of $\mathcal{U}_{2}(n, k, 3)$ in which each hypergraph satisfies three conditions: (i) each vertex in $e_{1} \backslash\left\{v_{1}, v_{2}\right\}$ of C_{3} is a core vertex; (ii) each vertex in $\left(e_{2} \cup e_{3}\right) \backslash\left\{v_{1}, v_{2}\right\}$ of C_{3} must be attached by a pendent edge; and (iii) at most one of the vertices in $\left\{v_{1}, v_{2}, v_{3}\right\}$ of C_{3} is attached by a hypertree which has at least $k \geq 3$ edges, and each vertex in $\left(e_{2} \cup e_{3}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is not attached by a hypertree which has at least $k \geq 3$ edges.

Let $\mathcal{U}_{2,1}(n, k, 3)$ (respectively $\overline{\mathcal{U}}_{2,2}(n, k, 3)$) be a subset of $\overline{\mathcal{U}}_{2}(n, k, 3)$ in which each hypergraph satisfies all the conditions for $\overline{\mathcal{U}}_{2}(n, k, 3)$ and further satisfies that v_{1} or v_{2} (respectively v_{3}) of C_{3} of G is attached by a hypertree which has at least k edges, where $k \geq 3$.

We denote by $S_{a, k}$ the k-uniform linear supertree obtained from a vertex u_{0} by attaching a edges with k vertices at u_{0}, where $a \geq 1$. Namely, in $S_{a, k}$, all the a edges share a common vertex u_{0}. Let G and H be two hypergraphs whose vertex sets are disjoint with $v \in V(G)$ and $w \in V(H)$. We use $G(v, w) H$ to denote the hypergraph obtained by identifying the vertices v and w. For example, $C_{3}\left(v_{1}, u_{0}\right) S_{m-3, k}$ is shown in Fig. 1(a), where $C_{3}=v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} v_{1}$ is a cycle of length 3 .

Let $A_{n, k}$ be the k-uniform linear unicyclic hypergraph obtained from $C_{3}\left(v_{1}, u_{0}\right) S_{m-3, k}$ by attaching one pendent edge at each vertex of $C_{3}\left(v_{1}, u_{0}\right) S_{m-3, k}$, where $n=m k(k-1)$ and $m, k \geq 3$. $A_{n, k}$ is shown in Fig. 1(b).

Figure 1: (a) $C_{3}\left(v_{1}, u_{0}\right) S_{m-3, k}$ and (b) $A_{n, k}$
Let $B_{n, k}$ (respectively $D_{n, k}$) be the k-uniform linear unicyclic hypergraph obtained from $C_{3}\left(v_{1}, u_{0}\right) S_{m-2, k}$ by attaching one pendent edge at each vertex of $C_{3}\left(v_{1}, u_{0}\right) S_{m-2, k}$ except for all the vertices which are incident with e_{1} (respectively e_{2}), where $n=m k(k-1), m \geq 2$ and $k \geq 3$. $B_{n, k}$ and $D_{n, k}$ are shown in Fig. 2.

Obviously, we have $A_{n, k} \in \overline{\mathcal{U}}_{1}(n, k, 3), B_{n, k} \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$, and $D_{n, k} \in \overline{\mathcal{U}}_{2,2}(n, k, 3)$.
To obtain the hypergraph with the maximal spectral radius in $\mathcal{U}(n, k)$ (as shown in Theorem 3.13), several lemmas are introduced first. Lemmas 3.1-3.4 are introduced to get the hypergraph with the maximal spectral radius in $\mathcal{U}_{1}(n, k, l)$ (as shown in Corollary 3.5). Lemmas 3.6-3.11 are proposed to obtain the hypergraph with the maximal spectral radius in $\mathcal{U}_{2}(n, k, l)$ (as shown in Corollary 3.12).

Figure 2: (a) $B_{n, k}$ and (b) $D_{n, k}$

Lemma 3.1. Let $G \in \mathcal{U}(n, k, l)$, where $n \geq 3 k(k-1), k \geq 3$ and $l \geq 4$. Let e be a perfect matching edge of G and e is not a pendent edge. Let G_{0} be the hypergraph obtained from G by applying the edge-releasing operation on e at a vertex of e such that e of G_{0} is a pendent edge. We have $\rho\left(G_{0}\right)>\rho(G)$, where $G_{0} \in \mathcal{U}(n, k)$.

Proof: Let $n \geq 3 k(k-1)$ and $k \geq 3$. Let G and G_{0} be the two hypergraphs as defined in Lemma 3.1. Let $M(G)$ be the perfect matching of G and $e \in M(G)$. Then all the edges which are adjacent to e are edges of $Q(G)$. After applying the edge-releasing operation on e at a vertex of e, G_{0} has the perfect matching $M(G)$ and $G_{0} \in \mathcal{U}(n, k)$. Since G is linear, e of G_{0} is a pendent edge. By Lemma 2.5, we have $\rho\left(G_{0}\right)>\rho(G)$.

Lemma 3.2. Let $G \in \mathcal{U}_{1}(n, k, l)$, where $n \geq 3 k(k-1), k \geq 3$ and $l \geq 4$. There exists a hypergraph $G^{\star} \in \mathcal{U}_{1}(n, k, 3)$ such that $\rho\left(G^{\star}\right)>\rho(G)$.

Proof: Let $n \geq 3 k(k-1), k \geq 3$ and $l \geq 4$. Let $G \in \mathcal{U}_{1}(n, k, l)$. We denote the perfect matching of G by $M(G)$. The cycle contained in G is denoted by $C_{l}=v_{1} e_{1} \ldots v_{l} e_{l} v_{1}$. Bearing the definition of $\mathcal{U}_{1}(n, k, l)$ in mind, $e_{i} \notin M(G)$ and each vertex of e_{i} is incident with an edge in $M(G)$, where $1 \leq i \leq l$. Let x be the principal eigenvector of G corresponding to $\rho(G)$. Without loss of generality, we suppose $x_{v_{1}} \geq x_{v_{2}}$.

Let G_{1} be the hypergraph obtained from G by moving e_{2} from v_{2} to v_{1}. It is noted that all the edges which are incident with v_{2} of e_{1} of G (except for e_{2}) remain unchanged. Therefore, $M(G)$ is the perfect matching of G_{1} and G_{1} contains a cycle C_{l-1}. Namely $G_{1} \in \mathcal{U}_{1}(n, k, l-1)$. By Lemma 2.2, we have $\rho\left(G_{1}\right)>\rho(G)$. By repeatedly using the same procedure, we finally get a hypergraph $G^{\star} \in \mathcal{U}_{1}(n, k, 3)$ such that $\rho\left(G^{\star}\right)>\rho(G)$.

Lemma 3.3. Let $G \in \mathcal{U}_{1}(n, k, 3)$, where $n \geq 3 k(k-1)$ and $k \geq 3$. There exists a hypergraph $G^{\circ} \in \overline{\mathcal{U}}_{1}(n, k, 3)$ such that $\rho\left(G^{\diamond}\right) \geq \rho(G)$ with the equality iff $G \cong G^{\diamond}$.

Proof: Let $n=m k(k-1), m \geq 3$ and $k \geq 3$. When $m=3$, obviously Lemma 3.3 holds. Next, let $m \geq 4$. For $G \in \mathcal{U}_{1}(n, k, 3)$, let $M(G)$ be the perfect matching of G. By the definition of $\mathcal{U}_{1}(n, k, 3)$, each vertex in C_{3} of G is incident with an edge (denoted by e) of $M(G)$ and e is not an edge on C_{3} of G. By applying the edge-releasing operation on e at a vertex of e and by Lemma 3.1, we get a hypergraph G_{2} such that $\rho\left(G_{2}\right) \geq \rho(G)$ with the equality iff $G \cong G_{2}$, where G_{2} satisfies that (i) each vertex in C_{3} must be attached by a pendent edge; (ii) there exists at least one vertex of C_{3} in G_{2} which is attached by a hypertree having at least $k \geq 3$ edges (since $m \geq 4$).

Let x be the principal eigenvector of G_{2} corresponding to $\rho\left(G_{2}\right)$. Among all the vertices of C_{3} in G_{2} which are attached by hypertrees having at least $k \geq 3$ edges, we assume the vertex w at C_{3} of G_{2} has the largest component among the vector x and we denote it by x_{w}. Without loss of generality, we suppose w belongs to e_{1} of C_{3} of G_{2}. By Lemma 2.2, we get $\rho\left(G_{3}\right) \geq \rho\left(G_{2}\right)$ with the equality iff $G_{2} \cong G_{3}$, where G_{3} satisfies that each vertex in C_{3} of G_{3} is attached by a pendent edge, and only one vertex (namely w) at C_{3} of G_{3} is also attached by a hypertree having at least $k \geq 3$ edges. If w is one of v_{1} and v_{2}, then we get Lemma 3.3. Next, we assume $w \neq v_{1}, v_{2}$. Let y be the principal eigenvector of G_{3} corresponding to $\rho\left(G_{3}\right)$. Two cases are considered as follows.
Case (i). $y_{v_{1}} \geq y_{w}$.
Let G_{4} be the hypergraph obtained from G_{3} by moving all the edges which are incident with w (except for the edge e_{1} and the pendent edge attached at w) from w to v_{1}. Obviously, $G_{4} \in \overline{\mathcal{U}}_{1}(n, k, 3)$. By Lemma 2.2, we obtain $\rho\left(G_{4}\right)>\rho\left(G_{3}\right)$.

Case (ii). $y_{v_{1}}<y_{w}$.
Let G_{5} be the hypergraph obtained from G_{3} by moving e_{3} from v_{1} to w. It is noted that the pendent edge attached at v_{1} of C_{3} in G_{3} remains unchanged. Obviously, $G_{5} \in \overline{\mathcal{U}}_{1}(n, k, 3)$. By Lemma 2.2, we have $\rho\left(G_{5}\right)>\rho\left(G_{3}\right)$.

By combining the above proofs, we have Lemma 3.3.
Lemma 3.4. Let $G \in \overline{\mathcal{U}}_{1}(n, k, 3)$, where $n \geq 3 k(k-1)$ and $k \geq 3$. We have $\rho\left(A_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong A_{n, k}$.

Proof: Let $G \in \overline{\mathcal{U}}_{1}(n, k, 3)$ with $n=m k(k-1), m \geq 3$ and $k \geq 3$. If $m=3,4$, then $\overline{\mathcal{U}}_{1}(n, k, 3)=\left\{A_{n, k}\right\}$ and we have Lemma 3.4. Next, let $m \geq 5$. Bearing the definition of $\overline{\mathcal{U}}_{1}(n, k, 3)$ in mind, we have that each vertex in C_{3} of G is attached by a pendent edge. We assume v_{1} of C_{3} of G is attached by a hypertree (denoted by T) which has at least two edges belonging to $Q(G)$. If T has perfect matching edges which are not pendent edges, then let e be an arbitrary edge of those edges. By applying the edge-releasing operation on e at a vertex of e, we get a hypergraph G_{6} such that $\rho\left(G_{6}\right) \geq \rho(G)$ with the equality iff $G \cong G_{6}$ (by Lemma 3.1), where $G_{6} \in \overline{\mathcal{U}}_{1}(n, k, 3)$ and all the perfect matching edges of G_{6} are pendent edges.

If $G_{6} \cong A_{n, k}$, then we get Lemma 3.4. Otherwise, we assume $G_{6} \not \approx A_{n, k}$. Obviously, v_{1} of C_{3} in G_{6} is attached by a hypertree (denoted by T^{\prime}) which has at least two edges belonging to $Q\left(G_{6}\right)$. As $G_{6} \neq A_{n, k}$, in G_{6}, there exists an edge (denoted by $g=\left\{u_{1}, \ldots, u_{k}\right\}$) which satisfies the following conditions: (i) g belongs to $Q\left(G_{6}\right)$; (ii) g is not incident with v_{1}; and (iii) v_{1} and u_{1} are incident with a common edge. Let x be the principal eigenvector of G_{6} corresponding to $\rho\left(G_{6}\right)$. Two cases are considered as follows.
Case (i). $x_{v_{1}} \geq x_{u_{1}}$.
Let G_{7} be the hypergraph obtained from G_{6} by moving g from u_{1} to v_{1}. Obviously, $G_{7} \in \overline{\mathcal{U}}_{1}(n, k, 3)$. By Lemma 2.2, we obtain $\rho\left(G_{7}\right)>\rho\left(G_{6}\right)$.
Case (ii). $x_{v_{1}}<x_{u_{1}}$.
Let G_{8} be the hypergraph obtained from G_{6} by moving all the edges which are incident with v_{1} (except for the pendent edge attached at v_{1} and the common edge which is incident with v_{1} and u_{1}) from v_{1} to u_{1}. Obviously, $G_{8} \in \overline{\mathcal{U}}_{1}(n, k, 3)$. By Lemma 2.2, we obtain $\rho\left(G_{8}\right)>\rho\left(G_{6}\right)$.

By repeatedly using the same procedures as those in Cases (i) and (ii), we finally get $\rho\left(A_{n, k}\right)>\rho\left(G_{6}\right)$.
By combining the above proofs, we obtain $\rho\left(A_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong A_{n, k}$. \quad
By Lemmas 3.2-3.4, we get Corollary 3.5 as follows.
Corollary 3.5. Let $G \in \mathcal{U}_{1}(n, k, l)$, where $n \geq 3 k(k-1)$ and $k, l \geq 3$. We have $\rho\left(A_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong A_{n, k}$.

Lemma 3.6. Let $G \in \mathcal{U}_{2}(n, k, l)$, where $n \geq 2 k(k-1), k \geq 3$ and $l \geq 4$. There exists a hypergraph $\widetilde{G} \in \mathcal{U}_{1}(n, k, p) \cup$ $\mathcal{U}_{2}(n, k, 3)$ such that $\rho(\widetilde{\widetilde{G}})>\rho(G)$, where $3 \leq p \leq l-1$.

Proof: Let $G \in \mathcal{U}_{2}(n, k, l)$, where $l \geq 4$. Let $M(G)$ be the perfect matching of G. By the definition of $\mathcal{U}_{2}(n, k, l)$, there exists an edge (denoted by e) on the cycle C_{l} of G which belongs to $M(G)$. Let v be an arbitrary vertex of
e. Let $G 9$ be the hypergraph obtained from G by applying the edge-releasing operation on e at v. It follows from Lemma 3.1 that $\rho\left(G_{9}\right)>\rho(G), e$ becomes a pendent edge in G_{9} and the number of the perfect matching edges on the cycle contained in $G 9$ decreases by 1 . Obviously, we have $G_{9} \in \mathcal{U}_{2}(n, k, l-1)$. By repeatedly using the same procedure, we finally get a hypergraph $\widetilde{G} \in \mathcal{U}_{1}(n, k, p) \cup \mathcal{U}_{2}(n, k, 3)$ such that $\rho(\widetilde{G})>\rho(G)$, where $3 \leq p \leq l-1$.

Lemma 3.7. Let $G \in \mathcal{U}_{2}(n, k, 3)$, where $n \geq 2 k(k-1)$ and $k \geq 3$. There exists a hypergraph $G^{*} \in \overline{\mathcal{U}}_{2}(n, k, 3)$ such that $\rho\left(G^{*}\right) \geq \rho(G)$ with the equality iff $G \cong G^{*}$.

Proof: Let $n \geq 2 k(k-1)$ and $k \geq 3$. Let $G \in \mathcal{U}_{2}(n, k, 3)$ and $C_{3}=v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} v_{1}$ be the cycle contained in G. Let $M(G)$ be the perfect matching of G. According to the definition of $\mathcal{U}_{2}(n, k, 3)$, there exists one perfect matching edge on C_{3}. Without loss of generality, we suppose that $e_{1}=\left\{v_{1}, v_{1,1}, \ldots, v_{1, k-2}, v_{2}\right\}$ is the perfect matching edge on C_{3}. If there exists a vertex in $e_{1} \backslash\left\{v_{1}, v_{2}\right\}$ such that its degree is greater than 1 , then we suppose this vertex is $v_{1,1}$. Let G_{10} be the hypergraph obtained from G by moving all the edges (except for e_{1}) which are incident with $v_{1,1}$ from $v_{1,1}$ to v_{1}. Obviously, G_{10} has the perfect matching $M(G)$ and the number of the core vertices of G_{10} increases by 1 . By Lemma 2.3, $\rho\left(G_{10}\right)>\rho(G)$. By repeatedly using the same procedure, we finally get a hypergraph G_{11} such that $\rho\left(G_{11}\right) \geq \rho(G)$ with the equality iff $G \cong G_{11}$, where $G_{11} \in \mathcal{U}_{2}(n, k, 3), G_{11}$ has the perfect matching $M(G)$ and each vertex in $e_{1} \backslash\left\{v_{1}, v_{2}\right\}$ of G_{11} is a core vertex.

Since e_{2} and e_{3} of C_{3} in G_{11} are the edges of $Q\left(G_{11}\right)$, each vertex in $\left(e_{2} \cup e_{3}\right) \backslash\left\{v_{1}, v_{2}\right\}$ is incident with an edge in $M(G)$. By Lemma 3.1, we get a hypergraph G_{12} such that $\rho\left(G_{12}\right) \geq \rho\left(G_{11}\right)$ with the equality iff $G_{12} \cong G_{11}$, where G_{12} satisfies the following three conditions: (i) each vertex in $e_{1} \backslash\left\{v_{1}, v_{2}\right\}$ of C_{3} is a core vertex; (ii) each vertex in $\left(e_{2} \cup e_{3}\right) \backslash\left\{v_{1}, v_{2}\right\}$ of C_{3} must be attached by a pendent edge; and (iii) there exists at least one vertex in $e_{2} \cup e_{3}$ of C_{3} which is attached by a hypertree having at least $k \geq 3$ edges (if $n \geq 3 k(k-1)$).

Furthermore, by the methods similar to the proofs for Lemma 3.3, we obtain a hypergraph G^{*} such that $\rho\left(G^{*}\right) \geq \rho\left(G_{12}\right)$ with the equality iff $G^{*} \cong G_{12}$, where $G^{*} \in \overline{\mathcal{U}}_{2}(n, k, 3)$. Therefore, we get Lemma 3.7.

Lemma 3.8. For $n \geq 3 k(k-1)$ and $k \geq 3$, we have $\rho\left(A_{n, k}\right)>\rho\left(B_{n, k}\right)$, where $A_{n, k}$ and $B_{n, k}$ are the two hypergraphs as shown in Fig. 1(b) and Fig. 2(a), respectively.

Proof: Let $n \geq 2 k(k-1)$ and $k \geq 3$. Let $0<\alpha<1$. We construct a weighted incidence matrix $\mathcal{B}_{A_{n, k}}$ for $A_{n, k}$ as follows.

$$
\mathcal{B}_{A_{n, k}}(v, e)= \begin{cases}0 & v \notin e, \\ 1 & v \in e \text { and } v \text { is a core vertex, } \\ \alpha & v \in e, e \text { is a pendent edge and } d_{A_{n, k}}(v)=2, \\ 1-\alpha & v \in e, e \text { is not a pendent edge and } d_{A_{n, k}}(v)=2, \\ \frac{\alpha}{(1-\alpha)^{k-1}} & (v, e)=\left(v_{1}, g_{i}\right), \text { where } i=1, \cdots, m-3, \text { and } m \geq 3, \\ x_{0} & (v, e)=\left(v_{1}, e_{1}\right), \\ y_{0} & (v, e)=\left(v_{2}, e_{1}\right), \\ c_{0} & (v, e)=\left(v_{1}, e_{3}\right), \\ d_{0} & (v, e)=\left(v_{2}, e_{2}\right), \\ \frac{\alpha}{c_{0}(1-\alpha)^{k-2}} & (v, e)=\left(v_{3}, e_{3}\right), \\ \frac{\alpha}{d_{0}(1-\alpha)^{k-2}} & (v, e)=\left(v_{3}, e_{2}\right) .\end{cases}
$$

where $x_{0}, y_{0}, c_{0}, d_{0}$, and α satisfy the following five equations:

$$
\left\{\begin{array}{l}
x_{0}+\alpha+c_{0}+\frac{(m-3) \alpha}{(1-\alpha)^{k-1}}=1 \tag{3}\\
y_{0}+\alpha+d_{0}=1 \\
\frac{\alpha}{c_{0}(1-\alpha)^{k-2}}+\frac{\alpha}{d_{0}(1-\alpha)^{k-2}}+\alpha=1 \\
x_{0} y_{0}(1-\alpha)^{k-2}=\alpha \\
\frac{x_{0}}{y_{0}} \cdot \frac{d_{0}^{2}}{c_{0}^{2}}=1
\end{array}\right.
$$

We check that $\sum_{e: e \in E_{A_{n, k}}(v)} \mathcal{B}_{A_{n, k}}(v, e)=1$ for any $v \in V\left(A_{n, k}\right), \prod_{v: v \in e} \mathcal{B}_{A_{n, k}}(v, e)=\alpha$ for any $e \in E\left(A_{n, k}\right)$, and $\mathcal{B}_{A_{n, k}}$ is consistent. Thus, $A_{n, k}$ is consistently α-normal. By Lemma 2.9(i), we have $\rho\left(A_{n, k}\right)=\alpha^{-\frac{1}{k}}$.

We construct a weighted incidence matrix $\mathcal{B}_{B_{n, k}}$ for $B_{n, k}$ as follows. Let $\mathcal{B}_{B_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{B_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{B_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{B_{n, k}}(v)=2 ; \mathcal{B}_{B_{n, k}}(v, e)=1-\alpha$ if $v \in e, v \neq v_{2}, e$ is not a pendent edge, and $d_{B_{n, k}}(v)=2 ; \mathcal{B}_{B_{n, k}}\left(v_{1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-2$ and $m \geq 3 ; \mathcal{B}_{B_{n, k}}\left(v_{1}, e_{1}\right)=x_{1} ; \mathcal{B}_{B_{n, k}}\left(v_{2}, e_{1}\right)=y_{1} ; \mathcal{B}_{B_{n, k}}\left(v_{1}, e_{3}\right)=c_{0} ; \mathcal{B}_{B_{n, k}}\left(v_{2}, e_{2}\right)=d_{0} ; \mathcal{B}_{B_{n, k}}\left(v_{3}, e_{3}\right)=\frac{\alpha}{c_{0}(1-\alpha)^{k-2}} ;$ and $\mathcal{B}_{B_{n, k}}\left(v_{3}, e_{2}\right)=\frac{\alpha}{d_{0}(1-\alpha)^{k-2}}$, where $x_{1}, y_{1}, c_{0}, d_{0}$, and α satisfy (6) and (7) as follows:

$$
\left\{\begin{array}{l}
x_{1}+c_{0}+\frac{(m-2) \alpha}{(1-\alpha)^{k-1}}=1 \tag{6}\\
y_{1}+d_{0}=1
\end{array}\right.
$$

We can verify that $\sum_{e: e \in E_{B_{n, k}}(v)} \mathcal{B}_{B_{n, k}}(v, e)=1$ for any $v \in V\left(B_{n, k}\right)$ and $\prod_{v: v \in e} \mathcal{B}_{B_{n, k}}(v, e)=\alpha$ for any $e \in E\left(B_{n, k}\right)$ and $e \neq e_{1}$. Next, we prove $\prod_{v: v \in e_{1}} \mathcal{B}_{B_{n, k}}\left(v, e_{1}\right)>\alpha$.

We get

$$
\begin{align*}
& \prod_{v: v \in e_{1}} \mathcal{B}_{B_{n, k}}\left(v, e_{1}\right)-\alpha=x_{1} y_{1}-\alpha \\
& =\left(x_{0}+\alpha-\frac{\alpha}{(1-\alpha)^{k-1}}\right)\left(y_{0}+\alpha\right)-\alpha \tag{8}\\
& =\alpha\left(y_{0}+\alpha-1\right)+x_{0} y_{0}+x_{0} \alpha-\frac{\alpha}{(1-\alpha)^{k-1}}\left(y_{0}+\alpha\right) \tag{9}\\
& >\alpha\left(y_{0}+\alpha-1\right)+\frac{\alpha}{(1-\alpha)^{k-1}}\left(1-\alpha-y_{0}\right) \tag{10}\\
& =\alpha d_{0}\left(\frac{1}{(1-\alpha)^{k-1}}-1\right) \tag{11}\\
& >0 \tag{12}
\end{align*}
$$

It is noted that (8) follows from $x_{1}=x_{0}+\alpha-\frac{\alpha}{(1-\alpha)^{k-1}}$ (by (3) and (6)) and $y_{1}=y_{0}+\alpha$ (by (4) and (7)). By (4) and $d_{0}>0$, we get $y_{0}<1-\alpha$. Furthermore, by $0<y_{0}<1-\alpha<1$ and (5), we obtain $x_{0}=\frac{\alpha}{y_{0}(1-\alpha)^{k-2}}>\frac{\alpha}{(1-\alpha)^{k-1}}$. Substituting this inequality and (5) into (9), we have (10). By (4), we obtain (11). Since $0<\alpha<1$, we have (12).

By the above proofs, we get that $B_{n, k}$ is strictly α-subnormal. Therefore, by Lemma 2.9(ii), we have $\rho\left(B_{n, k}\right)<\alpha^{-\frac{1}{k}}$. Thus, by Lemma 2.9, we obtain $\rho\left(A_{n, k}\right)>\rho\left(B_{n, k}\right)$, where $n \geq 3 k(k-1)$ and $k \geq 3$.
Lemma 3.9. Let $G \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$, where $n \geq 3 k(k-1)$ and $k \geq 3$. We have $\rho\left(A_{n, k}\right)>\rho(G)$.

Proof: Let $n=m k(k-1)$ with $m \geq 3$ and $k \geq 3$. Let $G \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$. When $m=3$, we get Lemma 3.9 since $G \cong B_{n, k}$ and $\rho\left(A_{n, k}\right)>\rho\left(B_{n, k}\right)$ (by Lemma 3.8). Next, let $m \geq 4$.

Let $M(G)$ be the perfect matching of G. Since $m \geq 4$, bearing the definition of $\overline{\mathcal{U}}_{2,1}(n, k, 3)$ in mind, we assume v_{1} of C_{3} in G is attached by a hypertree (denoted by T^{*}) which has at least two edges belonging to $Q(G)$. If T^{*} has perfect matching edges which are not pendent edges, then let e be an arbitrary edge of those edges. By applying the edge-releasing operation on e at a vertex of e, we get a hypergraph G_{13} such that $\rho\left(G_{13}\right) \geq \rho(G)$ with the equality iff $G \cong G_{13}$ (by Lemma 3.1), where $G_{13} \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$ and all the perfect matching edges of G_{13} are pendent edges except for e_{1} contained in C_{3} of G_{13}.

If $G_{13} \cong B_{n, k}$, then by Lemma 3.8, we get $\rho\left(A_{n, k}\right)>\rho\left(B_{n, k}\right) \geq \rho(G)$. Namely, Lemma 3.9 holds. Otherwise, we assume $G_{13} \not \not B_{n, k}$. Since $m \geq 4$, it is noted that v_{1} of C_{3} in G_{13} is attached by a hypertree (denoted by T^{\star}) which has at least two edges belonging to $Q\left(G_{13}\right)$. As $G_{13} \not \equiv B_{n, k}$, in G_{13}, there exists an edge (denoted by $\dot{g}=\left\{w_{1}, \ldots, w_{k}\right\}$) which satisfies the following conditions: (i) $\dot{g} \in E\left(T^{\star}\right)$; (ii) \dot{g} is not a pendent edge; (iii) v_{1} and w_{1} are incident with a common edge; and (iv) \dot{g} is not incident with v_{1}. Let x be the principal eigenvector of G_{13} corresponding to $\rho\left(G_{13}\right)$. Two cases are considered as follows.
Case (i). $x_{v_{1}}<x_{w_{1}}$.
Let G_{14} be the hypergraph obtained from G_{13} by moving all the edges which are incident with v_{1} (except for e_{1} of C_{3} in G_{13} and the common edge which is incident with v_{1} and w_{1}) from v_{1} to w_{1}. Obviously, $G_{14} \in \mathcal{U}_{2}(n, k, 4)$, where each vertex of $e_{1} \backslash\left\{v_{1}, v_{2}\right\}$ of C_{4} in G_{14} is a core vertex and only e_{1} is the perfect matching edge on C_{4} of G_{14}. By Lemma 2.2, we obtain $\rho\left(G_{14}\right)>\rho\left(G_{13}\right)$. Let G_{15} be the hypergraph obtained from G_{14} by applying the edge-releasing operation on e_{1} at v_{1} in such a way that e_{1} becomes a pendent edge. By Lemma 2.5, we have $\rho\left(G_{15}\right)>\rho\left(G_{14}\right)$. Obviously, G_{15} does not have multiple edges and $G_{15} \in \overline{\mathcal{U}}_{1}(n, k, 3)$. By Corollary 3.5, we get $\rho\left(A_{n, k}\right) \geq \rho\left(G_{15}\right)$ with the equality iff $G_{15} \cong A_{n, k}$. By the above proofs, we obtain $\rho\left(A_{n, k}\right)>\rho(G)$ for $G \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$.
Case (ii). $x_{v_{1}} \geq x_{w_{1}}$.
Let G_{16} be the hypergraph obtained from G_{13} by moving \dot{g} from w_{1} to v_{1} in such a way that G_{16} has the perfect matching $M(G)$. Obviously, $G_{16} \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$. By Lemma 2.2, we obtain $\rho\left(G_{16}\right)>\rho\left(G_{13}\right)$. If $G_{16} \cong B_{n, k}$, then by Lemma 3.8 and the above proofs, we get $\rho\left(A_{n, k}\right)>\rho\left(B_{n, k}\right)>\rho(G)$ for $G \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$. Otherwise, we assume $G_{16} \not \approx B_{n, k}$. By repeatedly using the same procedure as those in Cases (i) and (ii), we finally obtain $\max \left\{\rho\left(A_{n, k}\right), \rho\left(B_{n, k}\right)\right\}>\rho\left(G_{16}\right)$. Therefore, it follows from $\rho\left(A_{n, k}\right)>\rho\left(B_{n, k}\right)$ (by Lemma 3.8) that $\rho\left(A_{n, k}\right)>\rho\left(G_{16}\right)$. Thus, we get $\rho\left(A_{n, k}\right)>\rho(G)$ for $G \in \overline{\mathcal{U}}_{2,1}(n, k, 3)$.

By combining the above proofs, we have Lemma 3.9.
Lemma 3.10. We have $\rho\left(D_{n, k}\right)>\rho\left(A_{n, k}\right)$ for $n \geq 9 k(k-1)$ and $k \geq 3$, where $A_{n, k}$ and $D_{n, k}$ are shown in Fig. $1(b)$ and Fig. 2(b), respectively.

Proof: We construct a weighted incidence matrix $\mathcal{B}_{D_{n, k}}$ for $D_{n, k}$ as follows. Let $0<\alpha<1$. Let $\mathcal{B}_{D_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{D_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{D_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{D_{n, k}}(v)=2$; $\mathcal{B}_{D_{n, k}}(v, e)=1-\alpha$ if $v \in e, v \neq v_{2}, v_{3}, e$ is not a pendent edge, and $d_{D_{n, k}}(v)=2 ; \mathcal{B}_{D_{n, k}}\left(v_{1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-2$ and $m \geq 9 ; \mathcal{B}_{D_{n, k}}\left(v_{1}, e_{1}\right)=\mathcal{B}_{D_{n, k}}\left(v_{1}, e_{3}\right)=x_{2} ; \mathcal{B}_{D_{n, k}}\left(v_{2}, e_{1}\right)=\mathcal{B}_{D_{n, k}}\left(v_{3}, e_{3}\right)=y_{2}$; and $\mathcal{B}_{D_{n, k}}\left(v_{2}, e_{2}\right)=\mathcal{B}_{D_{n, k}}\left(v_{3}, e_{2}\right)=c_{1}$, where y_{2}, c_{1}, x_{2}, and α satisfy (13)-(16) as follows:

$$
\left\{\begin{array}{l}
y_{2}+c_{1}=1 \tag{13}\\
2 x_{2}+\alpha+\frac{(m-2) \alpha}{(1-\alpha)^{k-1}}=1 \\
x_{2} y_{2}(1-\alpha)^{k-2}=\alpha \\
c_{1}^{2}=\alpha
\end{array}\right.
$$

We can verify that $\sum_{e: e \in E_{D_{n, k}}(v)} \mathcal{B}_{D_{n, k}}(v, e)=1$ for any $v \in V\left(D_{n, k}\right), \prod_{v: v \in e} \mathcal{B}_{D_{n, k}}(v, e)=\alpha$ for any $e \in E\left(D_{n, k}\right)$, and $\mathcal{B}_{D_{n, k}}$ is consistent. Thus, $D_{n, k}$ is consistently α-normal. By Lemma 2.9(i), we have $\rho\left(D_{n, k}\right)=\alpha^{-\frac{1}{k}}$.

We construct a weighted incidence matrix $\mathcal{B}_{A_{n, k}}$ for $A_{n, k}$ as follows. Let $0<\alpha<1$. Let $\mathcal{B}_{A_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{A_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{A_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{A_{n, k}}(v)=2$;
$\mathcal{B}_{A_{n, k}}(v, e)=1-\alpha$ if $v \in e, e$ is not a pendent edge and $d_{A_{n, k}}(v)=2 ; \mathcal{B}_{A_{n, k}}\left(v_{1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-3$ and $m \geq 9 ; \mathcal{B}_{A_{n, k}}\left(v_{1}, e_{1}\right)=\mathcal{B}_{A_{n, k}}\left(v_{1}, e_{3}\right)=x_{3} ; \mathcal{B}_{A_{n, k}}\left(v_{2}, e_{1}\right)=\mathcal{B}_{A_{n, k}}\left(v_{3}, e_{3}\right)=y_{3} ;$ and $\mathcal{B}_{A_{n, k}}\left(v_{2}, e_{2}\right)=\mathcal{B}_{A_{n, k}}\left(v_{3}, e_{2}\right)=c_{2}$, where y_{3}, x_{3}, c_{2}, and α satisfy (17)-(19) as follows:

$$
\left\{\begin{array}{l}
y_{3}+c_{2}+\alpha=1 \tag{17}\\
x_{3} y_{3}(1-\alpha)^{k-2}=\alpha \\
c_{2}^{2}(1-\alpha)^{k-2}=\alpha
\end{array}\right.
$$

We can verify that $\sum_{e: e \in E_{A_{n, k}}(v)} \mathcal{B}_{A_{n, k}}(v, e)=1$ for any $v \in V\left(A_{n, k}\right) \backslash\left\{v_{1}\right\}$ and $\prod_{v: v \in e} \mathcal{B}_{A_{n, k}}(v, e)=\alpha$ for any $e \in E\left(A_{n, k}\right)$. Next, we will prove $\sum_{e: e \in E_{A_{n, k}}\left(v_{1}\right)} \mathcal{B}_{A_{n, k}}\left(v_{1}, e\right)<1$.

Since $\alpha>0$ and $1-\alpha>0$, we have $0<\alpha<1$. It follows from (16) that $c_{1}=\sqrt{\alpha}$. Combining (13) and $0<\alpha<1$, we obtain $y_{2}=1-\sqrt{\alpha}<1-\alpha$. From $y_{2}<1-\alpha, y_{2}>0$ and (15), we have $x_{2}=\frac{\alpha}{y_{2}(1-\alpha)^{k-2}}>\frac{\alpha}{(1-\alpha)^{k-1}}$. Substituting $x_{2}>\frac{\alpha}{(1-\alpha)^{k-1}}$ into (14), we get $m \alpha<(1-\alpha)^{k}$. It follows from $m \alpha<(1-\alpha)^{k}$ and (19) that $c_{2}<\frac{1-\alpha}{\sqrt{m}}$. Thus, for $m \geq 9$, we have

$$
\begin{align*}
x_{3}-x_{2} & =\frac{\alpha}{(1-\alpha)^{k-2}}\left(\frac{1}{y_{3}}-\frac{1}{y_{2}}\right) \tag{20}\\
& =\frac{\alpha}{(1-\alpha)^{k-1}}\left(\frac{1-\alpha}{y_{3}}-\frac{1-\alpha}{y_{2}}\right) \\
& =\frac{\alpha}{(1-\alpha)^{k-1}}\left(\frac{1-\alpha}{1-c_{2}-\alpha}-\frac{1-\alpha}{1-c_{1}}\right) \tag{21}\\
& <\frac{\alpha}{(1-\alpha)^{k-1}}\left(\frac{\sqrt{m}}{\sqrt{m}-1}-(1+\sqrt{\alpha})\right) \tag{22}\\
& <\frac{\alpha}{(1-\alpha)^{k-1}}\left(\frac{\sqrt{m}}{\sqrt{m}-1}-1\right) \\
& =\frac{\alpha}{(1-\alpha)^{k-1}} \times \frac{1}{\sqrt{m}-1} \\
& \leq \frac{\alpha}{2(1-\alpha)^{k-1}}, \tag{23}
\end{align*}
$$

where (20) follows from (15) and (18), (21) is deduced from (13) and (17), and (22) is obtained from $c_{2}<\frac{1-\alpha}{\sqrt{m}}$ and $c_{1}=\sqrt{\alpha}$. Therefore, it follows from (20)-(23) that $x_{3}<x_{2}+\frac{\alpha}{2(1-\alpha)^{k-1}}$ for $m \geq 9$. Thus, we obtain

$$
\begin{align*}
\sum_{e: e \in E_{A_{n, k}\left(v_{1}\right)}} \mathcal{B}_{A_{n, k}}\left(v_{1}, e\right) & =2 x_{3}+\alpha+\frac{(m-3) \alpha}{(1-\alpha)^{k-1}} \\
& <2 x_{2}+\frac{\alpha}{(1-\alpha)^{k-1}}+\alpha+\frac{(m-3) \alpha}{(1-\alpha)^{k-1}} \\
& =2 x_{2}+\alpha+\frac{(m-2) \alpha}{(1-\alpha)^{k-1}} \\
& =1 \tag{24}
\end{align*}
$$

where (24) follows from (14). Thus, for $m \geq 9, A_{n, k}$ is strictly α-subnormal. Therefore, by Lemma 2.9(ii), we have $\rho\left(A_{n, k}\right)<\alpha^{-\frac{1}{k}}$.

In conclusion, it follows from Lemma 2.9 that $\rho\left(D_{n, k}\right)>\rho\left(A_{n, k}\right)$, where $n \geq 9 k(k-1)$ and $k \geq 3$.

It should be noted that, since (23) holds for $m \geq 9$, the methods proposed in Lemma 3.10 can not be used to compare the relationship between $\rho\left(D_{n, k}\right)$ and $\rho\left(A_{n, k}\right)$ when $n=m k(k-1)$ with $3 \leq m \leq 8$.

By the methods similar to those for Lemma 3.4, we have Lemma 3.11 as follows.
Lemma 3.11. Let $G \in \overline{\mathcal{U}}_{2,2}(n, k, 3)$, where $n \geq 2 k(k-1)$ and $k \geq 3$. We have $\rho\left(D_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong D_{n, k}$.

Corollary 3.12. Let $G \in \mathcal{U}_{2}(n, k, l)$, where $n=m k(k-1)$ and $m, k, l \geq 3$. (i). If $3 \leq m \leq 8$, we have $\max \left\{\rho\left(A_{n, k}\right), \rho\left(D_{n, k}\right)\right\} \geq \rho(G)$. (ii). If $m \geq 9$, we have $\rho\left(D_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong D_{n, k}$.

Proof: Let $n=m k(k-1)$ and $m, k, l \geq 3$. By Corollary 3.5 , we have $\rho\left(A_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong A_{n, k}$, where $G \in \mathcal{U}_{1}(n, k, l)$. By Lemmas 3.9 and 3.11, we have $\max \left\{\rho\left(A_{n, k}\right), \rho\left(D_{n, k}\right)\right\} \geq \rho(G)$ for $G \in \overline{\mathcal{U}}_{2}(n, k, 3)$ since $\overline{\mathcal{U}}_{2,1}(n, k, 3) \cup \overline{\mathcal{U}}_{2,2}(n, k, 3)=\overline{\mathcal{U}}_{2}(n, k, 3)$. Furthermore, by Lemmas 3.6, 3.7 and Corollary 3.5, we obtain $\max \left\{\rho\left(A_{n, k}\right), \rho\left(D_{n, k}\right)\right\} \geq \rho(G)$ for $G \in \mathcal{U}_{2}(n, k, l)$. Thus, when $3 \leq m \leq 8$, we get Corollary 3.12 (i). For $m \geq 9$, by Lemma 3.10, we have $\rho\left(D_{n, k}\right)>\rho\left(A_{n, k}\right)$ for $n \geq 9 k(k-1)$. Therefore, we get Corollary 3.12 (ii).

By Corollaries 3.5 and 3.12, we obtain Theorem 3.13 as follows.
Theorem 3.13. Let $G \in \mathcal{U}(n, k)$, where $n=m k(k-1), m \geq 2$ and $k \geq 3$. (i). If $m=2$, we have $G \cong B_{n, k} \cong D_{n, k}$ and $\rho(G)=\rho\left(B_{n, k}\right)=\rho\left(D_{n, k}\right)$. (ii). If $3 \leq m \leq 8, \max \left\{\rho\left(A_{n, k}\right), \rho\left(D_{n, k}\right)\right\} \geq \rho(G)$. (iii). If $m \geq 9, \rho\left(D_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong D_{n, k}$.

4. The hypergraphs with the maximal spectral radii among $\Gamma(n, k)$ and $\mathcal{U}(n, k) \cup \Gamma(n, k)$

In Section 4, we will get the hypergraphs with the maximal spectral radii among $\Gamma(n, k)$ with $n \geq k(k-1)$ and among $\mathcal{U}(n, k) \cup \Gamma(n, k)$ with $n \geq 2 k(k-1)$, where $k \geq 3$. Some necessary definitions are given as follows.

Let $G \in \Gamma(n, k)$. The unique cycle in G has two edges which share two common vertices. We denote the cycle in G by C_{2} and the two edges contained in C_{2} by \widetilde{e}_{1} and \widetilde{e}_{2}, where $\widetilde{e}_{1}=\left\{u_{1}, u_{1,1}, \ldots, u_{1, k-2}, u_{2}\right\}$ and $\widetilde{e}_{2}=\left\{u_{1}, u_{2,1}, \ldots, u_{2, k-2}, u_{2}\right\} . C_{2}$ is shown in Fig. 3(a). According to the fact whether C_{2} of G has one perfect matching edge or not, we classify $\Gamma(n, k)$ into two types: (1) C_{2} has one perfect matching edge, and (2) \widetilde{e}_{1} and \widetilde{e}_{2} in C_{2} are not perfect matching edges. The hypergraphs in $\Gamma(n, k)$ can be divided into two subsets according to Types (1) and (2). We denote $\Gamma(n, k)=\Gamma_{1}(n, k) \cup \Gamma_{2}(n, k)$, where all the hypergraphs in $\Gamma_{1}(n, k)$ and $\Gamma_{2}(n, k)$ have Types (1) and (2), respectively. Obviously, for all the hypergraphs in $\Gamma_{1}(n, k)$ and in $\Gamma_{2}(n, k)$, we have $m \geq 1$ and $m \geq 2$, respectively.

Figure 3: (a) C_{2} and (b) $I_{n, k}$
Let $\bar{\Gamma}_{1}(n, k)$ be a subset of $\Gamma_{1}(n, k)$ in which each hypergraph satisfies three conditions: (i) each vertex in $\widetilde{e}_{1} \backslash\left\{u_{1}, u_{2}\right\}$ of C_{2} is a core vertex; (ii) each vertex in $\widetilde{e}_{2} \backslash\left\{u_{1}, u_{2}\right\}$ of C_{2} must be attached by a pendent edge;
and (iii) at most one of the vertices (denoted by v) in \widetilde{e}_{2} of C_{2} is attached by a hypertree which has at least $k \geq 3$ edges. We further classify $\bar{\Gamma}_{1}(n, k)$ into two subsets which are denoted by $\bar{\Gamma}_{1,1}(n, k)$ and $\bar{\Gamma}_{1,2}(n, k)$, where the hypergraphs in $\bar{\Gamma}_{1,1}(n, k)$ satisfy that $v=u_{1}$ or $v=u_{2}$ and the hypergraphs in $\bar{\Gamma}_{1,2}(n, k)$ satisfy that v is one of the vertices in $\left\{u_{2,1}, \cdots, u_{2, k-2}\right\}$.

Let $\bar{\Gamma}_{2}(n, k)$ be a subset of $\Gamma_{2}(n, k)$ in which each hypergraph satisfies two conditons: (i) each vertex in C_{2} must be attached by a pendent edge, and (ii) at most one of the vertices in $\widetilde{e_{1}} \cap \widetilde{e_{2}}=\left\{u_{1}, u_{2}\right\}$ of C_{2} is attached by a hypertree which has at least k edges, where $k \geq 3$.

Let $I_{n, k}$ be the hypergraph obtained from $C_{2}\left(u_{1}, u_{0}\right) S_{m-1, k}$ by attaching one pendent edge at each vertex of $C_{2}\left(u_{1}, u_{0}\right) S_{m-1, k}$ (except for all the vertices of $\left.\widetilde{e_{1}}\right)$, where $m \geq 1$ and $k \geq 3$. Let $J_{n, k}$ be the hypergraph obtained from $C_{2}\left(u_{2,1}, u_{0}\right) S_{m-1, k}$ by attaching one pendent edge at each vertex of $C_{2}\left(u_{2,1}, u_{0}\right) S_{m-1, k}$ (except for all the vertices of $\left.\widetilde{e_{1}}\right)$, where $m \geq 1$ and $k \geq 3$. Obviously, when $n=k(k-1), I_{n, k} \cong J_{n, k} . I_{n, k}$ and $J_{n, k}$ are shown in Fig. 3(b) and Fig. 4(a), respectively. Let $L_{n, k}$ be the hypergraph obtained from $C_{2}\left(u_{1}, u_{0}\right) S_{m-2, k}$ by attaching one pendent edge at each vertex of $C_{2}\left(u_{1}, u_{0}\right) S_{m-2, k}$, where $m \geq 2$ and $k \geq 3$. $L_{n, k}$ is shown in Fig. 4(b). Obviously, $I_{n, k} \in \bar{\Gamma}_{1,1}(n, k), J_{n, k} \in \bar{\Gamma}_{1,2}(n, k)$, and $L_{n, k} \in \bar{\Gamma}_{2}(n, k)$.

To obtain the hypergraph with the maximal spectral radius in $\Gamma(n, k)=\Gamma_{1}(n, k) \cup \Gamma_{2}(n, k)$ (as shown in Theorem 4.12), we introduce several lemmas first. We propose Lemmas 4.1-4.7 to get the hypergraph with the maximal spectral radius in $\Gamma_{1}(n, k)$ (as shown in Corollary 4.8). Lemmas 4.9 and 4.10 are deduced to obtain the hypergraph with the maximal spectral radius in $\Gamma_{2}(n, k)$ (as shown in Corollary 4.11).

Figure 4: (a) $J_{n, k}$ and (b) $L_{n, k}$
By the methods similar to those for Lemma 3.1, we have Lemma 4.1 as follows.
Lemma 4.1. Let $G \in \Gamma_{i}(n, k)$, where $i=1,2, n \geq k(k-1)$ and $k \geq 3$. Let e be a perfect matching edge of G, and e is neither an edge on C_{2} of G nor a pendent edge. Let G_{0}^{\prime} be the hypergraph obtained from G by applying the edge-releasing operation on e at a vertex of e such that e of G_{0}^{\prime} is a pendent edge. We have $\rho\left(G_{0}^{\prime}\right)>\rho(G)$, where $G_{0}^{\prime} \in \Gamma_{i}(n, k)$ and $i=1,2$.

Lemma 4.2. Let $G \in \Gamma_{1}(n, k)$, where $n \geq k(k-1)$ and $k \geq 3$. There exists a hypergraph $\ddot{G} \in \bar{\Gamma}_{1}(n, k)$ such that $\rho(\ddot{G}) \geq \rho(G)$ with the equality iff $G \cong \ddot{G}$.

Proof: Let $n \geq k(k-1)$ and $k \geq 3$. Let $G \in \Gamma_{1}(n, k)$. According to the definition of $\Gamma_{1}(n, k)$, we suppose that $\widetilde{e_{1}}$ of G is a perfect matching edge. In $\widetilde{e}_{1} \backslash\left\{u_{1}, u_{2}\right\}$, if there exists a vertex having degree not less than 2 , without loss of generality, we suppose that this vertex is $u_{1,1}$. By the methods similar to those for the first paragraph in Lemma 3.7, we finally obtain a hypergraph (denoted by G_{17}) in $\Gamma_{1}(n, k)$ satisfying $\rho\left(G_{17}\right)>\rho(G)$ and each vertex in $\widetilde{e}_{1} \backslash\left\{u_{1}, u_{2}\right\}$ of G_{17} is a core vertex.

If $G_{17} \in \bar{\Gamma}_{1}(n, k)$, then we get Lemma 4.2. Otherwise, by Lemma 4.1, we obtain a hypergraph \tilde{G} satisfying that $\rho(\tilde{G}) \geq \rho\left(G_{17}\right)$ with the equality iff $G_{17} \cong \tilde{G}$, where \tilde{G} satisfies three conditions: (i) each vertex in
$\widetilde{e}_{1} \backslash\left\{u_{1}, u_{2}\right\}$ of C_{2} is a core vertex; (ii) each vertex in $\widetilde{e}_{2} \backslash\left\{u_{1}, u_{2}\right\}$ of C_{2} must be attached by a pendent edge; and (iii) at least one vertex in \widetilde{e}_{2} of C_{2} is attached by a hypertree which has at least $k \geq 3$ edges (if $n \geq 2 k(k-1)$).

If $\tilde{G} \in \bar{\Gamma}_{1}(n, k)$, then we get Lemma 4.2. Otherwise, we assume $\tilde{G} \notin \bar{\Gamma}_{1}(n, k)$. By the definition of $\bar{\Gamma}_{1}(n, k)$, there exist two vertices (denoted by \tilde{u}_{1} and \tilde{u}_{2}) in \widetilde{e}_{2} of \tilde{G} which have degrees not less than 3 . Namely, \tilde{u}_{1} and \tilde{u}_{2} are attached by hypertrees which have at least $k \geq 3$ edges. Let $f_{1}^{1}, \cdots, f_{d_{G}\left(\tilde{u}_{1}\right)-2}^{1}$ and $f_{1}^{2}, \cdots, f_{d_{G}\left(\tilde{u}_{2}\right)-2}^{2}$ be all the edges which are incident with \tilde{u}_{1} and \tilde{u}_{2}, respectively. It is noted that $f_{1}^{1}, \cdots, f_{d_{G}\left(\tilde{u}_{1}\right)-2}^{1}$ and $f_{1}^{2}, \cdots, f_{d_{G}\left(\tilde{u}_{2}\right)-2}^{2}$ are not perfect matching edges and all of them do not contain \widetilde{e}_{2}.

Let x be the principal eigenvector of \tilde{G} corresponding to $\rho(\tilde{G})$. Without loss of generality, we suppose $x_{\tilde{u}_{1}} \geq x_{\tilde{u}_{2}}$. Let G_{18} be the hypergraph obtained from \tilde{G} by removing $f_{1}^{2}, \cdots, f_{d_{G}\left(\tilde{u}_{2}\right)-2}^{2}$ from \tilde{u}_{2} to \tilde{u}_{1}. By Lemma 2.2, we obtain $\rho\left(G_{18}\right)>\rho(\tilde{G})$. By repeatedly using the same procedure as above, we can find a hypergraph $\ddot{G} \in \bar{\Gamma}_{1}(n, k)$ such that $\rho(\ddot{G}) \geq \rho\left(G_{18}\right)>\rho(G)$ with the equality iff $\ddot{G} \cong G_{18}$. Therefore, we get Lemma 4.2.

To obtain the hypergraph with the maximal spectral radius in $\bar{\Gamma}_{1,1}(n, k)$ with $n \geq 2 k(k-1)$ and $k \geq 3$ (as shown in Lemma 4.5), we introduce Lemmas 4.3 and 4.4 first.

Lemma 4.3. We have $\rho\left(L_{n, k}\right)>\rho\left(A_{n, k}\right)$ and $\rho\left(L_{n, k}\right)>\rho\left(D_{n, k}\right)$, where $n \geq 2 k(k-1)$ and $k \geq 3$.
Proof: Let $n \geq 2 k(k-1)$ and $k \geq 3$. Let x be the principal eigenvector corresponding to $\rho\left(A_{n, k}\right)$. In $A_{n, k}$, if $x_{v_{1}} \geq x_{v_{3}}$, then let H_{1} be the hypergraph obtained from $A_{n, k}$ by removing the edge e_{2} of $A_{n, k}$ from v_{3} to v_{1}. By Lemma 2.2, we have $\rho\left(H_{1}\right)>\rho\left(A_{n, k}\right)$. In $A_{n, k}$, if $x_{v_{3}}>x_{v_{1}}$, then let H_{2} be the hypergraph obtained from $A_{n, k}$ by removing all the edges of $e_{1}, g_{1}, \cdots, g_{m-3}(m \geq 3)$ from v_{1} to v_{3}. By Lemma 2.2, we obtain $\rho\left(H_{2}\right)>\rho\left(A_{n, k}\right)$. Obviously, $H_{1} \cong H_{2} \cong L_{n, k}$. Therefore, we get $\rho\left(L_{n, k}\right)>\rho\left(A_{n, k}\right)$ for $n \geq 3 k(k-1)$ and $k \geq 3$.

Let y be the principal eigenvector corresponding to $\rho\left(D_{n, k}\right)$. By the symmetry of the vertices of $D_{n, k}$, we have $y_{v_{2}}=y_{v_{3}}$. Let H_{3} be the hypergraph obtained from $D_{n, k}$ by removing e_{3} from v_{3} to v_{2}. Obviously, $H_{3} \cong L_{n, k}$. Therefore, by Lemma 2.2, we get $\rho\left(L_{n, k}\right)>\rho\left(D_{n, k}\right)$ for $n \geq 2 k(k-1)$ and $k \geq 3$.

Lemma 4.4. We have $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right)$ for $n \geq 2 k(k-1)$ and $k \geq 3$, where $I_{n, k}$ and $L_{n, k}$ are shown in Fig. 3(b) and Fig. 4(b), respectively.

Proof: Let $n \geq 2 k(k-1)$ and $k \geq 3$. We construct a weighted incidence matrix $\mathcal{B}_{L_{n, k}}$ for $L_{n, k}$ as follows. Let $0<\alpha<1$. Let $\mathcal{B}_{L_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{L_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{L_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{L_{n, k}}(v)=2 ; \mathcal{B}_{L_{n, k}}(v, e)=1-\alpha$ if $v \in e, e$ is not a pendent edge and $d_{L_{n, k}}(v)=2 ; \mathcal{B}_{L_{n, k}}\left(u_{1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-2$ and $m \geq 2 ; \mathcal{B}_{L_{n, k}}\left(u_{1}, \widetilde{e}_{1}\right)=\mathcal{B}_{L_{n, k}}\left(u_{1}, \widetilde{e}_{2}\right)=x_{4}$; and $\mathcal{B}_{L_{n, k}}\left(u_{2}, \widetilde{e_{1}}\right)=\mathcal{B}_{L_{n, k}}\left(u_{2}, \widetilde{e_{2}}\right)=y_{4}$, where x_{4}, y_{4} and α satisfy (25)-(27) as follows:

$$
\left\{\begin{array}{l}
2 x_{4}+\alpha+\frac{(m-2) \alpha}{(1-\alpha)^{k-1}}=1 \tag{25}\\
2 y_{4}+\alpha=1 \\
x_{4} y_{4}(1-\alpha)^{k-2}=\alpha
\end{array}\right.
$$

We can check that $\sum_{e: e \in E_{L_{n, k}}(v)} \mathcal{B}_{L_{n, k}}(v, e)=1$ for any $v \in V\left(L_{n, k}\right), \prod_{v: v \in e} \mathcal{B}_{L_{n, k}}(v, e)=\alpha$ for any $e \in E\left(L_{n, k}\right)$, and $\mathcal{B}_{L_{n, k}}$ is consistent. Thus, $L_{n, k}$ is consistently α-normal. By Lemma 2.9(i), we have $\rho\left(L_{n, k}\right)=\alpha^{-\frac{1}{k}}$.

We construct a weighted incidence matrix $\mathcal{B}_{I_{n, k}}$ for $I_{n, k}$ as follows. Let $\mathcal{B}_{I_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{I_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{I_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{I_{n, k}}(v)=2 ; \mathcal{B}_{I_{n, k}}(v, e)=1-\alpha$ if $v \in e\left(v \neq u_{2}\right), e$ is not a pendent edge and $d_{I_{n, k}}(v)=2 ; \mathcal{B}_{I_{n, k}}\left(u_{1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-1$ and $m \geq 2$; $\mathcal{B}_{I_{n, k}}\left(u_{1}, \widetilde{e}_{1}\right)=x_{5} ; \mathcal{B}_{I_{n, k}}\left(u_{2}, \widetilde{e_{1}}\right)=y_{5} ; \mathcal{B}_{I_{n, k}}\left(u_{1}, \widetilde{e_{2}}\right)=x_{4} ;$ and $\mathcal{B}_{I_{n, k}}\left(u_{2}, \widetilde{e_{2}}\right)=y_{4}$, where $x_{4}, y_{4}, x_{5}, y_{5}$, and α satisfy (28) and (29) as follows:

$$
\left\{\begin{array}{l}
x_{4}+x_{5}+\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}=1 \tag{28}\\
y_{4}+y_{5}=1
\end{array}\right.
$$

We can check that $\sum_{e: e \in E E_{n, k}(v)} \mathcal{B}_{I_{n, k}}(v, e)=1$ for any $v \in V\left(I_{n, k}\right)$ and $\prod_{v: v \in e} \mathcal{B}_{I_{n, k}}(v, e)=\alpha$ for any $e \in E\left(I_{n, k}\right)$ and $e \neq \widetilde{e_{1}}$. Next, we prove $\prod_{v: v \in e_{1}} \mathcal{B}_{I_{n k}}\left(v, \widetilde{e}_{1}\right)>\alpha$. We have

$$
\begin{align*}
& \prod_{v: z \in \widetilde{e}_{1}} \mathcal{B}_{I_{n k} k}\left(v, \widetilde{e}_{1}\right)-\alpha=x_{5} y_{5}-\alpha \\
& =\left[x_{4}+\alpha-\frac{\alpha}{(1-\alpha)^{k-1}}\right]\left(y_{4}+\alpha\right)-\alpha \tag{30}\\
& =x_{4} y_{4}+x_{4} \alpha+y_{4} \alpha+\alpha^{2}-\frac{\alpha}{(1-\alpha)^{k-1}} y_{4}-\frac{\alpha^{2}}{(1-\alpha)^{k-1}}-\alpha \\
& =\frac{\alpha}{(1-\alpha)^{k-2}}+\frac{2 \alpha^{2}}{(1-\alpha)^{k-1}}+\frac{\alpha-\alpha^{2}}{2}+\alpha^{2}-\frac{\alpha}{2(1-\alpha)^{k-2}}-\frac{\alpha^{2}}{(1-\alpha)^{k-1}}-\alpha \tag{31}\\
& =\frac{\alpha}{2(1-\alpha)^{k-2}}+\frac{\alpha^{2}}{(1-\alpha)^{k-1}}+\frac{\alpha^{2}}{2}-\frac{\alpha}{2} \\
& >\frac{\alpha}{2}+\frac{\alpha^{2}}{(1-\alpha)^{k-1}}+\frac{\alpha^{2}}{2}-\frac{\alpha}{2} \tag{32}\\
& >\frac{3 \alpha^{2}}{2} \tag{33}\\
& >0 . \tag{34}
\end{align*}
$$

It is noted that (30) follows from $x_{5}=x_{4}+\alpha-\frac{\alpha}{(1-\alpha)^{k-1}}$ (by (25) and (28)) and $y_{5}=y_{4}+\alpha$ (by (26) and (29)). Since $y_{4}=\frac{1-\alpha}{2}\left(\right.$ by (26)) and $x_{4}=\frac{2 \alpha}{(1-\alpha)^{k-1}}$ (by (27) and $y_{4}=\frac{1-\alpha}{2}$), we get (31). Since $0<1-\alpha<1$, we obtain (32)-(34). Thus, we get $\prod_{v: z: \in \tilde{\mathcal{Q}}_{1}} \mathcal{B}_{I_{n k}}\left(v, \widetilde{e}_{1}\right)>\alpha$.

By the above proofs, we get that $I_{n, k}$ is strictly α-subnormal. Therefore, by Lemma 2.9(ii), we have $\rho\left(I_{n, k}\right)<\alpha^{-\frac{1}{k}}$. Thus, by Lemma 2.9, we obtain $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right)$ for $n \geq 2 k(k-1)$ and $k \geq 3$.

Lemma 4.5. Let $G \in \bar{\Gamma}_{1,1}(n, k)$, where $n \geq 2 k(k-1)$ with $k \geq 3$. We have $\rho\left(L_{n, k}\right)>\rho(G)$.
Proof: Let $n=m k(k-1)$ with $m \geq 2$ and $k \geq 3$. Let $G \in \bar{\Gamma}_{1,1}(n, k)$. When $m=2$, we get Lemma 4.5 since $G \cong I_{n, k}$ and $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right)$ (by Lemma 4.4). Next, let $m \geq 3$.

By the definition of $\bar{\Gamma}_{1,1}(n, k)$, each vertex in $\widetilde{e}_{2} \backslash\left\{u_{1}, u_{2}\right\}$ of G is attached by a pendent edge and is not attached by a hypertree which has at least $k(k \geq 3)$ edges, and we assume u_{1} of C_{2} in G is attached by a hypertree (denoted by \bar{T}) which has at least two edges belonging to $Q(G)$ and \bar{T} has perfect matching edges which are not pendent edges. By Lemma 4.1, we get a hypergraph G_{19} such that $\rho\left(G_{19}\right)>\rho(G)$, where $G_{19} \in \bar{\Gamma}_{1,1}(n, k)$ and all the perfect matching edges of G_{19} are pendent edges except for \widetilde{e}_{1} contained in C_{2} of G_{19}.

If $G_{19} \cong I_{n, k}$, then by Lemma 4.4, we get $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right) \geq \rho(G)$ and Lemma 4.5 holds. Otherwise, we assume $G_{19} \neq I_{n, k}$. It is noted that u_{1} of C_{2} in G_{19} is attached by a hypertree (denoted by \widetilde{T}) which has at least two edges belonging to $Q\left(G_{19}\right)$. As $G_{19} \neq I_{n, k}$, in G_{19}, there exists an edge (denoted by $g^{\prime}=\left\{z_{1}, \ldots, z_{k}\right\}$) which satisfies the following conditions: (i) $g^{\prime} \in E(\widetilde{T})$; (ii) g^{\prime} is not a pendent edge; (iii) u_{1} and z_{1} are incident with a common edge (denoted by $g^{\prime \prime}$); and (iv) g^{\prime} is not adjacent to u_{1}. Let x be the principal eigenvector of G_{19} corresponding to $\rho\left(G_{19}\right)$. Two cases are considered as follows.
Case (i). $x_{u_{1}}<x_{z_{1}}$.
Let G_{20} be the hypergraph obtained from G_{19} by moving all the edges which are incident with u_{1} (except for $\widetilde{e_{1}}$ and $g^{\prime \prime}$ of G_{19}) from u_{1} to z_{1}. Obviously, $G_{20} \in \mathcal{U}_{2}(n, k, 3)$, where the cycle contained in G_{20} is denoted by $C_{3}^{\prime}=u_{1} \widetilde{e}_{1} u_{2} \widetilde{2}_{2} z_{1} g^{\prime \prime} u_{1}$, each vertex of $\widetilde{e}_{1} \backslash\left\{u_{1}, u_{2}\right\}$ of C_{3}^{\prime} of G_{20} is a core vertex and \widetilde{e}_{1} is the perfect matching edge on C_{3}^{\prime} of G_{20}. By Lemma 2.2, we obtain $\rho\left(G_{20}\right)>\rho\left(G_{19}\right)$. By Corollary 3.12, we
obtain $\max \left\{\rho\left(A_{n, k}\right), \rho\left(D_{n, k}\right)\right\} \geq \rho\left(G_{20}\right)$ for $3 \leq m \leq 8$ and $\rho\left(D_{n, k}\right) \geq \rho\left(G_{20}\right)$ for $m \geq 9$, where $\rho\left(D_{n, k}\right)=\rho\left(G_{20}\right)$ iff $G_{20} \cong D_{n, k}$. Therefore, we get $\rho\left(L_{n, k}\right)>\rho\left(G_{20}\right)$ since $\rho\left(L_{n, k}\right)>\rho\left(A_{n, k}\right)$ and $\rho\left(L_{n, k}\right)>\rho\left(D_{n, k}\right)$ (by Lemma 4.3). By the above proofs, we obtain $\rho\left(L_{n, k}\right)>\rho(G)$ for $G \in \bar{\Gamma}_{1,1}(n, k)$. Therefore, we get Lemma 4.5 in Case (i).
Case (ii). $x_{u_{1}} \geq x_{z_{1}}$.
Let G_{21} be the hypergraph obtained from G_{19} by moving g^{\prime} from z_{1} to u_{1} in such a way that G_{21} has a perfect matching. Obviously, $G_{21} \in \bar{\Gamma}_{1,1}(n, k)$. By Lemma 2.2, we obtain $\rho\left(G_{21}\right)>\rho\left(G_{19}\right)$. If $G_{21} \cong I_{n, k}$, then by Lemma 4.4 and the above proofs, we get $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right)>\rho(G)$ for $G \in \bar{\Gamma}_{1,1}(n, k)$. Namely, Lemma 4.5 holds. Otherwise, we assume $G_{21} \not \equiv I_{n, k}$. By repeatedly using the same procedure as those in Cases (i) and (ii), we finally obtain $\max \left\{\rho\left(L_{n, k}\right), \rho\left(I_{n, k}\right)\right\}>\rho\left(G_{21}\right)$. Therefore, it follows from $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right)$ (by Lemma 4.4) and the above proofs, we have Lemma 4.5.

By the methods similar to those for the proofs of Lemma 3.4, we get Lemma 4.6 as follows.
Lemma 4.6. Let $G \in \bar{\Gamma}_{1,2}(n, k)$, where $n \geq k(k-1)$ with $k \geq 3$. We have $\rho\left(J_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong J_{n, k}$.
Lemma 4.7. We have $\rho\left(I_{n, k}\right)>\rho\left(J_{n, k}\right)$ for $n \geq 2 k(k-1)$ and $k \geq 3$, where $I_{n, k}$ and $J_{n, k}$ are shown in Fig. 3(b) and Fig. 4(a), respectively.
Proof: For $n \geq 2 k(k-1)$, obviously $I_{n, k} \not \equiv J_{n, k}$. We construct a weighted incidence matrix $\mathcal{B}_{I_{n, k}}$ for $I_{n, k}$ as follows. Let $0<\alpha<1$. Let $\mathcal{B}_{I_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{I_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{I_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{I_{n, k}}(v)=2 ; \mathcal{B}_{I_{n, k}}(v, e)=1-\alpha$ if $v \in e\left(v \neq u_{2}\right), e$ is not a pendent edge and $d_{I_{n, k}}(v)=2 ; \mathcal{B}_{I_{n, k}}\left(u_{1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-1$ and $m \geq 2 ; \mathcal{B}_{I_{n, k}}\left(u_{1}, \widetilde{e_{2}}\right)=x_{6} ; \mathcal{B}_{I_{n, k}}\left(u_{2}, \widetilde{e_{2}}\right)=y_{6}$; $\mathcal{B}_{I_{n, k}}\left(u_{1}, \widetilde{e_{1}}\right)=c_{3}$; and $\mathcal{B}_{I_{n, k}}\left(u_{2}, \widetilde{e_{1}}\right)=d_{3}$, where $x_{6}, y_{6}, c_{3}, d_{3}$, and α satisfy (35)-(38) as follows:

$$
\left\{\begin{array}{l}
x_{6}+c_{3}+\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}=1 \tag{35}\\
y_{6}+d_{3}=1 \\
c_{3} d_{3}=\alpha \\
x_{6} y_{6}(1-\alpha)^{k-2}=\alpha \\
\frac{x_{6} d_{3}}{y_{6} c_{3}}=1
\end{array}\right.
$$

We can check that $\sum_{e: e \in E_{n, k}(v)} \mathcal{B}_{I_{n, k}}(v, e)=1$ for any $v \in V\left(I_{n, k}\right), \prod_{v: v \in e} \mathcal{B}_{I_{n, k}}(v, e)=\alpha$ for any $e \in E\left(I_{n, k}\right)$, and $\mathcal{B}_{I_{n, k}}$ is consistent. Thus, $I_{n, k}$ is consistently α-normal. By Lemma 2.9(i), we have $\rho\left(I_{n, k}\right)=\alpha^{-\frac{1}{k}}$.

We construct a weighted incidence matrix $\mathcal{B}_{J_{n, k}}$ for $J_{n, k}$ as follows. Let $\mathcal{B}_{J_{n, k}}(v, e)=0$ if $v \notin e ; \mathcal{B}_{J_{n, k}}(v, e)=1$ if $v \in e$ and v is a core vertex; $\mathcal{B}_{J_{n, k}}(v, e)=\alpha$ if $v \in e, e$ is a pendent edge and $d_{J_{n, k}}(v)=2 ; \mathcal{B}_{J_{n, k}}(v, e)=1-\alpha$ if $v \in e$ $\left(v \neq u_{1}, u_{2}\right), e$ is not a pendent edge and $d_{J_{n, k}}(v)=2 ; \mathcal{B}_{J_{n, k}}\left(u_{2,1}, g_{i}\right)=\frac{\alpha}{(1-\alpha)^{k-1}}$ for $i=1, \cdots, m-1$ and $m \geq 2$; $\mathcal{B}_{J_{n, k}}\left(u_{2}, \widetilde{e}_{2}\right)=x_{7} ; \mathcal{B}_{J_{n, k}}\left(u_{1}, \widetilde{e}_{2}\right)=y_{7} ; \mathcal{B}_{J_{n, k}}\left(u_{2}, \widetilde{e}_{1}\right)=c_{3} ; \mathcal{B}_{J_{n, k}}\left(u_{1}, \widetilde{e}_{1}\right)=d_{3} ;$ and $\mathcal{B}_{J_{n, k}}\left(u_{2,1}, \widetilde{e}_{2}\right)=1-\alpha-\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}$, where x_{7}, y_{7}, c_{3}, and d_{3} satisfy (39) and (40) as follows:

$$
\left\{\begin{array}{l}
x_{7}+c_{3}=1 \tag{39}\\
y_{7}+d_{3}=1
\end{array}\right.
$$

We can check that $\sum_{e: e \in E_{J_{n, k}}(v)} \mathcal{B}_{J_{n, k}}(v, e)=1$ for any $v \in V\left(J_{n, k}\right)$ and $\prod_{v: v \in e} \mathcal{B}_{J_{n, k}}(v, e)=\alpha$ for any $e \in E\left(J_{n, k}\right)$ and $e \neq \widetilde{e_{2}}$. Next, we prove $\prod_{v: v \in \widetilde{e_{2}}} \mathcal{B}_{J_{n, k}}\left(v, \widetilde{e_{2}}\right)>\alpha$.

Let $\frac{x_{6}}{y_{6}}=\frac{c_{3}}{d_{3}}=b$. We have $x_{6}=b y_{6}$ and $c_{3}=b d_{3}$. Substituting $c_{3}=b d_{3}$ into (37), we get $\alpha=b d_{3}^{2}$. Substituting $x_{6}=b y_{6}, \alpha=b d_{3}^{2}$ and (36) into (38), we get $d_{3}=\frac{(1-\alpha)^{k / 2-1}}{1+(1-\alpha)^{k / 2-1}}$. Therefore, by (36), we have

$$
\begin{equation*}
y_{6}=1-d_{3}=\frac{1}{1+(1-\alpha)^{k / 2-1}} . \tag{41}
\end{equation*}
$$

Substituting $x_{6}=b y_{6}$ and $c_{3}=b d_{3}$ into (35) and bearing (36) (namely $y_{6}+d_{3}=1$), $\alpha=b d_{3}^{2}$ and $d_{3}=$ $\frac{(1-\alpha)^{k / 2-1}}{1+(1-\alpha)^{k / 2-1}}$ in mind, we get

$$
\begin{equation*}
\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}=1-b\left(y_{6}+d_{3}\right)=1-b=1-\alpha \frac{\left(1+(1-\alpha)^{k / 2-1}\right)^{2}}{(1-\alpha)^{k-2}} \tag{42}
\end{equation*}
$$

We obtain

$$
\begin{align*}
& \prod_{v: v \in \widetilde{e}_{2}} \mathcal{B}_{J_{n, k}}\left(v, \widetilde{e}_{2}\right)-\alpha=x_{7} y_{7}\left[1-\alpha-\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}\right](1-\alpha)^{k-3}-\alpha \\
& =y_{6}\left[x_{6}+\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}\right]\left[1-\alpha-\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}\right](1-\alpha)^{k-3}-\alpha \tag{43}\\
& =\left[\frac{\alpha}{(1-\alpha)^{k-2}}+\frac{(m-1) \alpha}{(1-\alpha)^{k-1}} y_{6}\right]\left[1-\alpha-\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}\right](1-\alpha)^{k-3}-\alpha \tag{44}\\
& =\frac{(m-1) \alpha}{1-\alpha}\left[y_{6}\left(1-\frac{(m-1) \alpha}{(1-\alpha)^{k-1}} \cdot \frac{1}{1-\alpha}\right)-\frac{\alpha}{(1-\alpha)^{k-1}}\right] \tag{45}\\
& =\frac{(m-1) \alpha^{2}}{(1-\alpha)^{2}}\left[\frac{1}{(1-\alpha)^{k / 2-1}}-\frac{1}{1+(1-\alpha)^{k / 2-1}}\right] \tag{46}\\
& >0 . \tag{47}
\end{align*}
$$

It is noted that (43) follows from $x_{7}=x_{6}+\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}$ (by (35) and (39)) and $y_{7}=y_{6}$ (by (36) and (40)). Substituting $x_{6} y_{6}=\alpha /(1-\alpha)^{k-2}$ (by (38)) into (43), we have (44). By calculation, we get (45). Substituting the expression of y_{6} (namely (41)) and the expression of $\frac{(m-1) \alpha}{(1-\alpha)^{k-1}}$ (namely (42)) into (45), we have (46). Since $m>1$ and $0<\alpha<1$, we get (47).

By the above proofs, we get that $J_{n, k}$ is strictly α-subnormal. Therefore, by Lemma 2.9(ii), we have $\rho\left(J_{n, k}\right)<\alpha^{-\frac{1}{k}}$. Thus, by Lemma 2.9, we obtain $\rho\left(I_{n, k}\right)>\rho\left(J_{n, k}\right)$ for $n \geq 2 k(k-1)$ and $k \geq 3$.

The hypergraph with the maximal spectral radius in $\Gamma_{1}(n, k)$ are shown in Corollary 4.8.
Corollary 4.8. Let $G \in \Gamma_{1}(n, k)$, where $n \geq 2 k(k-1)$ with $k \geq 3$. We have $\rho\left(L_{n, k}\right)>\rho(G)$.
Proof: Let $n \geq 2 k(k-1)$ with $k \geq 3$. By Lemma 4.5, we have $\rho\left(L_{n, k}\right)>\rho(G)$ for $G \in \bar{\Gamma}_{1,1}(n, k)$. By Lemmas 4.4, 4.6 and 4.7, we obtain $\rho\left(L_{n, k}\right)>\rho\left(I_{n, k}\right)>\rho\left(J_{n, k}\right)>\rho(G)$ for $G \in \bar{\Gamma}_{1,2}(n, k)$. Therefore, we have $\rho\left(L_{n, k}\right)>\rho(G)$ for $G \in \bar{\Gamma}_{1}(n, k)$ since $\bar{\Gamma}_{1,1}(n, k) \cup \bar{\Gamma}_{1,2}(n, k)=\bar{\Gamma}_{1}(n, k)$. Furthermore, by Lemma 4.2, we get Corollary 4.8.

Lemma 4.9. Let $G \in \Gamma_{2}(n, k)$, where $n \geq 2 k(k-1)$ and $k \geq 3$. There exists a hypergraph $\bar{G} \in \bar{\Gamma}_{2}(n, k)$ such that $\rho(\bar{G}) \geq \rho(G)$ with the equality iff $G \cong \bar{G}$.

Proof: Let $G \in \Gamma_{2}(n, k)$ with $n \geq 2 k(k-1)$ and $k \geq 3$. By Lemma 4.1, we get that there exists a hypergraph \dot{G} such that $\rho(\dot{G}) \geq \rho(G)$ with the equality iff $G \cong \dot{G}$, where \dot{G} satisfies two conditions: (i) each vertex in C_{2} must be attached by a pendent edge, and (ii) at least one vertex in C_{2} is attached by a hypertree which has at least $k \geq 3$ edges (if $n \geq 3 k(k-1)$).

If $\dot{G} \in \bar{\Gamma}_{2}(n, k)$, then Lemma 4.9 holds. Next, suppose $\dot{G} \notin \bar{\Gamma}_{2}(n, k)$. In \dot{G}, there exist at least one vertex in $\widetilde{e}_{1} \cup \widetilde{e}_{2}$ which is attached by a hypertree having at least $k \geq 3$ edges. In \dot{G}, let $V_{1}(\dot{G})$ be the subset of $V(\dot{G})$ in which each vertex is attached by a hypertree having at least $k \geq 3$ edges, where $\left|V_{1}(\dot{G})\right| \geq 1$. Let w be a vertex in $V_{1}(\dot{G})$ and let $w \in \widetilde{e_{1}}$. Let x be the principal eigenvector of \dot{G} corresponding to $\rho(\dot{G})$. Among all the vertices in $V_{1}(\dot{G})$, we suppose that w has the maximal component x_{w} among x. By the methods similar to
those for the second paragraph, Cases (i) and (ii) in Lemma 3.3, we obtain a hypergraph $\bar{G} \in \bar{\Gamma}_{2}(n, k)$ such that $\rho(\bar{G})>\rho(\dot{G}) \geq \rho(G)$. Therefore, we have Lemma 4.9 .

By the methods similar to those for the proofs of Lemma 3.4, we get Lemma 4.10 as follows.
Lemma 4.10. Let $G \in \bar{\Gamma}_{2}(n, k)$, where $n \geq 2 k(k-1)$ with $k \geq 3$. We have $\rho\left(L_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong L_{n, k}$.

By Lemmas 4.9 and 4.10, we have Corollary 4.11 as follows.
Corollary 4.11. Let $G \in \Gamma_{2}(n, k)$, where $n \geq 2 k(k-1)$ with $k \geq 3$. We have $\rho\left(L_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong L_{n, k}$.

By Corollaries 4.8 and 4.11, we get Theorem 4.12.
Theorem 4.12. Let $G \in \Gamma(n, k)$, where $n=m k(k-1)$ with $m \geq 1$ and $k \geq 3$. When $m=1, G \cong I_{n, k} \cong J_{n, k}$ and $\rho(G)=\rho\left(I_{n, k}\right)=\rho\left(J_{n, k}\right)$. When $m \geq 2, \rho\left(L_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong L_{n, k}$.

For $n=k(k-1)$ with $k \geq 3$, there is only one hypergraph $I_{n, k}$ (namely $J_{n, k}$) among $\mathcal{U}(n, k) \cup \Gamma(n, k)$. For $n \geq 2 k(k-1)$ with $k \geq 3$, we get the hypergraph with the maximal spectral radius among $\mathcal{U}(n, k) \cup \Gamma(n, k)$, which is shown in Theorem 4.13.

Theorem 4.13. Let $G \in \mathcal{U}(n, k) \cup \Gamma(n, k)$ with $n \geq 2 k(k-1)$ and $k \geq 3$, we have $\rho\left(L_{n, k}\right) \geq \rho(G)$ with the equality iff $G \cong L_{n, k}$.

Proof: Let $n \geq 2 k(k-1)$ and $k \geq 3$. By Theorem 3.13 and Lemma 4.3, we have $\rho\left(L_{n, k}\right)>\rho(G)$ for $G \in \mathcal{U}(n, k)$. By Theorem 4.12, we have $\rho\left(L_{n, k}\right) \geq \rho(G)$ for $G \in \Gamma(n, k)$ with the equality iff $G \cong L_{n, k}$. Therefore, we get Theorem 4.13.

Acknowledgments

The authors wish to thank the anonymous referee for his/her constructive comments.

References

[1] Y. Z. Fan, Y. Y. Tan, X. X. Peng, A. H. Liu, Maximizing spectral radii of uniform hypergraphs with few edges, Discussiones Mathematicae Graph Theory 36 (2016) 845-856.
[2] L. Q. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation 40 (2005) 1302-1324.
[3] L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in: Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), pp. 129-132.
[4] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra and its Applications 436 (2012) 3268-3292.
[5] S. Friedland, A. Gaubert, L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extensions, Linear Algebra and its Applications 438 (2013) 738-749.
[6] Y. N. Yang, Q. Z. Yang, On some properties of nonnegative weakly irreducible tensors, arXiv:1111.0713v3 (2011).
[7] P. Xiao, L. G. Wang, The maximum spectral radius of uniform hypergraphs with given number of pendant edges, Linear and Multilinear Algebra 67 (2019) 1392-1403.
[8] L. Y. Kang, L. L. Liu, L. Q. Qi, X. Y. Yuan, Spectral radii of two kinds of uniform hypergraphs, Applied Mathematics and Computation 338 (2018) 661-668.
[9] C. Ouyang, L. Q. Qi, X. Y. Yuan, The first few unicyclic and bicyclic hypergraphs with largest spectral radii, Linear Algebra and its Applications 527 (2017) 141-162.
[10] H. H. Li, J. Y. Shao, L. Q. Qi, The extremal spectral radii of k-uniform supertrees, Journal of Combinatorial Optimization 32 (2016) 741-764.
[11] X. Y. Yuan, J. Y. Shao, H. Y. Shan, Ordering of some uniform supertrees with larger spectral radii, Linear Algebra and its Applications 495 (2016) 206-222.
[12] W. H. Wang, L. Yuan, Uniform supertrees with extremal spectral radii, Frontiers of Mathematics in China 15 (2020) 1211-1229.
[13] P. Xiao, L. G. Wang, Y. F. Du, The first two largest spectral radii of uniform supertrees with given diameter, Linear Algebra and its Applications 536 (2018) 103-119.
[14] P. Xiao, L. G. Wang, Y. Lu, The maximum spectral radii of uniform supertrees with given degree sequences, Linear Algebra and its Applications 523 (2017) 33-45.
[15] L. Zhang, A. Chang, Spectral radius of r-uniform supertrees with perfect matchings, Frontiers Mathematics in China 13 (2018) 1489-1499.
[16] J. B. Zhang, J. P. Li, The maximum spectral radius of k-uniform hypergraphs with r pendent vertices, Linear and Multilinear Algebra 67 (2019) 1062-1073.
[17] B. Ergemlidze, E. Gyori, A. Methuku, Asymptotics for turn numbers of cycles in 3-uniform linear hypergraphs, Journal of Combinatorial Theory, Series A 163 (2019) 163-181.
[18] H. Y. Guo, B. Zhou, On the spectral radius of uniform hypertrees, Linear Algebra and its Applications 558 (2018) 236-249.
[19] W. H. Wang, The minimum spectral radius of the r-uniform supertree having two vertices of maximum degree, Linear and Multilinear Algebra 70 (2022) 2898-2918.
[20] A. Treglown, Y. Zhao, Exact minimum degree thresholds for perfect matchings in uniform hypergraphs, Journal of Combinatorial Theory, Series A 119(7) (2012) 1500-1522.
[21] I. Khan, Perfect matchings in 3-uniform hypergraphs with large vertex degree, SIAM Journal on Discrete Mathematics 27(2) (2013) 1021-1039.
[22] I. Khan, Perfect matchings in 4-uniform hypergraphs, Journal of Combinatorial Theory, Series B 116 (2016) 333-366.
[23] L. Y. Lu, S. D. Man, Connected hypergraphs with small spectral radius, Linear Algebra and its Applications 509 (2016) $206-227$.

[^0]: 2020 Mathematics Subject Classification. 05C50
 Keywords. Spectral radius, Unicyclic hypergraph, Perfect matching
 Received: 20 June 2022; Revised: 12 October 2022; Accepted: 28 January 2023
 Communicated by Yimin Wei
 Research supported by the Natural Science Foundation of Shanghai under the grant number 21ZR1423500

 * Corresponding author: Wen-Huan Wang

 Email address: whwang@shu.edu.cn (Wen-Huan Wang)

