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Abstract. The present research is an attempt to define a class of generalized αiβ j-(Hp, φ)-η-accretive
mappings as well as it is a study of its associated class of proximal-point mappings. The generalized
αiβ j-(Hp, φ)-η-accretive mappings is the sum of two symmetric accretive mappings and an extension of the
generalized αβ-H(., .)-accretive mapping [28]. Further the research is a discussion on graph convergence
of generalized αiβ j-(Hp, φ)-η-accretive mappings and its application includes a set-valued variational-like
inclusion problem (SVLIP, in short) in semi inner product spaces. Furthermore an iterative algorithm is
proposed, and an attempt is made to discuss the convergence analysis of the sequences generated from the
proposed iterative algorithm. An example is constructed that demonstrate few graphics for the convergence
of proximal-point mapping. Our results can be viewed as a refinement and generalization of some known
results in the literature.

1. Introduction and Preliminaries

Last few years have witnessed that the researchers have focussed extensively on variational inclusions
that are the generalizations of variational inequalities. Investigation of variational inclusions leads to
develop an effective and feasible iterative algorithm. A number of iterative algorithms have been proposed
and discussed to find out the solutions for variational inclusions. The proximal-point method is one of the
most interesting and important techniques and is widely used by numerous authors to solve the variational
inclusions, we refer to see the related references [3, 8–16, 18, 20, 27, 28, 31–33, 36–38, 40, 42, 43, 45–48].

Recently, Bhat and Zahoor [9] proved the existence of solutions for the system of generalized variational-
like inclusions and Sahu et al. [40] proved the existence of solutions for a class of nonlinear implicit vari-
ational inclusion problems in semi-inner product spaces. Their results are more general than the results
obtained by Sahu et al. in [41]. In addition, they designed an iterative algorithm to approximate the
solutions for the general classes of variational inclusions and their system associated with A-monotone,
H-monotone and (H, φ)-η-monotone operators through the generalized resolvent operator methods. It is
noted that they investigated the existence and the convergence criteria by releasing the monotonicity on
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the set-valued maps under consideration.

Most recently, Luo and Huang [34], investigated (H, φ)-η-monotone mappings in Banach spaces which
produce a unifying structure for maximal monotone operators, maximal η-monotone operators, m-η-
accretive operators, H-monotone operators and H, η-monotone operators. In this sequence, Ahmad et.
al introduced and studied H(., .)-cocoercive operators [1], H(., .)-co-accretive mappings [2], H(., .)-φ-η-
accretive mappings [3] and H(., .)-η-cocoercive operators [4, 5]. They used the proximal-point map-
pings (resolvent operators) and graph convergence approaches inline with above discussed mappings
to established results on convergence of proposed iterative algorithms and to find out the solutions for
some classes of variational inclusions. For more applications, see the references [9, 10, 13–16, 19, 20, 23–
25, 27, 28, 31, 33, 34, 38, 40, 42, 43, 46].

The present study is a further insight in the ongoing works. In this paper, we have consideblue a
generalized αiβ j-(Hp, φ)-η-accretive mapping defined on a product set which is the sum of two symmetric
accretive mappings. This is the generalization of generalized αβ-H(., .)-accretive mappings [28], which
is done with the idea of Cn-monotone mappings studied and analyzed by Nazemi [19]. Next, we have
discussed some properties of the proximal point mapping and study the graph convergence of generalized
αiβ j-(Hp, φ)-η-accretive mapping.

As application, we have studied a set-valued variational-like inclusion problem in the semi inner
product spaces and have solved it by using the proximal-point mapping associated with a generalized
αiβ j-(Hp, φ)-η-accretive mapping. In addition, we have constructed an iterative algorithm and performed
the convergence of the sequences generated by the proposed algorithm. An example is constructed and
shown with some graphics for the convergence of the proximal-point mapping. For detailed study, see the
related references [6, 28, 45, 47, 48].

The following definitions and results are requiblue in the subsequent sections.

Definition 1.1. “LetB be a vector space over the fieldK of real or complex numbers. A functional [., .] : B×B → K
is called a semi inner product if:

(i) [ũ + w̃, z] = [ũ, z] + [w̃, z], ∀ũ, w̃, z ∈ B;

(ii) [αũ, z] = α[ũ, z], ∀α ∈ K, ũ, z ∈ B;

(iii) [ũ, z] > 0, f or ũ , 0;

(iv) |[ũ, z]|2 ≤ [ũ, ũ][z, z], ∀ũ, z ∈ B.
The pair (B, [., .]) is called a semi-inner product space”, [35, 40].

“We observe that ∥ũ∥ = [ũ, ũ]1/2 is a norm on B, thus each semi-inner product space is a normed linear space. There
are infinitely many ways to obtain semi-inner product in a normed linear space. Giles [17] proved that the semi-inner
product can be defined uniquely if assumed space B is a uniformly convex smooth Banach space. For a detailed study
and fundamental results on semi-inner product spaces, see [17, 30, 35],” [9].

Remark 1.2. “This unique semi-inner product has the following nice properties:

(i) [ũ, z] = 0 iff z is orthogonal to ũ, that is iff ∥z∥ ≤ ∥z + αũ∥, for all scalars α;

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional onB then there is a unique vector
z ∈ B such that f (ũ) = [ũ, z], for all ũ ∈ B;

(iii) The semi-inner product is continuous, that is for each ũ, z ∈ B, we have Re[z, ũ+ αz]→ Re[z, ũ] as α→ 0”, [9].

Since the sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly convex smooth Banach
spaces, we can define a semi-inner product on these spaces, uniquely.
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Example 1.3. “The real sequence space lp f or 1 < p < ∞ is a semi-inner product space with the semi-inner product
defined by

[ũ, z] =
1

∥z∥p−2
p

∑
j

ũz j|z j|
p−2, ũ, z ∈ lp”, [40].

Example 1.4. “The real Banach space Lp(B, µ) for 1 < p < ∞ is a semi-inner product space with the semi-inner
product defined by

[1, h] =
1

∥h∥p−2
p

∫
Y
1(u)|h(u)|p−1s1n(h(u))dµ, 1, h ∈ Lp”, [17, 40].

Definition 1.5. “Let B be a real Banach space, then

(i) modulus of smoothness of B is a function ρB : [0,∞)→ [0,∞) is defined as

ρB(γ) = sup
{
∥ṽ + w̃∥ + ∥ṽ − w̃∥

2
− 1 : ∥ṽ∥ = 1, ∥w̃∥ = γ, γ > 0

}
;

(ii) B be uniformly smooth if limγ→0
ρB(γ)
γ = 0;

(iii) B be q-uniformly smooth, if there exists c > 0 such that ρB(γ) ≤ cγq, q > 1;

(iv) B be 2-uniformly smooth if there exists c > 0 such that ρB(γ) ≤ cγ2”, [40, 44].

Lemma 1.6. “Let p > 1 be a real number and B be a smooth Banach space. Then the following statements are
equivalent:

(i) B is 2-uniformly smooth;

(ii) there is a constant c > 0 such that for every ṽ, w̃ ∈ B, the following inequality holds

∥ṽ + w̃∥2 ≤ ∥ṽ∥2 + 2⟨w̃, fṽ⟩ + c∥w̃∥2, (1)

where fṽ ∈ J(ṽ) and J(ṽ) = {ṽ∗ ∈ B∗ : ⟨ṽ, ṽ∗⟩ = ∥ṽ∥2 and ∥ṽ∗∥ = ∥ṽ∥} is the normalized duality mapping”, [40, 44].

“Each normed linear space B is a semi-inner product space (see [35]). Infact, by Hahn-Banach theorem, for
each ṽ ∈ B, there exists at least one functional fṽ ∈ B∗ such that ⟨ṽ, fṽ⟩ = ∥ṽ∥2. Given any such mapping
f : B → B∗, we can verify that [w̃, ṽ] = ⟨w̃, fṽ⟩ defines a semi-inner product. Hence we can write the
inequality (1) as

∥ṽ + w̃∥2 ≤ ∥ṽ∥2 + 2[w̃, fṽ] + c∥w̃∥2, ∀ṽ, w̃ ∈ B. (2)

The constant c is known as constant of smoothness ofB, is chosen with best possible minimum value”, [40].

Example 1.7. “The functional spaces Lp̃ is 2-uniformly smooth for p̃ ≥ 2 and ia p̃-uniformly smooth for 1 < p̃ < 2.
If 2 ≥ p̃ < ∞, then we have for all ṽ, w̃ ∈ Lp̃

∥ṽ + w̃∥2 ≤ ∥ṽ∥2 + 2[w̃, fṽ] + (p̃ − 1)∥w̃∥2, ∀ṽ, w̃ ∈ B.

The constant p̃ − 1 is known as constant of smoothness of B”, [40].

We consider B is 2-uniformly smooth Banach space and set Bp = B × B × ... × B︸            ︷︷            ︸
p times

in rest of the paper

unless otherwise stated. First, we recall the following concepts.
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Definition 1.8. Let T : B → B and η : B × B → B be single-valued mappings. Then, T is said to be
(i) η-accretive if[

T (w∗) − T (u∗), η(w∗,u∗)
]
≥ 0 ∀w∗, u∗ ∈ B;

(ii) r̃-strongly η-accretive if there exists r̃ > 0 with[
T (w∗) − T (u∗), η(w∗,u∗)

]
≥ r̃ ∥w∗ − u∗∥2 ∀w∗, u∗ ∈ B;

(iii) s̃-relaxed η-accretive if there exists s̃ > 0 with[
T (w∗) − T (u∗), η(w∗,u∗)

]
≥ s̃ ∥w∗ − u∗∥2 ∀w∗, u∗ ∈ B;

(iv) t̃-Lipschitz continuous if there exists t̃ > 0 with

∥T (w∗) − T (u∗)∥ ≤ t̃ ∥w∗ − u∗∥, ∀w∗, u∗ ∈ B;

(v) t-expansive if there exists t > 0 with

∥T (w∗) − T (u∗)∥ ≥ t ∥w∗ − u∗∥, ∀w∗, u∗ ∈ B.

Lemma 1.9. “Let two non-negative real sequences {cn} and {en}, are satisfying cn+1 ≤ lcn + en with en → 0 and
0 < l < 1. Then limn→∞ cn = 0.”, [32].

Definition 1.10. For each i ∈ {1, 2, ..., p}, p ≥ 3, let Hp : Bp
→ B, η : B×B → B and Ai : B → B be single-valued

mappings. Then Hp is said to be
(i) αi-strongly η-accretive with Ai if there exists αi > 0 such that[

Hp(v1, ..., vi−1,Aiw̃, vi+1, ..., vn) −Hp(v1, ..., vi−1,Aiṽ, vi+1, ..., vn), η(w̃, ṽ)
]
≥ αi ∥w̃ − ṽ∥2,

∀w̃, ṽ, v1, ..., vi−1, vi+1, ..., vn ∈ B;

(ii) β j-relaxed η-accretive with A j if there exists β j > 0 such that[
Hp(v1, ..., v j−1,A jw̃, v j+1, ..., vn) −Hp(v1, ..., v j−1,A jṽ, v j+1, ..., vn), η(w̃, ṽ)

]
≥ −β j ∥w̃ − ṽ∥2,

∀w̃, ṽ, v1, ..., v j−1, v j+1, ..., vn ∈ B;

(iii) qi-Lipschitz continuous with Ai if there exists qi > 0 such that

∥Hp(v1, ..., vi−1,Aiw̃, vi+1, ..., vn) −Hp(v1, ..., vi−1,Aiṽ, vi+1, ..., vn)∥ ≤ qi ∥w̃ − ṽ∥,
∀w̃, ṽ, v1, ..., vi−1, vi+1, ..., vn ∈ B;

(iv) α1β2α3β4...αp−1βp-symmetric η-accretive with A1,A2, ...,Ap iff for i ∈ {1, 3, ..., p− 1}, Hp(...,Ai, ...) is αi-strongly
η-accretive with Ai and for j ∈ {2, 4, ..., p}, Hp(...,A j, ...) is β j-relaxed η-accretive with A j, where p is even, satisfying∑

j=even

β j ≤
∑
i=odd

αi, and
∑

j=even

β j =
∑
i=odd

αi iff w̃ = ṽ;

(v) α1β2α3β4, ...βp−1, αp-symmetric η-accretive with A1,A2, ...,Ap iff for i ∈ {1, 3, ..., p}, Hp(...,Ai, ...) is αi-strongly
η-accretive with Ai and for j ∈ {2, 4, ..., p − 1}, Hp(...,A j, ...) is β j-relaxed η-accretive A j where p is odd, satisfying∑

j=even

β j ≤
∑
i=odd

αi, and
∑

j=even

β j =
∑
i=odd

αi iff w̃ = ṽ.
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“LetM : B → 2B be a set-valued mapping, then graph ofM is given by Gr(M) = {(ṽ, w̃) : w̃ ∈ M(ṽ)}.
The domain ofM is given by

Dom(M) = {ṽ ∈ B : ∃w̃ ∈ B : (ṽ, w̃) ∈ Gr(M)}.

The Range ofM is given by

RG(M) = {w̃ ∈ B : ∃ṽ ∈ B : (ṽ, w̃) ∈ Gr(M}).

The inverse ofM is given by
M
−1 = {(w̃, ṽ) : (ṽ, w̃) ∈ Gr(M)}.

For any two set-valued mappingsN andM, and any real number β, we define

N +M = {(ṽ, w̃ + z̃) : (ṽ, w̃) ∈ Gr(N), (ṽ, z̃) ∈ Gr(M)},

βM = {(ṽ, βw̃) : (ṽ, w̃) ∈ Gr(M)}.

For a mapping A : B → B and a set-valued map M : B → 2B, we define A +M = {(ṽ, w̃ + z̃) : Aṽ =
w̃, (ṽ, z̃) ∈ Gr(M)}”, [9].

Definition 1.11. For each i ∈ {1, 2, ..., p}, p ≥ 3, let M : Bp
→ 2B be a set-valued mapping and η : B × B →

B, 1i : B → B be single-valued mappings . ThenM is said to be
(i) µ̄i-strongly η-accretive with 1i if there exists µ̄i > 0 such that[

w̃i − ṽi, η(w̃, ṽ)
]
≥ µ̄i ∥w̃ − ṽ∥2, ∀w̃, ṽ, v1, ..., vi−1, vi+1, ..., vp ∈ B,

w̃i ∈ M(v1, ..., vi−1, 1i(w̃), vi+1, ..., vn), ṽi ∈ M(v1, ..., vi−1, 1i(ṽ), vi+1, ..., vn);

(ii) γ̄ j-relaxed η-accretive with 1 j if there exists γ̄ j > 0 such that[
w̃ j − ṽ j, η(w̃, ṽ)

]
≥ − γ̄ j ∥w̃ − ṽ∥2, ∀w̃, ṽ, v1, ..., v j−1, v j+1, ..., vp ∈ B,

w̃ j ∈ M(v1, ..., v j−1, 1 j(w̃), v j+1, ..., vn), ṽ j ∈ M(v1, ..., v j−1, 1 j(ṽ), v j+1, ...vn);

(iii) µ̄1γ̄2µ̄3γ̄4...µ̄p−1γ̄p-symmetric η-accretive with 11, 12, ..., 1p iff for i ∈ {1, 3, ..., p − 1},M(..., 1i, ...) is µ̄i-strongly
η-accretive with 1i and for j ∈ {2, 4, ..., p},M(..., 1 j, ...) is γ̄ j-relaxed η-accretive with 1 j, where p is even, satisfying∑

j=even

γ̄ j ≤
∑
i=odd

µ̄i, and
∑

j=even

γ̄ j =
∑
i=odd

µ̄i iff w̃ = ṽ;

(iv) µ̄1γ̄2µ̄3γ̄4, ...µ̄p, γ̄p−1-symmetric η-accretive with 11, 12, ..., 1p iff for i ∈ {1, 3, ..., p}, M(..., 1i, ...) is µ̄i-strongly
η-accretive with 1i and for j ∈ {2, 4, ..., p− 1},M(..., 1 j, ...) is γ̄ j-relaxed η-accretive with 1 j, where p is odd, satisfying∑

j=even

γ̄ j ≤
∑
i=odd

µ̄i, and
∑

j=even

γ̄ j =
∑
i=odd

µ̄i iff w̃ = ṽ.

Definition 1.12. For each i ∈ {1, 2, ..., p}, p ≥ 3, and let set-valued mappings M : Bp
→ 2B, Ni : B → 2B and

single-valued mappings Hp, K : Bp
→ B, η : B × B → B, Ai : B → B, thenK is said to be

(i) ᾱi-strongly η-accretive withNi and Hp in the ith-argument if there exists ᾱi > 0 such that[
K (...,wi, ...) −K (..., vi, ...), η(Hp(A1w1, ...,Apwp),Hp(A1v1, ...,Apvp))

]
≥ ᾱi ∥Hp(A1w1, ...,Apwp) −Hp(A1v1, ...,Apvp∥

2,

∀w1,w2...,wp, v1, v2, ..., vp ∈ B,wi
∈ Ni(wi), vi

∈ Ni(vi);

(ii) li-Lipschitz continuous in the ith-argument if there exists li > 0 such that

∥K (v1, .., vi−1, w̃, vi+1...vp) −K (v1, .., vi−1, ṽ, vi+1...vp)∥ ≤ li ∥w̃ − ṽ∥,∀w̃, ṽ, v1, .., vi−1, vi+1...vp ∈ B.
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2. Generalized αiβ j-(Hp, φ)-η-Accretive Mappings

For each i ∈ {1, 2, ..., p}, p ≥ 3, and letM : Bp
→ 2B be a set-valued mapping and η : B × B → B,Hp :

B
p
→ B, Ai, 1i : B → B and φ : B → B be single-valued mappings. Now, we introduce and study the new

class of generalized αiβ j-(Hp, φ)-η-accretive mappings.

Definition 2.1. Let p ≥ 3, then M is said to be a generalized αiβ j-(Hp, φ)-η-accretive mapping with mappings
(A1,A2, ...,Ap) and (11, 12, ..., 1p)

(i) iffφ◦M is µ̄1γ̄2µ̄3γ̄4...µ̄p−1γ̄p-symmetricη-accretive with11, 12, ..., 1p and (Hp(A1,A2, ...,Ap)+φ◦M(11, 12, ..., 1p))
(B) = B if p is an even number;

(ii) iffφ◦M is µ̄1γ̄2µ̄3γ̄4...γ̄p−1µ̄p-symmetricη-accretive with11, 12, ..., 1p and (Hp(A1,A2, ...,Ap)+φ◦M(11, 12, ..., 1p))
(B) = B if p is an odd number .

Remark 2.2.

(i) If η(w̃, ṽ) = w̃− ṽ, then generalized αiβ j-(Hpφ)-η-accretive mapping blueuces to αiβ j-Hp(., ., ...)-accretive mapping,
studied by Gupta and Khan [21, 22, 29];

(ii) If i = 1, 1i = I, andM(., ., ...) =M(.), then generalized αiβ j-(Hp, φ)-η-accretive mapping blueuces to (H, φ)-η-
accretive mapping, studied by Luo and Huang [34] and Bhat and Zahoor [9];

(iii) If i = 1, 1i = I, φ(ũ) = ρũ, where ρ > 0, and M(., ., ...) = M(.), then generalized αiβ j-(Hp, φ)-η-accretive
mapping blueuces to H-η-accretive mapping, studied by Fang et. al [15],

(iv) If i = 1, 1i = I, φ(ũ) = ρũ, where ρ > 0,M(., ., ...) =M(.) and η(w̃, ṽ) = w̃ − ṽ, then generalized αiβ j-(Hp, φ)-
η-accretive mapping blueuces to H-accretive mapping, studied by Fang and Huang [14],

(v) If i = 1, 2, 1i = I, and M(., ., ...) = M(., .), then generalized αiβ j-(Hp, φ)-η-accretive mapping blueuces to
H(., .)-φ-η-accretive mapping, studied by Ahmad and Dilshad [3],

(vi) If i = 1, 2, φ(ũ) = ρũ, where ρ > 0,M(., ., ...) =M(., .), and η(w̃, ṽ) = w̃ − ṽ, then generalized αiβ j-(Hp, φ)-η-
accretive mapping blueuces to generalized αβ-H(., .)-accretive mapping, studied by Kazmi et. al [28],

(vii) If i = 1, 2, 1i = I, φ(ũ) = ρũ, where ρ > 0,M(., ., ...) =M(.), then generalized αiβ j-(Hp, φ)-η-accretive mapping
blueuces to (H(., .), η)-accretive mapping, studied by Wang and Ding [45],

(viii) If i = 1, 2, 1i = I, φ(ũ) = ρũ, where ρ > 0, M(., ., ...) = M(.), and η(w̃, ṽ) = w̃ − ṽ, then generalized
αiβ j-(Hp, φ)-η-accretive mapping blueuces to H(., .)-accretive mapping, studied by Zou and Huang [47].

Let us consider the following assumptions M1-M5 to discus some properties of the generalized αiβ j-
(Hp, φ)-η-accretive mappings.
M1: If p even, Hp is α1β2α3β4...αp−1βp-symmetric η-accretive with A1,A2, ...,Ap.
M2: If p odd, Hp is α1β2α3β4...βp−1αp-symmetric η-accretive with A1,A2, ...,Ap.
M3: If p even, φ ◦M is µ̄1γ̄2µ̄3γ̄4...µ̄p−1γ̄p-symmetric η-accretive with 11, 12, ..., 1p.
M4: If p odd, φ ◦M is µ̄1γ̄2µ̄3γ̄4...γ̄p−1µ̄p-symmetric η-accretive with 11, 12, ..., 1p.
M5: Let η is ℏ-Lipschitz continuous.

Proposition 2.3. Let assumptions M1-M4 be held for every i ∈ {1, 2, ...p}, p ≥ 3, and letM : Bp
→ 2B be a gener-

alized αiβ j-(Hp, φ)-η-accretive mapping with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p), and
∑
µ̄i >

∑
γ̄ j,
∑
αi >∑

β j, if
[
x̃ − ỹ, η(u′, v′)

]
≥ 0 is satisfied for each (v′, ỹ) ∈ Gr(φ ◦M(11, 12, ..., 1p)), x̃ ∈ φ ◦M(11, 12, ..., 1p)(u′),

where Gr(φ ◦M(11, 12, ..., 1p)) = {(u′, x̃) : x̃ ∈ φ ◦M(11, 12, ..., 1p)(u′)}.

Proof. Assume that there exists (w0, z0) < Gr (φ ◦M(11, 12, ..., 1p)) such that[
z0 − x, η(w0,u)

]
≥ 0, ∀ (u, x) ∈ Gr(φ ◦M(11, 12, ..., 1p)). (3)
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If p is even: Since M is a generalized αiβ j-(Hp, φ)-η-accretive mapping with mappings (A1,A2, ...,Ap)
and (11, 12, ..., 1p), then, φ ◦ M is µ̄1γ̄2µ̄3γ̄4...µ̄p−1γ̄p-symmetric η-accretive with mappings 11, 12, ..., 1p and
(Hp(A1,A2, ...,Ap)+φ ◦M(11, 12, ..., 1p))(B) = B, then, there exists (w1, z1) ∈ Gr(φ ◦M(11, 12, ..., 1p)) such that

Hp(A1w0,A2w0, ...,Apw0) + z0 = Hp(A1w1,A2w1, ...,Apw1) + z1 ∈ B. (4)

From (3) and (4), we have

z0 − z1 = Hp(A1w1,A2w1, ...,Apw1) −Hp(A1w0,A2w0, ...,Apw0) ∈ B,[
z0 − z1, η(w0,w1)

]
=
[
Hp(A1w1,A2w1, ...,Apw1) −Hp(A1w0,A2w0, ...,Apw0), η(w0,w1)

]
.

Setting (u, x) = (w1, z1) in (3) and using M3 in (4), we obtain

[(µ̄1 + µ̄3 + ... + µ̄p−1) − (γ̄2 + γ̄4 − ... + γ̄p)]∥w0 − w1∥
2
≤

[
z0 − z1, η(w0,w1)

]
≤ −

[
Hp(A1w0,A2w0, ...,Apw0) −Hp(A1w1,A2w1, ...,Apw1), η(w0,w1)

]
= −
[
Hp(A1w0,A2w0, ...,Apw0) −Hp(A1w1,A2w0, ...,Apw0), η(w0,w1)

]
−

[
Hp(A1w0,A2w0, ...,Apw0) −Hp(A1w0,A2w1, ...,Apw0), η(w0,w1)

]
:
:
−

[
Hp(A1w0,A2w0, ...,Apw0) −Hp(A1w0,A2w0, ...,Apw1), η(w0,w1)

]
≤ −[(α1 + α3 + ... + αp−1) − (β2 + β4 + ... + βp)]∥w0 − w1∥

2.

Then, we have[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]
∥w0 − w1∥

2
≤ 0. (5)

Since
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j, it implies that w0 = w1. By (3), we have z0 = z1. Thus (w1, z1) = (wo, zo) ∈

Gr(φ ◦M(11, 12, ..., 1p)). Similarly, we can prove the result when p is odd.

Theorem 2.4. Let assumptions M1-M4 be held for every i ∈ {1, 2, ...p}, p ≥ 3, and letM : Bp
→ 2B be a generalized

αiβ j-(Hp, φ)-η-accretive mapping with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p) and
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j,

then (Hp(A1,A2, ...,Ap) + φ ◦M (11, 12, ..., 1p))−1 is single-valued.

Proof. For any given u ∈ B, let x, y ∈ (Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p))−1(u). It follows that

−Hp(A1x,A2x, ...,Apx) + u ∈ φ ◦M(11, 12, ..., 1p)x,
−Hp(A1y,A2y, ...,Apy) + u ∈ φ ◦M(11, 12, ..., 1p)y.

If p is even: Since φ ◦M is µ̄1γ̄2µ̄3γ̄4...µ̄p−1γ̄p-symmetric η-accretive with 11, 12, ..., 1p, we have

(µ̄1 + µ̄3 + ... + µ̄p−1 − γ̄2 − γ̄4 − ... − γ̄p)∥x − y∥2

≤

[
−Hp(A1x,A2x, ...,Apx) + u − (−Hp(A1y,A2y, ...,Apy) + u), η(x, y)

]
⇒ (µ̄1 + µ̄3 + ... + µ̄p−1 − γ̄2 − γ̄4 − ... − γ̄p)∥x − y∥2

≤ −

[
Hp(A1x,A2x, ...,Apx) −Hp(A1y,A2y, ...,Apy), η(x, y)

]
= −
[
Hp(A1x,A2x, ...,Apx) −Hp(A1y,A2x, ...,Apx), η(x, y)

]
−

[
Hp(A1y,A2x, ...,Apx) −Hp(A1y,A2y, ...,Apx), η(x, y)

]
:
:
−

[
Hp(A1y,A2y, ...,Apx) −Hp(A1y,A2y, ...,Apy), η(x, y)

]
.
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Proceed the same as to obtain (5), we have[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]
∥x − y∥2 ≤ 0. (6)

Since
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j, we have ∥x − y∥ ≤ 0. It implies that x = y. Thus (Hp(A1,A2, ...,Ap) + φ ◦

M(11, 12, ..., 1p))−1 is single-valued. Similarly, we can prove the result when p is odd.

Definition 2.5. Let assumptions M1-M4 be held for p ≥ 3 and M : Bp
→ 2B be a generalized αiβ j-(Hp, φ)-η-

accretive mapping with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p), and
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j. A proximal-

point mapping Rη,H
p(.,.,..,.)

φ,M(.,.,..,.) : B → B is define as

Rη,H
p(.,.,...)

φ, M(.,.,...)(x) = [Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p)]−1(x), ∀ x ∈ B. (7)

Theorem 2.6. Let assumptions M1-M5 be held for p ≥ 3, and let M : Bp
→ 2B be a generalized αiβ j-(Hp, φ)-

η-accretive mapping with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p) and
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j. Then, the

proximal-point mapping Rη,H
p(.,.,..,.)

φ,M(.,.,..,.) : B → B is ∆-Lipschitz continuous, where

∆ = ℏ
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]−1
.

Proof. Let x, y ∈ B and from (7), we have Rη,H
p(.,.,...)

φ, M(.,.,...)(x) = (Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p))−1(x),

Rη,H
p(.,.,...)

φ, M(.,.,...)(y) = (Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p))−1(y).

It follows that(
x −Hp(A1(Rη,H

p(.,.,...)
φ,M(.,.,...)(x)),A2(Rη,H

p(.,.,...)
φ,M(.,.,...)(x)), ...,Ap(Rη,H

p(.,.,...)
φ,M(.,.,...)(x)))

)
∈ φ ◦M

(
Rη,H

p(.,.,...)
φ,M(.,.,...)(x)

)
,(

y −Hp(A1(Rη,H
p(.,.,...)

φ,M(.,.,...)(y)),A2(Rη,H
p(.,.,...)

φ,M(.,.,...)(y)), ...,Ap(Rη,H
p(.,.,...)

φ,M(.,.,...)(y)))
)
∈ φ ◦M

(
Rη,H

p(.,.,...)
φ,M(.,.,...)(y)

)
.

Let x1 = Rη,H
p(.,.,...)

φ, M(.,.,...)(x) and y1 = Rη,H
p(.,.,...)

φ, M(.,.,...)(y).
If p is even: Since φ ◦M is µ̄1γ̄2...µ̄p−1γ̄p-symmetric η-accretive with 11, 12, ..., 1p, we have[

(x −Hp(A1(x1),A2(x1), ...,Ap(x1))) − (y −Hp(A1(y1),A2(y1), ...,Ap(y1))), η(x1, y1)
]

≥ (µ̄1 − γ̄2 + µ̄3 − γ̄4 + ... + µ̄p−1 − γ̄p)∥x1
− y1
∥

2,[
x − y − (Hp(A1(x1),A2(x1), ...,Ap(x1)) −Hp(A1(y1),A2(y1), ...,Ap(y1))), η(x1, y1)

]
≥ (µ̄1 + µ̄3 + ... + µ̄p−1 − (γ̄2 + γ̄4 − ... + γ̄p))∥x1

− y1
∥

2.

We have∥∥∥∥x − y
∥∥∥∥ η(x1, y1

)
≥

[
x − y, η

(
x1, y1

)]
≥

[
Hp(A1(x1),A2(x1), ...,Ap(x1)) −Hp(A1(y1),A2(y1), ...,Ap(y1)),

η
(
x1, y1

)]
+
(∑
µ̄i −
∑
γ̄ j

) ∥∥∥∥x1
− y1
∥∥∥∥2

≥ α1

∥∥∥∥x1
− y1
∥∥∥∥2 − β2

∥∥∥∥x1
− y1
∥∥∥∥2 + α3

∥∥∥∥x1
− y1
∥∥∥∥2 − ...βp

∥∥∥∥x1
− y1
∥∥∥∥2

+
(∑
µ̄i −
∑
γ̄ j

) ∥∥∥∥x1
− y1
∥∥∥∥2

=
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)] ∥∥∥∥x1
− y1
∥∥∥∥2.
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Hence ∥∥∥∥x − y
∥∥∥∥ η(x1, y1

)
≥

[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)] ∥∥∥∥x1
− y1
∥∥∥∥2,∥∥∥∥x − y

∥∥∥∥ ℏ∥∥∥∥x1
− y1
∥∥∥∥ ≥ [∑αi −

∑
β j +
(∑
µ̄i −
∑
γ̄ j

)] ∥∥∥∥x1
− y1
∥∥∥∥2,

that is,∥∥∥∥Rη,Hp(.,.,...)
φ, M(.,.,...)(x) − Rη,H

p(.,.,...)
φ, M(.,.,...)(y)

∥∥∥∥ ≤ ∆∥∥∥∥x − y
∥∥∥∥,∀ x, y ∈ B,

where ∆ = ℏ
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]−1
. Similarly, we can prove the result when p is odd.

3. Graph Convergence for αiβ j-(Hp, φ)-η-Accretive Mappings

Graph convergence has a significant role in the study of vibrational problems, approximation theory
and optimization problems etc. For a deep study on graph convergence, see Aubin and Frankowska [7],
Rockafellar [39] and Sahu et.al., [41].

Definition 3.1. LetM : Bp
→ 2B be a set-valued mapping, then graph ofM given as:

Gr(M(ũ1, ũ2, ..., ũp)) = {((ũ1, ũ2, ..., ũp), x∗) : x∗ ∈ M(ũ1, ũ2, ..., ũp)}.

Now, we will discuss the graph convergence of generalized αiβ j-(Hp, φ)-η-accretive mappings.

Definition 3.2. For n = 0, 1, 2, ...., letMn, M : Bp
→ 2B be set-valued mappings such thatM, Mn are gen-

eralized αiβ j-(Hp, φ)-η-accretive mappings with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p). Graph conver-

gence of sequence {φ◦Mn} toφ◦M expressed asφ◦Mn
G
−→ φ◦M, if for each (11(x), 12(x), ..., 1p(x)), y) ∈ Gr(φ◦

M(11, 12, ..., 1p)), there exists a sequence
((11(xn), 12(xn), ..., 1p(xn)), yn) ∈ Gr(φ ◦Mn(11, 12, ..., 1p)) such that

11(xn)→ 11(x), 12(xn)→ 12(x), ..., 1p(xn)→ 1p(x), yn → y as n→ ∞.

Theorem 3.3. Let us consider the assumptions M1-M5 hold good. For n = 0, 1, 2, ....,Mn,M : Bp
→ 2B be gener-

alized αiβ j-(Hp, φ)-η-accretive mappings with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p) and
∑
µ̄i >

∑
γ̄ j,
∑
αi >∑

β j. For each i ∈ {1, 2, ..., p}, p ≥ 3, we assume that
(i) Hp. is qi-Lipschitz continuous with respect to Ai;
(ii) 1i is ri-expansive in the ith-argument.

Then φ ◦Mn
G
−→ φ ◦M if and only if

Rη,H
p(.,.,...)

φ, Mn(.,.,...)(x)→ Rη,H
p(.,.,...)

φ, M(.,.,...)(x), ∀x ∈ B,

where Rη,H
p(.,.,...)

φ, Mn(.,.,...)(x) = (Hp(A1,A2, ...,Ap) + φ ◦Mn(11, 12, ..., 1p))−1(x),

Rη,H
p(.,.,...)

φ, M(.,.,...)(x) = (Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p))−1(x).

Proof. From Theorem 2.6, we know that Rη,H
p(.,.,...)

φ, M(.,.,...) and Rη,H
p(.,.,...)

φ, Mn(.,.,...) are ∆-Lipschitz continuous.

If part: Assume that φ ◦Mn
G
−→ φ ◦M.

Given for any x ∈ B, let zn = Rη,H
p(.,.,...)

φ,Mn(.,.,...)(x), z = Rη,H
p(.,.,...)

φ,M(.,.,...)(x).

Then
[
x −Hp(A1z,A2z, ...,Apz)

]
∈ φ ◦M(11, 12, ..., 1p)(z)
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or
[
z, [x −Hp(A1z,A2z, ...,Apz)]

]
∈ Gr(φ ◦M(11, 12, ..., 1p)).

By the definition of Gr(φ ◦M(11, 12, ..., 1p)), there exists a sequence {11(z̃n), 12(z̃n), ..., 1p(z̃n), ỹn} such that

11(z̃n)→ 11(z), 12(z̃n)→ 12(z), ..., 1p(z̃n)→ 1p(z), ỹn → [x −Hp(A1z,A2z, ...,Apz)] (8)

as n→∞. Since ỹn ∈ φ ◦Mn(11(z̃n), 12(z̃n), ..., 1p(z̃n)), we have

Hp(A1z̃n,A2z̃n, ...,Apz̃n) + ỹn ∈ [Hp(A1,A2, ...,Ap) + φ ◦Mn(11, 12, ..., 1p)](z̃n).

Therefore, z̃n = Rη,H
p(.,.,...)

φ,Mn(.,.,...)[H
p(A1z̃n,A2z̃n, ...,Apz̃n) + ỹn].

Using the ∆-Lipschitz continuity of Rη,H
p(.,.,...)

φ, Mn(.,.,...), we have

∥zn − z∥ ≤ ∥zn − z̃n∥ + ∥z̃n − z∥

= ∥Rη,H
p(.,.,...)

φ, Mn(.,.,...)(x) − Rη,H
p(.,.,...)

φ, Mn(.,.,...)[H
p(A1z̃n,A2z̃n, ...,Apz̃n) + ỹn]∥ + ∥z′n − z∥

≤ ∆ ∥x −Hp(A1z̃n,A2z̃n, ...,Apz̃n) − ỹn∥ + ∥z′n − z∥
≤ ∆ [∥x −Hp(A1z,A2z, ...,Apz) − ỹn∥

+ ∥Hp(A1z,A2z, ...,Apz) −Hp(A1z̃n,A2z̃n, ...,Apz̃n)∥] + ∥z̃n − z∥. (9)

Using the qi-Lipschitz continuity of Hp, we have

∥Hp(A1z,A2z, ...,Apz) −Hp(A1z̃n,A2z̃n, ...,Apz̃n)∥ ≤ (q1 + q2 + ... + qp)∥z̃n − z∥. (10)

Using (9) and (10), we have

∥zn − z∥ ≤ ∆∥x −Hp(A1z,A2z, ...,Apz) − ỹn∥ +
[
1 + ∆(q1 + q2 + ... + qp)

]
∥z̃n − z∥. (11)

As 1i is ri-expansive, then we have

∥1i(z̃n) − 1i(z)∥ ≥ ri∥z̃n − z∥ ≥ 0. (12)

We have 1i(z̃n)→ 1i(z) as n→∞. Using (9), (12) and let n→∞we get z̃n → z and∥∥∥[x −Hp(A1z,A2z, ...,Apz) − ỹn]
∥∥∥→ 0.

By (11), we have ∥zn − z∥ → 0 as n→∞, that is,

Rη,H
p(.,.,...)

φ, Mn(.,.,...)(u)→ Rη,H
p(.,.,...)

φ, M(.,.,...)(u).

Only if part: Suppose that Rη,H
p(.,.,...)

φ, Mn(.,.,...) → Rη,H
p(.,.,...)

φ, M(.,.,...), ∀u ∈ B, ρ > 0.For any given (11(x), 12(x), ..., 1p(x), y) ∈ Gr(φ◦
M(11, 12, ..., 1p), we have y ∈ φ ◦M(11, 12, ..., 1p)

Hp(A1x,A2x, ...,Apx) + y ∈ [Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p)](x)

Therefore, x = Rη,H
p(.,.,...)

φ, M(.,.,...)[H
p(A1x,A2x, ...,Apx) + y]. Let

xn = Rη,H
p(.,.,...)

φ,Mn(.,.,...)[H
p(A1x,A2x, ...,Apx) + y].

Then,

[Hp(A1x,A2x, ...,Apx) −Hp(A1xn,A2xn, ...,Apxn) + y]
∈ φ ◦Mn(11(xn), 12(xn), ..., 1p(xn)).
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Let yn = [Hp(A1x,A2x, ...,Apx) −Hp(A1xn,A2xn, ...,Apxn) + y].
Now, we evaluate

∥yn − y∥ =
∥∥∥[Hp(A1x,A2x, ...,Apx) −Hp(A1xn,A2xn, ...,Apxn) + y] − y

∥∥∥
= ∥Hp(A1x,A2x, ...,Apx) −Hp(A1xn,A2xn, ...,Apxn)∥
≤ (q1 + q2 + ... + qp) ∥xn − x∥ (13)
= q ∥xn − x∥, where q = (q1 + q2 + ... + qp). (14)

As Rη,H
p(.,.,...)

φ, Mn(.,.,...) → Rη,H
p(.,.,...)

φ, M
for given any u ∈ B, we have ∥xn − x∥ → 0. Let n → ∞, equation (13) gives

yn → y. Therefore, φ ◦Mn
G
−→ φ ◦M. This completes the proof.

Now, we are providing the following consolidated example in support of αiβ j-(Hp, φ)-η-accretive map-

ping, graph convergence of φ◦Mn
G
−→ φ◦M and Rη,H

p(.,.,...)
φ,Mn(.,.,...) → Rη,H

p(.,.,...)
φ,M(.,.,...) by using MATLAB programming.

(a)

Rρ,N (.,.,..)
η,Hp (.,.,...)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

(b)

Figure 1: (a) show the graph of Rη,H
p(.,.,...)

ρ,M(.,.,...) for p = 10, where (φ ◦M)(z) = p
2

[
2z
5 −

z
15

]
(b) show the convergence of Rη,H

p(.,.,...)
φ,Mn(.,.,...) → Rη,H

p(.,.,...)
φ,M(.,.,...) as φ ◦ Mn

G
−→ φ ◦ M for p = 10, where (φ ◦ Mn)(z) = p

2

[
2z
5 −

z
15

]
+ 1+n

n3 and

(φ ◦M)(z) = p
2

[
2z
5 −

z
15

]
.

Example 3.4. Let B be 2-uniformly smooth Banach space and B = R. Let p is an even number and Ai : R→ R for
each i ∈ {1, 2, ..., p}, is given by

A1(z) =
z3

27
, A3(z) =

z3

27
, ....,Ap−1(z) =

z3

27
,

A2(z) =
z
3
, A4(z) =

z
3
, ...,Ap(z) =

z
3
,

such that the inequality yz + y2 + z2
≥ 1 is satisfied for all y, z ∈ R.

Let 1i : R→ R for each i ∈ {1, 2, ..., p}, is given by

11(z) =
2z
5
, 13(z) =

2z
5
, ...., 1p−1(z) =

2z
5
,

12(z) =
z

15
, 14(z) =

z
15
, ..., 1p(z) =

z
15
.
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Let η : R × R → R is given by η(y, z) = y − z and φ : R → R is given by φ(z) = ρz (let ρ = 1) with
φ(y + z) = φ(y) + φ(z).

Assume that Hp : Rp
→ R is defined by

H(A1(z),A2(z), ...,Ap−1(z),Ap(z)) = A1(z) − A2(z) + ... + Ap−1(z) − Ap(z).

Assume that set-valued mappingsMn,M : Rp
→ 2R are defined by

Mn(11(z), 12(z), ..., 1p−1(z), 1p(z)) = 11(z) − 12(z) + ... + 1p−1(z) − 1p(z) +
1 + n

n3 ,

M(11(z), 12(z), ..., 1p−1(z), 1p(z)) = 11(z) − 12(z) + ... + 1p−1(z) − 1p(z).

Let for any u2,u3, ....up ∈ R,[
Hp(A1(y),u2, ...,up−1) −Hp(A1(z),u2, ...,up−1), η(y, z)

]
=
[
A1(y) − A1(z), y − z

]
=
[ y3

27
−

z3

27
, y − z

]
=

1
27

(y − z)2(y2 + z2 + yz)

≥
1

27
(y − z)2 =

1
27
∥y − z∥2.

Thus, Hp is 1
27 -strongly η- accretive with A1. In the similar way, we can show that Hp is 1

27 -strongly η-
accretive with Ai for all i ∈ {1, 3, ..., p − 1}.

Let for any u1,u3, ....up ∈ R,[
Hp(u1,A2(y), ...,up−1) −Hp(u1A2(z), ...,up−1), η(y, z)

]
= −

[
A2(y) − A2(z), y − z

]
= −

[ y
3
−

z
3
, y − z

]
= −

1
3

(y − z)2

≥ −
4
3

(y − z)2 = −
4
3
∥y − z∥2.

Thus, Hp is 4
3 -relaxed η- accretive with A2. In the similar way, we can show that Hp is 4

3 -relaxed η- accretive
with Ai for all i ∈ {2, 4, ..., p}.

Let for any v2, v3, ....vp ∈ R,[
φ ◦Mn(11(y), v2, ..., vp−1) − φ ◦Mn(11(z), v2, ..., vp−1), η(y, z)

]
=
[
11(y) +

1 + n
n3 − 11(z) −

1 + n
n3 , y − z

]
=
[2y

5
−

2z
5
, y − z

]
=

2
5

(y − z)2

≥
2
6

(y − z)2 =
1
3
∥y − z∥2.
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Thus, φ ◦Mn is 1
3 -strongly η-accretive with 11. In the similar way, we can show that φ ◦Mn is 1

3 -strongly
η-accretive with 1i for all i ∈ {1, 3, ..., p − 1}.

Let for any v1, v3, ....vp ∈ R,[
φ ◦Mn(v1, 12(y), ..., vp−1) − φ ◦Mn(v1, 12(z), ..., vp−1), η(y, z)

]
=
[
12(y) +

1 + n
n3 − 12(z) −

1 + n
n3 , y − z

]
= −

[ y
15
−

z
15
, y − z

]
= −

1
15

(y − z)2

≥ −
16
15

(y − z)2 = −
16
15
∥y − z∥2.

Thus, φ ◦Mn is 16
15 -relaxed η-accretive with 12. In the similar way, we can show that φ ◦Mn is 16

15 -relaxed
η-accretive with 1i for all i ∈ {2, 4, ..., p}.
Similarly, we can show that φ ◦ M is 1

3 -strongly η-accretive with 1i for all i ∈ {1, 2, ..., p − 1} and φ ◦ M is
16
15 -relaxed η-accretive with 1i for all i ∈ {2, 4, ..., p}.

One can easily verify the following for ρ = 1:

[Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p)](R) = R.

Now, we will show that φ ◦ Mn
G
−→ φ ◦ M, if for each (11(z), 12(z), ..., 1p(z)), y) ∈ Gr(φ ◦ M(11, 12, ..., 1p)),

there exists a sequence
((11(zn), 12(zn), ..., 1p(zn), yn) ∈ Gr(φ ◦Mn(11, 12, ..., 1p)) such that 11(zn) → 11(z), 12(zn) → 12(z), ..., 1p(zn) →
1p(z), yn → y as n→ ∞. For this, we consider

zn =
(
1 +

1
n2

)
z,

11(zn) = 13(zn) = .... = 1p−1(zn) =
2zn

5
,

12(zn) = 14(zn) = .... = 1p(zn) =
zn

15
, n ∈N.

Since, limn zn = limn

(
1 + 1

n2

)
z = z Thus, we have zn → z as n→∞.

Now lim
n
11(zn)→ 11(z), lim

n
13(zn)→ 13(z), ...., lim

n
1p−1(zn)→ 1p−1(z),

lim
n
12(zn)→ 12(z), lim

n
14(zn)→ 14(z), ...., lim

n
1p(zn)→ 1p(z).

Since

yn = φ ◦M(11(zn), 12(zn), ..., 1p(zn))

= φ
(
11(zn) − 12(zn) + ... + 1p−1(zn) − 1p(zn) +

1 + n
n3

)
=
(2zn

5
−

zn

15
+ ... +

2zn

5
−

zn

15

)
︸                             ︷︷                             ︸

p terms

+
1 + n

n3

=
(2z

5
+

2z
5
+ ... +

2z
5

)
︸                   ︷︷                   ︸

p
2 terms

−

( z
15
+

z
15
+ ... +

z
15

)
︸                   ︷︷                   ︸

p
2 terms

.

=
[p
2
×

2zn

5
−

p
2
×

zn

15

]
+

1 + n
n3 .
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Now we compute

lim
n

yn = lim
n

[p
2
×

2zn

5
−

p
2
×

zn

15

]
+

1 + n
n3 =

[p
2
×

2z
5
−

p
2
×

z
15

]
.

=
(2z

5
+

2z
5
+ ... +

2z
5

)
︸                   ︷︷                   ︸

p
2 terms

−

( z
15
+

z
15
+ ... +

z
15

)
︸                   ︷︷                   ︸

p
2 terms

.

=
(
11(z) + 13(z) + ... + 1p−1(z)

)
−

(
12(z) + 14(z) + ... + 1p(z)

)
.

= 11(z) − 12(z) + 13(z) − 14(z) + ... + 1p−1(z) − 1p(z).
= φ ◦M(z) = y.

Therefore, yn → y as n→∞ and hence, φ ◦Mn
G
−→ φ ◦M.Next, we will show that Rη,H

p(.,.,...)
φ, Mn(.,.,...) → Rη,H

p(.,.,...)
φ, M(.,.,...)

as φ ◦Mn
G
−→ φ ◦M. The proximal-point mappings for ρ = 1, are given by

Rη,H
p(.,.,...)

φ, Mn(.,.,...)(z) = [Hp(A1,A2, ...,Ap) + φ ◦Mn(11, 12, ..., 1p)]−1(z) = 3
(
z −

1 + n
n3

) 1
3

Rη,H
p(.,.,...)

φ, M(.,.,...)(z) = [Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p)]−1(z) = 3z
1
3

We evaluate
∥∥∥∥Rη,Hp(.,.,...)
φ, Mn(.,.,...)(x) − Rη,H

p(.,.,...)
φ, M(.,.,...)(z)

∥∥∥∥ = ∥∥∥∥3 (z − 1+n
n3

) 1
3
− 3z

1
3

∥∥∥∥, which shows that∥∥∥∥Rη,Hp(.,.,...)
φ, Mn(.,.,...) − Rη,H

p(.,.,...)
φ, M(.,.,...)

∥∥∥∥→ 0 as n→∞. i.e. Rη,H
p(.,.,...)

φ, Mn(.,.,...) → Rη,H
p(.,.,...)

φ, M(.,.,...) as φ ◦Mn
G
−→ φ ◦M.

4. Set-valued Variational-like Inclusions

Let B be a 2-uniformly smooth Banach space. For each i ∈ {1, 2, ..., p}, p ≥ 3, let Hp,K : Bp
→ B,

η : B × B → B, and Ai, φ, 1i : B → B be single-valued mappings,Ni : B → 2B be set-valued mappings. Let
M : Bp

→ 2B be a generalized (Hp, φ)-η-accretive mapping with mappings (A1,A2, ...,Ap) and (11, 12, ..., 1p).

Now, the problem is to find x̃ ∈ B, ũ1 ∈ N1(x̃), ũ2 ∈ N2(x̃), ..., ũp ∈ Np(x̃) such that

Θ ∈ K (ũ1, ũ2, ..., ũp) +M(11(x̃), 12(x̃), ..., 1p(x̃)). (15)

Problem (15) is called the set-valued variational-like inclusions (SVLIP, in short).
Special cases:
(i) IfK (ũ1, ũ2, ..., ũp) = K (ũ1, ũ2), η(ũ1, ũ2) = ũ1− ũ2 andM(11(x̃), 12(x̃), ..., 1p(x̃)) =M(11(x̃), 12(x̃)), then SVLIP
(15) blueuced to find x̃ ∈ B, ũ1 ∈ N1(x̃), ũ2 ∈ N2(x̃) such that

Θ ∈ K (ũ1, ũ2) +M(11(x̃), 12(x̃)). (16)

(ii) If 11 = 12 = 1, N1 = N2 = N , η(ũ1, ũ2) = ũ1 − ũ2 andM(., .) =M(.), then problem (16) blueuced to find
x̃ ∈ B, ũ ∈ M(x̃) such that

Θ ∈ ũ +M(1(x̃)). (17)

Problem (17) studied by Huang [26] whenM is m-accretive mapping.

(iii) If K (ũ1, ũ2) = K (x̃), η(ũ1, ũ2) = ũ1 − ũ2 andN is single-valued mapping, then problem (16) blueuced to
find x̃ ∈ B such that

Θ ∈ K (x̃) +M(x̃). (18)

Problem (18) studied by Zou and Huang [47] when M is H(., .)-accretive mapping. For generalized m-
accretive mapping, Problem (18) studied by Bi et al. [11].



S. Gupta, L. Rathou / Filomat 37:19 (2023), 6255–6275 6269

Definition 4.1. A set-valued mappingN : B → CB(B) is said to be D̃-Lipschitz continuous with ζ > 0, if

D̃(N ỹ,N z̃) ≤ ζ ∥ỹ − z̃∥, ∀ỹ, z̃ ∈ B.

Lemma 4.2. Let us consider SVLIP (15) with mapping φ : B → B such that φ(ṽ+ w̃) = φ(ṽ)+φ(w̃) and Ker(φ) =
{0}, where Ker(φ) = {ṽ ∈ B : φ(ṽ) = 0}. If (x̃, ũ1, ũ2, ..., ũp), where x̃ ∈ B, ũ1 ∈ N1(x̃), ũ2 ∈ N2(x̃), ..., ũp ∈ Np(x̃) is
a solution of SVLIP (15) if and only if (x̃, ũ1, ũ2, ..., ũp) satisfies the following relation:

x̃ = Rη,H
p(.,.,...)

φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(x̃) − φ ◦ K (ũ1, ũ2, ..., ũp)]. (19)

Proof. Let (x̃, ũ1, ũ2, ..., ũp) be a solution of SVLIP (15), then (x̃, ũ1, ũ2, ..., ũp) satisfy the following condition

x̃ = Rη,H
p(.,.,...)

φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(x̃) − φ ◦ K (ũ1, ũ2, ..., ũp)]. (20)

x̃ = [Hp(A1,A2, ...,Ap) + φ ◦M(11, 12, ..., 1p)]−1[Hp(A1,A2, ...,Ap)(x̃) − φ ◦ K (ũ1, ũ2, ..., ũp)]
⇔ [Hp(A1,A2, ...,Ap)(x̃) − φ ◦ K (ũ1, ũ2, ..., ũp)] ∈ [Hp(A1,A2, ...,Ap)(x̃) − φ ◦M(11, 12, ..., 1p)x̃]
⇔ 0 ∈ φ ◦ (K (ũ1, ũ2, ..., ũp) + φ ◦M(11(x̃), 12(x̃), ..., 1p(x̃))
⇔ 0 ∈ φ ◦ [K (ũ1, ũ2, ..., ũp) +M(11(x̃), 12(x̃), ..., 1p(x̃))]

⇔ φ−1(0) ∈ K (ũ1, ũ2, ..., ũp) +M(11(x̃), 12(x̃), ..., 1p(x̃))
⇔ Θ ∈ K (ũ1, ũ2, ..., ũp) +M(11(x̃), 12(x̃), ..., 1p(x̃)).

Now, we establish the result in context of uniqueness for the solution of SVLIP (15).

Theorem 4.3. Let SVLIP (15) hold in assumptions M1-M5 with mapping φ : B → B such that φ(ṽ + w̃) =
φ(ṽ) + φ(w̃) and Ker(φ) = {0}, where Ker(φ) = {ṽ ∈ B : φ(ṽ) = 0}, andMn,M : Bp

→ 2B be generalized αiβ j-
(Hp, φ)-η-accretive mappings with

∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j. For each i ∈ {1, 2, ..., p}, we assume the following:

(i)Ni is ζi-D-Lipschitz continuous;
(ii) Hp is qi-Lipschitz continuous with Ai;
(iii) φ ◦ K is ᾱi-strongly η-accretive with 1i and Hp(A1,A2, ..,Ap) in the ith-argument;
(iv) φ ◦ K is λi-Lipschitz continuous in ith-argument;
(v) in addition, the following condition

∆

√
q2 − 2ᾱq2 + cλ̃2 < 1 (21)

is satisfied, where ∆ =
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]−1
.

Then, the general nonlinear operator equation (15) based on generalized αiβ j-(Hp, φ)-η-accretive mapping frame-
work has a unique solution (x̃1, ũ1, ũ2, .., ũp) in B.

Proof. Let us consider the mapping T : B → B, given by

T (x̃1) = Rη,H
p(.,.,...)

φ, M(.,.,...)

[
Hp(A1x̃1,A2x̃1, ...,Apx̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)

]
, ∀ x̃1, ũ1, ũ2, .., ũp

∈ B. (22)

Using (22) and Theorem 3.3, we have

∥T (x̃1) − T (ỹ1)∥ = ∥Rη,H
p(.,.,...)

φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]

−Rη,H
p(.,.,...)

φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(ỹ1) − φ ◦ K (ṽ1, ṽ2, ..., ṽp)]∥

≤ ∆∥Hp(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)

−(Hp(A1,A2, ...,Ap)(ỹ1) − φ ◦ K (ṽ1, ṽ2, ..., ṽp))∥ (23)
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By Lemma 1.6, we have

∥Hp(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)

−(Hp(A1,A2, ...,Ap)(ỹ1) − φ ◦ K (ṽ1, ṽ2, ..., ṽp))∥2

≤ ∥Hp(A1,A2, ...,Ap)(x̃1) −Hp(A1,A2, ...,Ap)(ỹ1)∥2

−2
[
φ ◦ K (ũ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ṽp),

η(Hp(A1,A2, ...,Ap)(x̃1),Hp(A1,A2, ...,Ap)(ỹ1))
]

+c∥φ ◦ K (ũ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ṽp)∥2. (24)

By using qi-Lipschitz continuity of HP, we have

∥Hp(A1,A2, ...,Ap)(x̃1) −Hp(A1,A2, ...,Ap)(ỹ1)∥

≤ ∥Hp(A1x̃1,A2x̃1, ...,Apx̃1)) −Hp(A1 ỹ1,A2x̃1, ...,Apx̃1)∥

+∥Hp(A1 ỹ1,A2x̃1, ...,Apx̃1) −Hp(A1 ỹ1,A2 ỹ1, ...,Apx̃1)∥
:
:

+∥Hp(A1 ỹ1,A2 ỹ1, ...,Apx̃1) −Hp(A1 ỹ1,A2 ỹ1, ...,Ap ỹ1)∥

≤ (q1 + q2 + ... + qp)∥x̃1
− ỹ1
∥

= q∥x̃1
− ỹ1
∥, where q = (q1 + q2 + ... + qp). (25)

Now, we compute the following:[
φ ◦ K (ũ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ṽp), η(Hp(A1,A2, ...,Ap)(x̃1),Hp(A1,A2, ...,Ap)(ỹ1))

]
=
[
φ ◦ K (ũ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ũ2, ..., ũp),

η(Hp(A1,A2, ...,Ap)(x̃1),Hp(A1,A2, ...,Ap)(ỹ1))
]

+
[
φ ◦ K (ṽ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ũp),

η(Hp(A1,A2, ...,Ap)(x̃1),Hp(A1,A2, ...,Ap)(ỹ1))
]

:
:
+
[
φ ◦ K (ṽ1, ṽ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ṽp),

η(Hp(A1,A2, ...,Ap)(x̃1),Hp(A1,A2, ...,Ap)(ỹ1))
]

≥ ᾱ1∥Hp(A1,A2, ...,Ap)(x̃1) −Hp(A1,A2, ...,Ap)(ỹ1)∥2

+ᾱ2∥Hp(A1,A2, ...,Ap)(x̃1) −Hp(A1,A2, ...,Ap)(ỹ1)∥2

:
:
+ᾱp∥Hp(A1,A2, ...,Ap)(x̃1) −Hp(A1,A2, ...,Ap)(ỹ1)∥2

≥ (ᾱ1 + ᾱ2 + ... + ᾱp)∥Hp(A1,A2, ...,Ap)(x̃1) −Hp(A1,A2, ...,Ap)(ỹ1))∥2

≥ (ᾱ1 + ᾱ2 + ... + ᾱp)(q1 + q2 + ... + qp)2
∥x̃1
− ỹ1
∥

2

= ᾱq2
∥x̃1
− ỹ1
∥

2, where ᾱ = ᾱ1 + ᾱ2 + ... + ᾱp. (26)
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By using the λi-Lipschitz continuity of φ ◦ K and ζi-D-Lipschitz continuity ofNi, we have

∥φ ◦ K (ũ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ṽp)∥
≤ ∥φ ◦ K (ũ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ũ2, ..., ũp)∥
+∥φ ◦ K (ṽ1, ũ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ũp)∥
:
:
+∥φ ◦ K (ṽ1, ṽ2, ..., ũp) − φ ◦ K (ṽ1, ṽ2, ..., ṽp)∥

≤ λ1∥ũ1
− ṽ1
∥ + λ2∥ũ2

− ṽ2
∥ + ... + λp∥ũp

− ṽp
∥∥

≤ λ1D̃(N1(x̃1),N1(ỹ1)) + λ2D̃(N2(x̃1),N2(ỹ1)) + ... + λpD̃(Np(x̃p),Np(ỹp))
(27)

≤

(
λ1ζ1 + λ2ζ2 + ... + λpζp

)
∥x̃1
− ỹ1
∥

= λ̃∥x̃1
− ỹ1
∥, where λ̃ = λ1ζ1 + λ2ζ2 + ... + λpζp. (28)

Using equation (24)-(28) in equation (23), we have

∥T (x̃1) − T (ỹ1)∥ ≤ ∆
[
q2 + cλ̃2

− 2ᾱq2
] 1

2
∥x1
− y1
∥.

Let

∥T (x̃1) − T (ỹ1)∥ ≤ Ł∥x̃1
− ỹ1
∥, where Ł = ∆

[
q2 + cλ̃2

− 2ᾱq2
] 1

2
. (29)

We have, ∆
√

q2 − 2ᾱq2 + cλ̃2 < 1. From condition (21), we have 0 ≤ Ł < 1, so (29) implies that

T = Rη,H
p(.,.,...)

φ, M(.,.,...)

[
Hp(A1,A2, ...,Ap) − φ ◦ K

]
,

is a contraction mapping and has a unique fixed point x̃1 in B. Hence x̃1 is a unique solution of SVLIP (15).

If B = Lp̃, 2 ≤ p̃ < ∞, then Theorem 4.3 blueuces to the following result:

Corollary 4.4. Let SVLIP (15) hold in assumptions M1-M5 with mapping φ : Lp̃
→ Lp̃ such that φ(ṽ + w̃) =

φ(ṽ) + φ(w̃) and Ker(φ) = {0}, where Ker(φ) = {ṽ ∈ Lp̃ : φ(ṽ) = 0}, andMn,M : Lp̃p
→ 2Lp̃ be generalized αiβ j-

(Hp, φ)-η-accretive mappings with
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j. For each i ∈ {1, 2, ..., p}, we assume the following:

(i)Ni is ζi-D-Lipschitz continuous;
(ii) Hp is qi-Lipschitz continuous with Ai;
(iii) φ ◦ K is ᾱi-strongly η-accretive with 1i and Hp(A1,A2, ..,Ap) in the ith-argument;
(iv) φ ◦ K is λi-Lipschitz continuous in ith-argument;

(v) in addition, condition ∆
√

q2 − 2ᾱq2 + (p̃ − 1)λ̃2 < 1 is satisfied, where p̃ − 1 is the constant of smoothness and

∆ =
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]−1
.

Then, the general nonlinear operator equation (15) based on generalized αiβ j-(Hp, φ)-η-accretive mapping frame-
work has a unique solution (x̃1, ũ1, ũ2, .., ũp) in Lp̃.

Now, we construct the following iterative algorithm for finding the approximate solution of SGVLI (15):
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Algorithm 4.5. For any given x̃1
0 ∈ B, select ũ1

0 ∈ N1(x̃1
0), ũ2

0 ∈ N2(x̃1
0), ..., ũp

0 ∈ Np(x̃1
0) and obtain {x̃1

n}, {ũ1
n}, {ũ2

n},...,
{ũp

n}, by the following iterative algorithm

x̃1
n+1 = Rη,H

p(.,.,...)
φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1

n) − φ ◦ K(ũ1
n, ũ

2
n, ..., ũ

p
n)],

ũ1
n ∈ N1(x̃1

n) : ∥ũ1
n+1 − ũ1

n∥ ≤

[
1 +

1
n + 1

]
D̃(N1(x̃1

n+1),N1(x̃1
n)),

ũ2
n ∈ N2(x̃1

n) : ∥ũ2
n+1 − ũ2

n∥ ≤

[
1 +

1
n + 1

]
D̃(N2(x̃1

n+1),N2(x̃1
n)),

:
:

ũp
n ∈ Np(x̃1

n) : ∥ũp
n+1 − ũp

n∥ ≤

[
1 +

1
n + 1

]
D̃(Np(x̃1

n+1),Np(x̃1
n)),

n = 0, 1, 2, .... and D̃(., .) is the Hausdorff metric on CB(B).

Now, we establish the convergence result for the solution of SVLIP (15).

Theorem 4.6. Let SVLIP (15) hold in assumptions M1-M5 with mapping φ : B → B such that φ(ṽ + w̃) =
φ(ṽ) + φ(w̃) and Ker(φ) = {0}, where Ker(φ) = {ṽ ∈ B : φ(ṽ) = 0}, andMn,M : Bp

→ 2B be generalized αiβ j-
(Hp, φ)-η-accretive mappings with

∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j. For each i ∈ {1, 2, ..., p}, we assume the following:

(i)Ni is ζi-D-Lipschitz continuous;
(ii) Hp is qi-Lipschitz continuous with Ai;
(iii) φ ◦ K is ᾱi-strongly η-accretive with 1i and Hp(A1,A2, ..,Ap) in the ith-argument;
(iv) φ ◦ K is λi-Lipschitz continuous in ith-argument;
(v) in addition, the following condition

∆

√
q2 − 2ᾱq2 + cλ̃2 < 1 (30)

is satisfied, where ∆ =
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]−1
.

Then iterative sequences ({x̃1
n}, {ũ1

n}, {ũ2
n}, ...., {ũ

p
n}) developed by Algorithm 4.5 converge strongly to (x̃1, ũ1, ũ2, .., ũp)

a solution of SVLIP (15).

Proof. Now, we prove that x̃1
n −→ x̃1 as n→∞. Infact, it follows from Theorem 3.3 and Algorithm 4.5 that

∥x̃1
n+1 − x̃1

∥ = ∥Rη,H
p(.,.,...)

φ,Mn(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1
n) − φ ◦ K (ũ1

n, ũ
2
n, ..., ũ

p
n)]

−Rη,H
p(.,.,...)

φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(x1) − φ ◦ K (ũ1, ũ2, ..., ũp)]∥

≤ ∥Rη,H
p(.,.,...)

φ,Mn(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1
n) − φ ◦ K (ũ1

n, ũ
2
n, ..., ũ

p
n)]

−Rη,H
p(.,.,...)

φ,Mn(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]∥

+∥Rη,H
p(.,.,...)

φ,Mn(.,.,...)[H
p(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]

−Rη,H
p(.,.,...)

φ,M(.,.,...)[H
p(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]∥ (31)

By Theorem 3.3, we have

Rη,H
p(.,.,...)

φ,Mn(.,.,...)[H
p(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)→

Rη,H
p(.,.,...)

φ,M(.,.,...)[H
p(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]. (32)

Let

θn = ∥R
η,Hp(.,.,...)
φ,Mn(.,.,...)[H

p(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]

−Rη,H
p(.,.,...)

φ,M(.,.,...)[H
p(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]∥ → 0. (33)
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In the light of equations (22)-(25), one can obtain

∥Rη,H
p(.,.,...)

φ,Mn(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1
n) − φ ◦ K (ũ1

n, ũ
2
n, ..., ũ

p
n)]

−Rη,H
p(.,.,...)

φ,Mn(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)]∥ ≤ Łn∥x̃1
n − x̃1

∥, (34)

where Łn = ∆

√
q2 − 2ᾱq2 + cλ̃2

(
1 +

1
n

)2
.

Using (32)-(34) in (31), we get

∥x̃1
n+1 − x̃1

∥ = Łn∥x̃1
n − x̃1

∥ + θn, where Ł = ∆
√

q2 − 2ᾱq2 + cλ̃2. (35)

From (30), we have

∆

√
q2 − 2ᾱq2 + cλ̃2 < 1.

Thus, we have limn→∞ Łn → Ł with 0 ≤ Ł < 1, and from (33) limn→∞ θn → 0. From Lemma 1.9,
limn→∞ x̃1

n → x̃1. ByD-Lipschitz continuity ofN1,N2, ...,Np and Algorithm 4.5, we have

∥ũ1
n+1 − ũ1

n∥ ≤

[
1 +

1
n + 1

]
D̃(N1(x̃1

n+1),N1(x̃1
n)) ≤

[
1 +

1
n + 1

]
ζ1∥x̃1

n+1 − x̃1
n∥,

∥ũ2
n+1 − ũ2

n∥ ≤

[
1 +

1
n + 1

]
D̃(N2(x̃1

n+1),N2(x̃1
n)) ≤

[
1 +

1
n + 1

]
ζ2∥x̃1

n+1 − x̃1
n∥,

:
:

∥ũp
n+1 − ũp

n∥ ≤

[
1 +

1
n + 1

]
D̃(Np(x̃1

n+1),Np(x̃1
n)) ≤

[
1 +

1
n + 1

]
ζp∥x̃1

n+1 − x̃1
n∥.

It shows that {ũ1
n}, {ũ2

n}, ...., {ũ
p
n} are Cauchy sequences, then there exists ũ1, ũ2, ...ũp such that ũ1

n → ũ1, ũ2
n →

ũ2, ..., ũp
n → ũp, as n→∞. Now, we show that ũ1

∈ N1(x̃1). Since ũ1
n ∈ N1(x̃1), we have

d(ũ1,N1(x̃1)) ≤ ∥ũ1
− ũ1

n∥ + d(ũ1
n,N1(x̃1))

≤ ∥ũ1
− ũ1

n∥ + D̃(N1(x1
ñ),N1(x̃1))

≤ ∥ũ1
− ũ1

n∥ + ζ1∥x̃1
n − x̃1

∥.

Since N1(x̃1) is closed, thus ũ1
∈ N1(x̃1). Similarly, we can prove ũ2

∈ N2(x̃1), ũ3
∈ S3(x̃1), ..., ũp

∈ Np(x̃1). By
continuity of Hp,Ai, φ ◦K , and Rη,H

p(.,.,...)
φ,M(.,.,...), we know that (x̃1, ũ1, ũ2, ..., ũp) is satisfying the following relation:

x̃1 = Rη,H
p(.,.,...)

φ,M(.,.,...) [Hp(A1,A2, ...,Ap)(x̃1) − φ ◦ K (ũ1, ũ2, ..., ũp)].

By Theorem 4.3, SVLIP (15) have a solution (x̃1, ũ1, ũ2, ..., ũp).
If B = Lp̃, 2 ≤ p̃ < ∞, then Theorem 4.6 blueuces to the following result:

Corollary 4.7. Let SVLIP (15) hold in assumptions M1-M5 with mapping φ : Lp̃
→ Lp̃ such that φ(ṽ + w̃) =

φ(ṽ) + φ(w̃) and Ker(φ) = {0}, where Ker(φ) = {ṽ ∈ Lp̃ : φ(ṽ) = 0}, and Mn,M : Lp̃p
→ 2Lp̃ be generalized

αiβ j-Hp(., ., ...)-accretive mappings with
∑
µ̄i >

∑
γ̄ j,
∑
αi >

∑
β j. For each i ∈ {1, 2, ..., p}, we assume the

following:
(i)Ni is ζi-D-Lipschitz continuous;
(ii) Hp is qi-Lipschitz continuous with Ai;
(iii) φ ◦ K is ᾱi-strongly η-accretive with 1i and Hp(A1,A2, ..,Ap) in the ith-argument;
(iv) φ ◦ K is λi-Lipschitz continuous in ith-argument;
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(v) in addition, condition ∆
√

q2 − 2ᾱq2 + (p̃ − 1)λ̃2 < 1 is satisfied, where p̃ − 1 is the constant of smoothness and

∆ =
[∑
αi −
∑
β j +
(∑
µ̄i −
∑
γ̄ j

)]−1
.

Then iterative sequences ({x̃1
n}, {ũ1

n}, {ũ2
n}, ...., {ũ

p
n}) developed by Algorithm 4.5 converge strongly to (x̃1, ũ1, ũ2, .., ũp)

a solution of SVLIP (15).

5. Conclusions

This article is a discussion on generalized αiβ j-(Hp, φ)-η-accretive mappings which consist of (H(., .), η)-
accretive mappings, the generalized αβ-H(., .)-accretive mappings, H(., .)-accretive mappings, etc. as special
cases. Since variational inclusions, generalized αiβ j-(Hp, φ)-η-accretive mappings, and proximal-point
mappings have applications in physics, economics and management sciences, we consideblue and studied
a SVLIP (15) including a generalized αiβ j-(Hp, φ)-η-accretive mapping. We also discussed the uniqueness
and existence of solution of SVVLIP (15) in 2-uniformly smooth Banach spaces. The results that are obtained
for the proximal-point mapping inline with the generalized αiβ j-(Hp, φ)-η-accretive mappings conferblue in
this article can be continued in future to the Yosida inclusion problems in the setting of semi-inner product
spaces.

Acknowledgment: The authors would like to thank the referees for their valuable comments and sugges-
tions, which improved the original version of the manuscript.
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