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Abstract. The present research is an attempt to define a class of generalized a;8;-(H?, ¢)-n-accretive
mappings as well as it is a study of its associated class of proximal-point mappings. The generalized
a;f;-(H?, )-n-accretive mappings is the sum of two symmetric accretive mappings and an extension of the
generalized af-H(., .)-accretive mapping [28]. Further the research is a discussion on graph convergence
of generalized «;f;-(H”, )-n-accretive mappings and its application includes a set-valued variational-like
inclusion problem (SVLIP, in short) in semi inner product spaces. Furthermore an iterative algorithm is
proposed, and an attempt is made to discuss the convergence analysis of the sequences generated from the
proposed iterative algorithm. An example is constructed that demonstrate few graphics for the convergence

of proximal-point mapping. Our results can be viewed as a refinement and generalization of some known
results in the literature.

1. Introduction and Preliminaries

Last few years have witnessed that the researchers have focussed extensively on variational inclusions
that are the generalizations of variational inequalities. Investigation of variational inclusions leads to
develop an effective and feasible iterative algorithm. A number of iterative algorithms have been proposed
and discussed to find out the solutions for variational inclusions. The proximal-point method is one of the
most interesting and important techniques and is widely used by numerous authors to solve the variational
inclusions, we refer to see the related references [3, 8-16, 18, 20, 27, 28, 31-33, 36-38, 40, 42, 43, 45-48].

Recently, Bhat and Zahoor [9] proved the existence of solutions for the system of generalized variational-
like inclusions and Sahu et al. [40] proved the existence of solutions for a class of nonlinear implicit vari-
ational inclusion problems in semi-inner product spaces. Their results are more general than the results
obtained by Sahu et al. in [41]. In addition, they designed an iterative algorithm to approximate the
solutions for the general classes of variational inclusions and their system associated with A-monotone,
H-monotone and (H, ¢)-n-monotone operators through the generalized resolvent operator methods. It is
noted that they investigated the existence and the convergence criteria by releasing the monotonicity on
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the set-valued maps under consideration.

Most recently, Luo and Huang [34], investigated (H, ¢)-n-monotone mappings in Banach spaces which
produce a unifying structure for maximal monotone operators, maximal 7-monotone operators, m-1-
accretive operators, H-monotone operators and H, 7-monotone operators. In this sequence, Ahmad et.
al introduced and studied H(.,.)-cocoercive operators [1], H(.,.)-co-accretive mappings [2], H(.,.)-p-1-
accretive mappings [3] and H(.,.)-n-cocoercive operators [4, 5]. They used the proximal-point map-
pings (resolvent operators) and graph convergence approaches inline with above discussed mappings
to established results on convergence of proposed iterative algorithms and to find out the solutions for
some classes of variational inclusions. For more applications, see the references [9, 10, 13-16, 19, 20, 23—
25,27,28, 31, 33, 34, 38, 40, 42, 43, 46].

The present study is a further insight in the ongoing works. In this paper, we have consideblue a
generalized «;f;-(H?, )-n-accretive mapping defined on a product set which is the sum of two symmetric
accretive mappings. This is the generalization of generalized af-H(.,.)-accretive mappings [28], which
is done with the idea of C,-monotone mappings studied and analyzed by Nazemi [19]. Next, we have
discussed some properties of the proximal point mapping and study the graph convergence of generalized
a;fj-(H?, p)-n-accretive mapping.

As application, we have studied a set-valued variational-like inclusion problem in the semi inner
product spaces and have solved it by using the proximal-point mapping associated with a generalized
a;f-(H?, p)-n-accretive mapping. In addition, we have constructed an iterative algorithm and performed
the convergence of the sequences generated by the proposed algorithm. An example is constructed and
shown with some graphics for the convergence of the proximal-point mapping. For detailed study, see the
related references [6, 28, 45, 47, 48].

The following definitions and results are requiblue in the subsequent sections.
Definition 1.1. “Let B be a vector space over the field K of real or complex numbers. A functional [.,.] : BXB — K
is called a semi inner product if:
(1) [o+®,z]=[dz]+[D,z], Vii,D,ze€B;
(i) |wii,z] = afii, z], Ya €K, i,z € B;
(iii) [i1,z] > 0, forii #0;
(iv) |[i,z)? < (i, ]z, z], Vi, z € B.

The pair (B, [.,.]) is called a semi-inner product space”, [35, 40].

“We observe that ||ii|| = [i, @]'/? is a norm on B, thus each semi-inner product space is a normed linear space. There
are infinitely many ways to obtain semi-inner product in a normed linear space. Giles [17] proved that the semi-inner
product can be defined uniquely if assumed space B is a uniformly convex smooth Banach space. For a detailed study
and fundamental results on semi-inner product spaces, see [17, 30, 35],” [9].

Remark 1.2. “This unique semi-inner product has the following nice properties:

(i) [i, z] = 0 iff z is orthogonal to i, that is iff ||z|| < ||z + aiill, for all scalars a;

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on B then there is a unique vector
z € B such that f(fi) = [il,z], for all ii € B;

(iii) The semi-inner product is continuous, that is for each i,z € B, we have Re[z, fi + az] — Re[z, @] as a — 07, [9].

Since the sequence space I, p > 1 and the function space L?,p > 1 are uniformly convex smooth Banach
spaces, we can define a semi-inner product on these spaces, uniquely.
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Example 1.3. “The real sequence space I for 1 < p < oo is a semi-inner product space with the semi-inner product
defined by

1
0,21 = ——= Y azjV 2, @,z € 1”7, [40]
I 4

Example 1.4. “The real Banach space LP(B, u) for 1 < p < oo is a semi-inner product space with the semi-inner
product defined by

[g, H] fg(u)lh(u)l”‘lsgn(h(u))dy, g,helr”, [17, 40].

= )
||h||£ Y

Definition 1.5. “Let B be a real Banach space, then

(i) modulus of smoothness of B is a function pg : [0, 00) — [0, 00) is defined as

O+ 0|+ |0 -
ps0) = sup{ A=D1 o = 1, ol = 5, > o)
(ii) B be uniformly smooth if lim,,_,o pf‘;)') = 0;

(iii) B be g-uniformly smooth, if there exists ¢ > 0 such that pg(y) < cy1,q > 1;
(iv) B be 2-uniformly smooth if there exists ¢ > 0 such that pg(y) < cy?”, [40, 44].
Lemma 1.6. “Let p > 1 be a real number and B be a smooth Banach space. Then the following statements are
equivalent:
(i) B is 2-uniformly smooth;
(ii) there is a constant ¢ > 0 such that for every ¥, W € B, the following inequality holds

15+ @I < 161 + 2@, fo) + cll@l’, )
where f5 € J(0) and J(0) = {7* € B : (0,7) = ||0||*> and |[7"|| = ||0||} is the normalized duality mapping”, [40, 44].
“Each normed linear space 8 is a semi-inner product space (see [35]). Infact, by Hahn-Banach theorem, for
each ¥ € B, there exists at least one functional f; € 8* such that (7, f;) = I5]12. Given any such mapping

f B — B, we can verify that [@, 7] = (@, f5) defines a semi-inner product. Hence we can write the
inequality (1) as

15+ @I* < 1101 + 2[@, f5] + cll@wl?, Yo, € B. 2)
The constant c is known as constant of smoothness of 8B, is chosen with best possible minimum value”, [40].

Example 1.7. “The functional spaces L is 2-uniformly smooth for p > 2 and ia p-uniformly smooth for 1 < p < 2.
If2 > p < oo, then we have for all 0, ® € LP

15+ @I* < 111* + 2[@, f5] + (B - DIDIP, V5, € B.
The constant p — 1 is known as constant of smoothness of B”, [40].

We consider 8 is 2-uniformly smooth Banach space and set 87 = 88X B X ... X 8 in rest of the paper
~—_—

p times
unless otherwise stated. First, we recall the following concepts.
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Definition 1.8. Let 7 : 8 — Band n : B x B — B be single-valued mappings. Then, T is said to be
(i) n-accretive if

[T(w*) -7 W), nw", u*)] > 0 Yu', u* €8
(ii) 7-strongly n-accretive if there exists ¥ > 0 with

[T(w*) -7 (), nw’, u*)] > 7llw' —uw|? Yw', u' € B;
(iii) §-relaxed n-accretive if there exists § > 0 with

[T ") - T @), n@w',u)] = 5l - uw|? Vo', u* € B;
(iv) F-Lipschitz continuous if there exists t > 0 with

17T (@) =TI < Fllw' —u'll, Yw', u" € B;
(v) t-expansive if there exists t > 0 with

T () =T W)l > t|w —ul, Yw', u" e B.

Lemma 1.9. “Let two non-negative real sequences {c,} and {e,}, are satisfying c,s1 < lc, + e, with e, — 0 and
0<I<1. Thenlim,_c, = 0.7, [32].

Definition 1.10. Foreachi € {1,2,...,p}, p=3,letH? : B — B,1: BxB — Band A; : B — B be single-valued
mappings. Then HP is said to be
(i) a;-strongly n-accretive with A; if there exists a; > 0 such that

[m(vll sy Ui—eriw/ Vitly s v?’l) - H77(’01/ sy vi—llAiﬁi Vit1y eos Un)/ n(w/ ﬁ):l Z a; ||w - ’5”21
vw/ zN)/ 01+ 0i=1,Vit1, -+, Un € B/
(ii) Bj-relaxed n-accretive with Aj; if there exists ; > 0 such that
[m(vll sy Uj—erjw/ Uj+1/ ey Un) - Hp(vl, a4 Uj—llAjﬁ/ Uj+1/ ey Un)/ U(ZT), 5)] Z _ﬁ] “w - z7”2/
VZTJ, T, 01, ey Z)];l, v]’+1/ ., 0y € B;
(iii) q;i-Lipschitz continuous with A; if there exists q; > 0 such that

”Hp(vl/ ey vl’fllAiZZ)/ vi+1/ ey Un) - Hp(vll ey vl’feriﬁ/ Ui+1/ cey vn)” S qi ||Zb - 5”/
V@T), Z”jr 01y 0y Ui=1,Vig1, U € Br

(iv) a1 o3 Py...ap—1fp-symmetric n-accretive with Ay, A,, ..., A, iff fori € {1,3,...,p =1}, HP (..., A;, ...) is a;-strongly
n-accretive with A; and for j € {2,4, ..., p}, H¥(..., Aj, ...) is Bj-relaxed n-accretive with A;, where p is even, satisfying

Z Bj < Zai, and Z B = Zafjiffﬁ):ﬁ,‘
j=even i=odd j=even i=odd

(v) a1faasfy, ...fp-1, ap-symmetric n-accretive with Ay, Ay, ..., Ay iff for i € {1,3,...,p}, HP(..., A;, ...) is aj-strongly
n-accretive with A; and for j € {2,4,...,p — 1}, H?(..., A}, ...) is Bj-relaxed n-accretive A where p is odd, satisfying

Z Bi < Zai,and Z Bj = Zoz,«iffzb:f).

j=even i=odd j=even i=odd
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“Let M : B — 2% be a set-valued mapping, then graph of M is given by Gr(M) = {(3, @) : @ € M()}.
The domain of M is given by

Dom(M) = {g e B:Aw € B : (9,0) € Gr(M)}.
The Range of M is given by
RGM)={w e B: 35 € B: (0,D) € Gr(M}).

The inverse of M is given by
M = {(@,7) : (5,@) € Gr(M))}.

For any two set-valued mappings N and M, and any real number 8, we define
N+ M={@,@+2):(3,®) € Gr(N), (3, 2) € Gr(M)},
M =1{(0, p) : (3, @) € Gr(M)}.

For a mapping A : 8 — B and a set-valued map M : B — 25, we define A + M = {(5,@ + 2) : AD
w, (9,2) € Gr(M)}”, [9].

Definition 1.11. For each i € {1,2,...,p},p > 3, let M : B’ — 28 be a set-valued mapping and nn: BX B —
B,g;: B — B be single-valued mappings . Then M is said to be
(i) pi-strongly n-accretive with g; if there exists fi; > 0 such that

[@i - i, n@,9)] 2 @i llw-o, V@,5,01,..., 011,011, ., 0, € B,
w; € M(v1, ..., vi-1, gi(®), Vis1, .., Un), 0i € M(01, ..., Vi1, §i(D), Vir1, ., Un);
(i1) yj-relaxed n-accretive with g; if there exists y; > 0 such that
[@; =9, n@,9)] = —7;l@-8l2, V&,5,01,...,0j1, 0541, € B,
w; € M(v1, ..., 0j-1, §j(@), Vjs1, .., Un), B} € M(v1, ..., 0j-1, §;(D), Vjs1, .. 0n);

(iii) flhy2f3) .. fp-17p-sSymmetric n-accretive with gy, ga, ..., gp iff for i € {1,3,...,p — 1}, M(..., gi, ...) is fi;-strongly
n-accretive with g; and for j € {2,4, ...,p}, M(..., gj, ...) is yj-relaxed n-accretive with g;, where p is even, satisfying

2 7i < Zﬂi, and 2 yi= Zﬁiiff@b:ﬁ;
j=even i=odd j=even i=odd

(iv) [1Y2[374, .- fp, Vp-1-Symmetric n-accretive with gi,9s, ..., gp iff for i € {1,3,...,p}, M(..., gi, ...) is fi;-strongly
n-accretive with g; and for j € {2,4, ...,p — 1}, M(..., gj, ...) is yj-relaxed n-accretive with g;, where p is odd, satisfying

Y yi<Y moand Y 7= miffo=o.

j=even i=odd j=even i=odd
Definition 1.12. For each i € {1,2,...,p},p > 3, and let set-valued mappings M : 87 — 28, N; : B — 28 and
single-valued mappings H?, K : BF - B,n: Bx B — B, A;: B — B, then K is said to be

(i) aj-strongly n-accretive with N; and HP in the ith-arqument if there exists &; > 0 such that
[K(tf, ) = Ky ), P (Agon, .., Aytoy), HP (A0, .., Apoy))]
> a; |HP (Aywy, ..., Ayw,) — HP (A101, ..., Aoy,
vwl/ w2'-'/ wp/ vl/ 02, s vp € B/ wi € M(wi)/ vi € Nl(vl)/
(ii) li-Lipschitz continuous in the ith-arqument if there exists l; > 0 such that

”(](('01, - Oi-1, w/ 'Ui+1'-~vp) - 7((’011 -, Oi-1, ’5/ vi+1"'vp)|| S li ||’(I) - 5”/ v’("D/ 5/ 01, -+, 0i-1, vi+1"'vp € B
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2. Generalized a;8;-(H?, p)-n-Accretive Mappings

For each i € {1,2,...,p}, p > 3, and let M : B’ — 2% be a set-valued mapping and n: BXx B — B,HF :
B — B, A;,g;i: B— Band ¢ : B — B be single-valued mappings. Now, we introduce and study the new
class of generalized «a;8;-(H?, ¢)-n-accretive mappings.

Definition 2.1. Let p > 3, then M is said to be a generalized a;f-(H, )-n-accretive mapping with mappings
(A1/A2/ cees Ap) and (!]1/ g2, eeey !]p)

(i) iff o Mis i1 P2 {13V 4... flp-1 Vp-sSymmetric n-accretive with gy, gz, ..., gy and (HP (Aq, Az, ..., Ap)+@o M(g1, 92, ., Gp))
(B) =8Bifpisan even number;

(i1) iff po Mis i1 V213V ... p-1 [ip-Symmetric n-accretive with g1, g2, ..., gy and (HP (A1, Az, ..., Ap)+@o M(g1, g2, ..., Gp))
(B) = Bifpis an odd number .

Remark 2.2.

(i) If (@, D) = W~70, then generalized a;f;-(HP ¢)-n-accretive mapping blueuces to a;f-HF(., ., ...)-accretive mapping,
studied by Gupta and Khan [21, 22, 29];

(i) Ifi=1, gi =1, and M(.,.,...) = M(.), then generalized a;f;-(H?, p)-n-accretive mapping blueuces to (H, ¢)-n-
accretive mapping, studied by Luo and Huang [34] and Bhat and Zahoor [9];

(ii)) If i = 1, g; = 1, (i1) = pil, where p > 0, and M(.,.,...) = M(.), then generalized a;B;-(H?, ¢)-n-accretive
mapping blueuces to H-n-accretive mapping, studied by Fang et. al [15],

(iv) Ifi=1, gi = I, (i) = pil, where p > 0, M(.,.,...) = M(.) and n(®, ) = @ — G, then generalized a;p;-(H?, p)-
n-accretive mapping blueuces to H-accretive mapping, studied by Fang and Huang [14],

() Ifi = 1,2, gi =1, and M(,.,...) = M(,.), then generalized a;f;-(H?,p)-n-accretive mapping blueuces to
H(., .)-p-n-accretive mapping, studied by Ahmad and Dilshad [3],

(vi) Ifi = 1,2, p(it) = pil, where p > 0, M(.,.,...) = M(.,.), and n(®, D) = @ — 0, then generalized a;B;-(H?, ¢)-n-
accretive mapping blueuces to generalized af-H(., .)-accretive mapping, studied by Kazmi et. al [28],

(vit) Ifi = 1,2, g; = I, p(i1) = pil, where p > 0, M(., ., ...) = M(.), then generalized a;B;-(H?, p)-n-accretive mapping
blueuces to (H(., .), n)-accretive mapping, studied by Wang and Ding [45],

(viii) If i = 1,2, g; = I, (i) = pii, where p > 0, M(.,.,...) = M(.), and n(®,0) = @ — 7, then generalized
aifj-(HP, p)-n-accretive mapping blueuces to H(., .)-accretive mapping, studied by Zou and Huang [47].

Let us consider the following assumptions M;-Ms to discus some properties of the generalized a;f;-
(HP, p)-n-accretive mappings.
M;: If p even, H? is a1fra3fy...ap-1f,-symmetric n-accretive with Ay, Ay, ..., Ap.
M;: If p odd, H? is a1f2a3fs...fp-1ap-symmetric n-accretive with Ay, Ay, ..., Ap.
M;: If p even, ¢ o Miis fi172(1374...fl,-17p-symmetric n-accretive with g1, g2, ..., gp.
My: If p odd, ¢ o Miis fi172[i374...7p-1flp-Symmetric n-accretive with g1, g2, ..., gp.
Ms: Let 7 is fi-Lipschitz continuous.

Proposition 2.3. Let assumptions My-My be held for every i € {1,2,..p}, p > 3, and let M : B — 2% be a gener-
alized a;B;-(HP, p)-n-accretive mapping with mappings (A1, Az, ..., Ap) and (g1, g2, ..., gp), and Y fi; > Y. y;, Y. a; >

Y. Bi, zf[a? -7, r](u’,v’)] > 0 is satisfied for each (v/, §) € Gr(g o M(g1,92,-..,9p)), % € ¢ o M(g1,92, ..., gp)(1'),
where Gr(¢ o M(g1, 92, ..., gp)) = {(W', %) : X € @ o M(g1, 92, ..., gp) ()}

Proof. Assume that there exists (wy, z) ¢ Gr (¢ o M(g1, 92, ..., gp)) such that

[zo —x, n(wo, u)] > 0, ¥V (u, x) € Gr(p o M(g1,92, .-, 9p))- 3)
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If p is even: Since M is a generalized a;B;-(H?, p)-n-accretive mapping with mappings (A1, A, ..., Ap)
and (g1, 92, ..., gp), then, @ o Mis [1172[1374...flp-17p-sSymmetric n-accretive with mappings g1, 92, ..., g, and
(HP(A1, Az, ..., Ap) + @ o M(g1, 92, ..., 9p))(B) = B, then, there exists (w1, z1) € Gr(p o M(g1, 92, ..., 9p)) such that

HP (Aywy, Aywy, ..., Aywg) + zo = HP (Aywy, Aqwy, ..., Apwr) + 21 € B.
From (3) and (4), we have
zo — z1 = HY (A1wy, Aywy, ..., Aywr) — HP (Aywy, Aywy, ..., Aywg) € B,
[zo - zl,n(wo,wl)] = [HV(Alwl,Azwl, vy Apwr) — HP (Aywy, Ay, ..., Aywy), n(wo,wl)].
Setting (u,x) = (w1,z1) in (3) and using M3 in (4), we obtain
[(f1 + [+ oo+ Ip1) — (P2 + P4 — o + 7)o — wn | < [Zo - Z1,T](wo,w1)]
< —[H”(Alwo,Asz,...,pro) - HP (Aywy, Aywy, ..., Aywr), 1n(wo, wl)]
= —[HP(Arwo, Ay, ., Aywo) = HY (Arwr, Agtw, ., Aytwo), n(wo, w1)|
- [H”(Ale,A2w0, ey Ayig) — HP (Aywo, Agtwy, ..., Aytog), 1)(wo, wl)]

- [Hp(Alwo,Azwo, ey Apwo) — HP (Aywo, Aswy, ..., Apwr), n(w0/w1)]

< —[(CY1 +a3+ ..+ Oép_l) - (ﬁz + ﬁ4 + ..+ ﬁp)]llwo - wl||2.

Then, we have

Y=Y g+ (Y = Y 7)o~ wrl <0

(4)

)

Since ). @; > ). 7j, L a; > ). Bj, it implies that wy = w;. By (3), we have zy = z;. Thus (w1,z1) = (w,,20) €

Gr(p o M(g1,92, ..., gp))- Similarly, we can prove the result when p is odd.

Theorem 2.4. Let assumptions My-My be held for every i € {1,2,...p}, p > 3, and let M : BP — 28 be a generalized
a;fi-(HP, p)-n-accretive mapping with mappings (A1, Ay, ..., Ap) and (g1, 92, ..., gp) and Y ; > Y. 7;, Y ai > Y Bj,

then (HP(A1, Ay, ..., Ap) + @ o M (g1, 92, ...,gp))’1 is single-valued.

Proof. For any given u € B, let x, y € (H'(Ay, Ay, ..., Ap) + @ o M(91, 92, ..., gp))‘l(u). It follows that

—HP(A1x, Azx, ..., Apx) + u € @ o M(g1, 92, ..., gp)X,
—HP(Ary, Azy, ..., Apy) + u € ¢ o M(g1, 92, .., 9p) Y-

If p is even: Since ¢ o Mis [i172[1374...flp-1)p-Symmetric n-accretive with g1, g5, ..., g, we have

(B + [+ oo+ 1 = 72— Pa— o = Pp)llx = yIP
< [ - HP(A1x, Asx, ..., Apx) + u — (=HP(A1y, Azy, ..., Apy) + u), n(x, y)]
= (A1 + {3+ e+ flp1 = 2= Va— . — Pp)lx = yIP

< —[H”(Alx, Axx, ..., Apx) — HP (Ary, Azy, ..., Apy), n(x, y)]
= —[HP(Arx, Agx, .., Apx) - HP (Avy, Aox, .., Apx), n(x, y)|
—[H”(Aly, Axx, ..., Apx) — HP (Ary, Azy, ..., Apx), 1(x, y)]

~[HP(Ary, Azy, .., Apx) = HP(Ary, Avy, .., Apy), 0, )]
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Proceed the same as to obtain (5), we have

[Y =Y g+ (D =) 7))k =ik <o. (6)

Since ). fi; > Y. V;, Y a; > X, Bj, we have |lx — y|| < 0. It implies that x = y. Thus (H?(A1, Ay, ..., Apy) + @ 0
M1, 92, .- g,,))‘1 is single-valued. Similarly, we can prove the result when p is odd.

Definition 2.5. Let assumptions My-Mj be held for p > 3 and M : 87 — 2% be a generalized a;j-(H?, ¢)-1-

accretive mapping with mappings (Ay, A, ..., Ap) and (g1, g2, ..., gp), and Y. fi; > Y. Vi, Y a; > Y. Bj. A proximal-
; : NHP () ; :

point mapping R oMy B — Bis define as

........

RIS () = [H (A1 Az, o Ag) + @ 0 Mg, g2, g (), Y x € B, ?)

Theorem 2.6. Let assumptions Mi-Ms be held for p >3, and let M : B% — 2% be a generalized a;fj-(H, ¢)-
n-accretive mapping with mappings (A1, A, ..., Ap) and (g1, 92, ..., gp) and Y, i; > Y.V, Y.a; > Y. Bj. Then, the
"""" ) : 8 — Bis A-Lipschitz continuous, where

Azh[Zai—Zﬁj+(ZPi_27j)]_l

Proof. Let x, y € 8 and from (7), we have

{ R;HA”/((( )( x) = (HP(A1, Az, ..., Ap) + @ 0o M(g1, 92, ..., )1 (%),

proximal-point mapping R

RIN () = (A, Ao, oy ) + @ 0 M(g1, 02, 901,
It follows that
(= HP (AR 000, A2 R (1)), ey Ap (RIS () € 0 M(RIZSE) (),
(v = HP AR ) AR @), s ApREL D)) € 9 0 MRS (9):
Letx! = R’7W( )(x) and y! = RZJH/IW))(y)

If p is even: Smce ¢ o Mis [i175...[i,-17p-symmetric n-accretive with g1, g2, ..., gp, we have
[ = HP (A1), As (), .o Ap(E)) = (y = HP(Ar (), Aa(W1), - Ap(yM ), 1Y)
2 (1= Y2tz —Pat .+ flp1— )7,,)||x1 - ]/1||2,
[ =y = (H (A1), Ax(x), oy Ay (6) = HY (A1), Ay, s Ay 2, )]
> (‘l_ll + 3 +...+ [jp—l - ()72 +Ys— .t )7,,))”3(1 — y1||2.
We have
= sl nlst ) = = nlst )]
> [H (A1), A (x"), ooy Ap(6) = HP (A1), Ao ("), s Ay,
S(Ea-Lo) -l
e e e R A e |
A(Za- )l -vl
2
Lo+ (Lp- Xl -

[\
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Hence

[=slloetsst) = (L= Koy (L= Ll [
[e=sl#l -vl = [E -+ (Em- Ll

that is,

[Rini 00 - RS ] < -

where A = fi [Z a =Y. i+ (Z -y )/])] . Similarly, we can prove the result when p is odd.

3. Graph Convergence for a;f;-(H?, ¢p)-n-Accretive Mappings

Graph convergence has a significant role in the study of vibrational problems, approximation theory
and optimization problems etc. For a deep study on graph convergence, see Aubin and Frankowska [7],
Rockafellar [39] and Sahu et.al., [41].

Definition 3.1. Let M : B’ — 27 be a set-valued mapping, then graph of M given as:
Gr(M(iiy, iy, ..., ﬂp)) = {((#, tig, .., ﬂp), X" x" € M(iy, i, ..., ﬁp)}
Now, we will discuss the graph convergence of generalized ;3 j-(H? , p)-n-accretive mappings.

Definition 3.2. Forn =0,1,2,...., let M,,, M: B’ — 28 be set-valued mappings such that M, M, are gen-
eralized a;f;-(H?, ¢)-n-accretive mappings with mappings (A1, Ay, ..., Ay) and (g1, 92, ..., gp). Graph conver-
gence of sequence {po M, } to po Mexpressed as po M, S @oM, if for each (g1(x), g2(x), ..., 9, (x)), y) € Gr(po
M(g1, 92, .-, gp)), there exists a sequence

((g1(x0), g2(xn), --s gp(xn))/ yn) € Gr(po Mn(%/ G2y s gp)) such that

g1(xn) = 91(x), g2(x4) = 92(%), ..., gp(xXu) = gp(x), Yy — y asn — oo.

Theorem 3.3. Let us consider the assumptions M1-Ms hold good. Forn =0,1,2, ..., M, M: 8’ — 28 pe gener-
alized o;f;-(HP, @)-n-accretive mappings with mappings (A1, Aa, ..., Ap) and (91,92, ..., gp) and Y fi; > Y. 7;, Y., a; >
Y. Bj. Foreachi€{1,2,..,p}, p > 3, we assume that

(i) H?. is g;-Lipschitz continuous with respect to A;;

(ii) g; is ri-expansive in the ith-argument.

Then ¢ o M, i>(po/\/(ifamlonlyif

nHP(.,....) nHP(.,.,...)
R(p, Moo, )( ) — Rw M )(x), Vx e B,

?’Uhere Rq )( ) (Hp(AllAZ/ /Ap) + (P o Mi’l(gll 92/ cers gp))_l(x)/

.......

RILHL( (@) = (H(A1, Ay, .., Ay) + 9 0 M(g1, 92,9,))7 ().

R’LH”(v-n--)

Proof. From Theorem 2.6, we know that ) and R;’HW("""') are A-Lipschitz continuous.

Mﬂ( /'/"')
If part: Assume that ¢ o M, < (p oM.

Given for any x € B, let z, = Rr’ ), z Rq H

Then [x HFP(A1z,Asz, ..., ,,z)] € (p o M(g1, 92, ...,gp)(z)

(x)
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or [z, [x — HP(A1z, Azz, ..., Apz)]] € Gr(p o M(g1, 92, .-, gp))-
By the definition of Gr(p o M(g1, g2, ..., 9p)), there exists a sequence {g1(2,), 92(24), .-, p(2n), Ju} such that

gl(zn) - !]1(2)/ !]2(Z~n) - gZ(Z)/ weey gp(zn) - gp(z)/ ]?n - [x - Hp(Alz/AZZ/ "'/Apz)] (8)
as n — oo. Since , € ¢ o My (91(24), 92(Z4), -, 9p(Z4)), we have
W(Alzn,Azzn, ...,A,,Zn) + yn € [Hp(Al,Az, ...,Ap) +@o Mn(glrgL ...,g,,)](in).
nHP (..,

Mn -------
Using the A-Lipschitz continuity of R”

Therefore, Z, = R )[H” (Alzn/AZZn/ s ApZn) + Gl

llzn —zll < llzn = Zull + 1120 — 2|

nHP(, 71Hp( P 5 ~ ’
”R‘P M( ,,,,,,, )( ) R _______ [H (Alzn/AZZn/ pzn)+yn]|| + ”Zn -zl
Allx - H7’(AlZn,AzZn,---,ApZn) gull + 1z, —Z||
Alllx = HP(A1z, Ayz, ..., Apz) — Till

+[|H(A1z, A2z, ..., Apz) — HP(ArZy, AZy, ., ApZn)lll + 120 — 2. ©)

IAN A

Using the g;-Lipschitz continuity of H?, we have
IHP(A1z, A2z, ..., Apz) — HP (A1Z4, AoZy, oy ApZn)l < (g1 + G2 + oo + qp)lIZ0 — 2l (10)
Using (9) and (10), we have
lzn = 2l < Alle = HP (A12, Asz, o, Ay2) = Gull + [1+ A1 + 2 + .+ )] 120 = 211 (11)
As g; is ri-expansive, then we have
9iC2) = i@ = 7l — 2l > 0. (12)
We have g(2,) — gi(z) as n — oo. Using (9), (12) and let n — co we get Z, — z and
”[x - HP(A1z, Aoz, ..., Apz) — 37"]|| — 0.
By (11), we have ||z, — z|| = 0 as n — oo, that is,
Ry M0 = R;’;,Hiiz:::;:?.w

1]H (% nHP(.,.,...)
My R, My
M(glr G2,y gp)/ we have Yy E §0 © M(gl/ G2, s gp)

Only if part: Suppose thatR Yu € B, p > 0.Forany given (g1(x), g2(x), ..., gp(x), y) € Gr(po

HP(A1x, Aox, ..., Apx) +y € [HP(A1, Ay, ..., Ap) + @ o M(g1, 92, ..., p)1(X)
Therefore, x = R”HI( =) [H”(Alx Axx, ..., Apx) + y]. Let

nH(..en)

X =R

)[H’”(Alx, Axx, ..., Apx) + y].
Then,

[HP(A1x, Azx, ..., Apx) — HP (A1x, Aoy, .., ApXn) + Y]
€ @ o Mu(g1(x1), 92(xn), -.r Gp(x))-
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Lety, = [HP(A1x, Aox, ..., Apx) — HP(A1xy, ArXy, ..., ApXn) + Y.
Now, we evaluate
llyn = yll = |[H(A1x, Asx, ..., Apx) = HP (A1, A, ..., Apxa) + y] = 9

= [|[H"(A1x, A2X, ..., Apx) — HP (A1 Xy, AoXn, ..., Ap)|
(13)

< (g t+qe+ . +qp) llxs — x|
g llx, — xll, where g = (g1 + g2 + ... +qp). (14)

) for given any u € B, we have |[x, —x|]| - 0. Let n - oo, equation (13) gives

nHP(.,., n,HP(.,.,..
AS RO MG > = Rom

Yn = y. Therefore, p o M, N @ o M. This completes the proof.

Now, we are providing the following consolidated example in support of a;B;-(H?, )-n-accretive map-

nHP(.,.... nHP(.,.,...)
ping, graph convergence of ¢ o M, BN poMandR M” ) R(p M by using MATLAB programming.
-
20f HP (g -
| === RZ’N(_(,,’,,_) ) ’ - |
/””’
’/
’/
15 o
’/
7
,/
//
4
//
10 ’
4
U
/!
4
/
1
-
|
05 )
i
L
I
]
1
’: | I I | L
0o 0 5 10 15 2 2 20
] L L L L L L L L L L L L L L L 1=
(a) oo 02 04 06 08 10 (b) a values

Figure 1: (a) show the graph of R" ) for p =10, where (¢ o M)(z) = & [% - %]

(b) show the convergence of R;’)HNL ) R:;HM as ¢ o My, -5 @ o M for p = 10, where (¢ o M,,)(2) =

(9o M@ =5[%- 3]

2z z 1+n
[@ - E] + =5 and

Example 3.4. Let B be 2-uniformly smooth Banach space and 8 = R. Let p is an even number and A; : R — R for
eachie(l1,2,..,p}, is given by
Al(z) AB(Z) 7 '-/Ap—l(z) = EI
z
AZ(Z) = gl A4(Z) = g/“'l p(Z) = g/

such that the inequality yz + y* + z2 > 1 is satisfied for all y,z € R.
Let gi: R — ]Rfor eachie (1,2, ...,p}, is given by

7(2) = ,%m w%4m=§,
92(2) = 5 94(2) = 7=, gp(2) =
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Let n : RXR — Ris given by n(y,z) = y—z and ¢ : R — R is given by ¢(z) = pz (let p = 1) with
Py +2) = ¢y) + ¢().
Assume that HP : R? — R is defined by

H(A1(2), A2(2), ..., Ap-1(2), Ap(2)) = A1(z) — A2(2) + ... + Ap1(2) — Ap(2).

Assume that set-valued mappings M,, M : RP — 2R are defined by

1+n

Mi(91(2), 92(2), s Gp-1(2), 9p(2)) = 91(2) = 92(2) + ... + gp-1(2) — gp(2) +
M(91(2), 92(2), ., Gp-1(2), 9p(2)) = 91(2) = 92(2) + ... + gp-1(2) — gp(2).

Let for any u,, us, ...u, € R,

[HP (A (), 112,y 1y1) = HP (A4 (2), 1,y 1), 1y, 2)]

= [Ay) - A1), y-7]

3 ZS

A
=lz-% v
S ST P S
= 5 -2y +2"+y2)
1 o Lo 0
> = -2 = 5 lly =P
Thus, H? is 5 -strongly 7- accretive with A;. In the similar way, we can show that H? is 3--strongly 7-

accretive with A; foralli € {1,3,...,p — 1}.
Let for any uy, us, ....up € R,

[HP (a1, Aa(®), - ty1) = HY (11 Ao (@), .., 1), (Y, 7))
— [A2() - Ax@), v 7]

50

L
3 Ly-2)
4 2 4 2
> ——(y—-2P%=—=|ly—z|>
> -2 -2P =3Iy~
Thus, H? is 3-relaxed 1- accretive with As. In the similar way, we can show that H” is 3-relaxed 1- accretive

with A; foralli € {2,4, ..., p}.
Let for any v5,03,...v, € R,

[<P o Mu(g91(y), v2, .., p-1) — 0 My, (91(2) ... Up—l)/ ny, Z)]

= [y Ly ]
= [%‘%' -‘/‘Z]
= % (y -2y

\%

Z—zr =Lty -ap
z =27 =3 lly ="
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Thus, ¢ o M, is 1-strongly n-accretive with g;. In the similar way, we can show that ¢ o M, is 1-strongly

n-accretive with g; foralli € {1,3,...,p — 1}.
Let for any v, 03, ...0, € R,

9 © Mu(01,92(9), - 0p1) = @ © Mu(01, 922, .., 7y 1), 1y, 2)]

= [+ T~ o) - T, 2]
ya
= ~[35-55v-4

1 2
-5 -2

\%

16 216 o
= (-2 = -3 ly =P

Thus, ¢ o M, is 12-relaxed n-accretive with g,. In the similar way, we can show that ¢ o M, is 1¢-relaxed
n-accretive with g; for alli € {2,4, ..., p}.
Similarly, we can show that ¢ o M is 3-strongly n-accretive with g; for all i € {1,2,...,p — 1} and ¢ o M is
%—g-relaxed n-accretive with g; for alli € {2,4, ..., p}.

One can easily verify the following for p = 1:

[Hp(AllAZI -~-1Ap) + §0 © M(gll 92/ weey gp)](lR) =R

Now, we will show that ¢ o M, < @ o M, if for each (91(2), 92(2), ..., 9,(2)), y) € Gr(p o M(g1, 92, .-, gp)),
there exists a sequence

((91(zn), 92(20), s Gp(20), Yn) € Gr(p © Mu(g1, 92, ---, 9p)) such that g1(z,) = 91(2), 92(z0) = 92(2), ..., Gp(20) =
gy(2), y» — y asn — oo, For this, we consider

Zy = (1 + %)z,

91(on) = g5(e) = . = gpa(n) = 2,

92(zn) = 94(zn) = ... = gp(z0) = '12—;, n e N.
Since, lim,, z, = lim,, (1 + %)z = z Thus, we have z, — z as 1 — co.
Now lim g1(z,) — g1(2), lim g3(z4) = 95(2), -..., im gp-1(z) = gp-1(2),
lim g2(24) = g2(2), im ga(24) = ga(2), ..., lim gp(zy) — gp(2).
Since

Yn=@¢o M(gl(zn)/ gZ(zn)/ Y gp(zn))

= (P(gl(zn) —g2(zn) + .+ gp—l(zn) - gp(zn) + Lhs n)

1’13
_(2zn zZy 2z,  zZy ) 1+mn
_(5 57T 5 T15)T T8
p terms
\5 5 5 15 15 7 15/
L terms 5 terms

:[EXZZ,, pxz_n]+1+n

275 2715 m
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Now we compute

P2 P
2

. Y 1+n 2z p_ oz
hyrlnyn—hm[zx—— ] [ ___XE]'
(22 22 ) z z z)
5 5 5 15
L terms 5 terms

(g1(z) +g3(z) + ... + gp_l(z)) — (gz(z) +g4(z) + ... + gp(z)).
= 91(2) — 92(2) + 95(2) = 94(2) + ... + gp-1(2) — 9p(2).

= poM@z)=
Therefore, 1, — y asn — oo and hence, ¢ o M, — @ o M. Next, we will show that RZ)HM o RZH/’:/(‘(_ : ))
aspoM, R @ o M. The proximal-point mappings for p = 1, are given by
HP (e _ 1+n %
RN (@) = [ (A Az, o ) + 0 © Mg, 02, 9] (@) = 3(2 = —7

RV\@) = [HY (A, Ag, oy Ay) + @ 0 M(g1, 2, )] (2) = 328

We evaluate ||R"H( )( x)—R ”HV( ))(z)“ = ”3 (z 1*") — 3z3||, which shows that

@, Ma(s
“RqHP( ) _Rn,HV ....... nH’( ....... ) _)Rr],HV( .......

@, Mu(pepenr) @, M(.p.)e..

aS(p0M —>q00/V(

4. Set-valued Variational-like Inclusions

Let 8B be a 2-uniformly smooth Banach space. For each i € {1,2,..,p}, p > 3, let H", K : B’ — B,
n:8x8B — B,and A;, ¢, g; : B — B be single-valued mappings, N; : 8 — 28 be set-valued mappings. Let
M : B — 28 be a generalized (H?, ¢)--accretive mapping with mappings (A1, A, ..., Ap) and (91, g2, ..., p)-

Now, the problem is to find ¥ € B, ii; € N1(X), iz € N2(%), ..., il, € N,(¥) such that

© € K(in, iz, .., ) + M(g1 (%), 2(D), ., Gy (). (15)

Problem (15) is called the set-valued variational-like inclusions (SVLIP, in short).

Special cases:

() ¥ K (i, o, ..., Uy) = K1, 12), n(ih, tl2) = i1 — il and M(g1(%), g2(X), ..., 9,(%)) = M(g1(%), g2(%)), then SVLIP
(15) blueuced to find ¥ € B, ii; € N1(X), il € N2(%) such that

O e 7((17[1, ﬁz) + M(gl (5(), gz(f)) (16)

(i) If g1 = g2 = 9, N1 = N2 = N, (i, fip) = il — il and M(.,.) = M(.), then problem (16) blueuced to find
X € B, il € M(X) such that

® € i + M(g(x)). 17)
Problem (17) studied by Huang [26] when M is m-accretive mapping.
(iii) If K(it1, ip) = K (%), niiy, fix) = @iy — ii; and N is single-valued mapping, then problem (16) blueuced to
find ¥ € B such that

0 e K(&) + M(%). (18)

Problem (18) studied by Zou and Huang [47] when M is H(.,.)-accretive mapping. For generalized m-
accretive mapping, Problem (18) studied by Bi et al. [11].
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Definition 4.1. A set-valued mapping N : 8 — CB(8) is said to be D-Lipschitz continuous with C > 0, if
DING,NZ) < Cllg -2, Y7, 2€ 8.

Lemma 4.2. Let us consider SVLIP (15) with mapping ¢ : B — B such that (7 + W) = @(0) + @(D) and Ker(p) =
{0}, where Ker(p) = {0 € B: @(0) = 0}. If (&, iy, 2, ..., 1ly), where & € B, iy € N1(X), il € Na(%), ..., I, € Np(X) is
a solution of SVLIP (15) if and only if (%, i1, ila, ..., 1) satisfies the following relation:

%= R(’L’f&?’/’”/:’; [H (A1, As, ..., Ap)(E) = @ 0 K(ily, i, .., ). (19)

Proof. Let (%, 1y, 1y, ..., l,) be a solution of SVLIP (15), then (%, iy, il, ..., I,) satisfy the following condition

~ _ nHP(.,.,..
X =R
oM.,

) HP (A1, Ag, .y A)(E) = 0 K, T, ., )] (20)
% = [HP (A1, Az, oy Ap) + @ 0 M(g1, G2, ..y )] [HP (A1, As, ..., Ap)(E) — ¢ 0 K (i1, Tl ..., 11))]

& [HP (A1, Az, ..., Ap)(E) — @ 0 K (i1, Tl ..., Tl)] € [HP (A1, Az, ..., Ap)(E) — @ 0 M(g1, G2, ) §p)X]

© 0€ @o(K(iy, iy, ..., ily) + @ o M(g1(%), g2(X), ..., gp(X))

& 0 € @ o [K(il, ila, ..., ly) + M(g1(%), 92(%), ..., gp(X))]

& ¢ H0) € Klit, ily, ..., i) + M(g1(%), g2(%), .., gp(%))

© 0O € K(iy, iy, ..., i) + M(g1(%), g2(X), ..., gp(%)).

Now, we establish the result in context of uniqueness for the solution of SVLIP (15).

Theorem 4.3. Let SVLIP (15) hold in assumptions Mi-Ms with mapping ¢ : 8 — B such that (7 + @) =
(D) + (@) and Ker(p) = {0}, where Ker(p) = {0 € B: @(@) = 0}, and M, M : 8% — 25 be generalized aifj-
(H?, p)-n-accretive mappings with 3. fi; > Y. V;, Y. &; >}, p;. Foreachi € {1,2,...,p}, we assume the following:

(i) N is Ci-D-Lipschitz continuous;

(ii) HP is g;-Lipschitz continuous with A;;

(iii) ¢ o K is a;-strongly n-accretive with g; and HP (A1, Az, .., Ap) in the ith-argument;

(iv) @ o K is Aj-Lipschitz continuous in ith-argument;

(v) in addition, the following condition

ANG?—2aq? +cA? <1 (21)

-1
is satisfied, where A = [Z a =Y. B+ (Z gi— Y )7]-)] )

Then, the general nonlinear operator equation (15) based on generalized ;3 i-(H? , p)-n-accretive mapping frame-
work has a unique solution (&%, 4, #?, .., ) in B.

Proof. Let us consider the mapping 7 : 8 — 8, given by

T (@) = RV o)

e [H(AF', AR, . AR - p o K@@, i, .., @)|, ¥ &, 0, @, .., i € B. (22)

Using (22) and Theorem 3.3, we have

ITE) =T @ = IRV [HY (A, Ay ey A)ED) = @ 0 K@, 2, ., )]

—RVN) H (AL, Agy o AT = 0 K@, T, )

< AlIHP(A1, Ay, ..., Ap)E) — p o K@, 172, ..., )
—(HV (A1, Az, .., A) (") — @ o K@, 7, .., 7))l (23)
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By Lemma 1.6, we have
IH (A1, Ag, ...y Ap)(E) = @ 0 K (@', 2, ..., i)
_(Hp(AllAzl /Ap)(yl) - §0 o 7<‘(511 52/ eeey 5}7))”2
< IHP (A1, Ag, ..., Ap)E') = HP (A1, Ag, ., Ap)(TIP

“2[p o K@, ,..,#) - p o K(@',8,..., ),

n(Hp(Al/ AZ/ ceer Ap)(jzl)/ Hp(AerZI rAp)(gl)):I

+llp o K(ii*, i, ..., i) — ¢ o K (3,7, ..., 7). (24)

By using g;-Lipschitz continuity of H”, we have

IHP (A1, Ay, .., Ap)(E") — H (A1, As, ...y Ap) ()
< ||IHP(Ar%', AoR, ..., ApRY)) — HP (A1), ArY, ..., Al
HIHP (A1, AR, ..., ApEY) = HP(Ar Y, Arift, . AT

+||HP(A1]?1/A2]71/ weey Arlfl) - Hp(AlgllAZglr eeey Apgl)“
<1+ g2+ .+ gp)liR -7

= qlla?1 - y1||, where q = (q1 + Q2 + ... + qp)- (25)

Now, we compute the following:

[(p o 7((17[1, 17[2, veey ﬁp) —@o (]((51, 52, ceey 5”)/ n(Hp(A1/A2/ "'/Ap)(jl)al(Aer2/ s AP)(yl))]
= [(p oK@', d?, ..., ") — po K@, i?, ..., "),
NH (Ar, Ay, .., A)E), HF (Ar, Ay, .., A7)
+[(p o K@, i, ..., ") — p o K@, 3, ..., i),
NHP (A, As, .., A)E), HP (Ar, As, .., A)(T)]

o K@, P, ... #) - 9o K (&, ..., ),
NH (A1, Ay, . Ap)E), H (Av, Ay, ., Ap) ()]

> @1||HP (A1, Az, ...y Ap)(F) — HP (A1, As, ooy Ap)(TY)IP
+a||[HP (A1, A, ..., Ap)(RY) — HP (A1, Ag, ..., Ap) DI

+ay||[HY (A1, Ay, .., Ap)(R') — H (A1, Ag, ..., Ap) GDIP
> (0_(1 +ay+ ...+ 0_(p)||Hp(A1,A2, ’Ap)(fl) _ HP(Al’A2, IAp)(yl))HZ
>(@+ay+...+ 0_(;,)(171 +q+..+ qp)2||3~c1 _ g1”2

=ag’|lx' - 7|7, where @ = @y + @ + ... + a@,. (26)
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By using the A;-Lipschitz continuity of ¢ o K and (;-D-Lipschitz continuity of N;, we have

lp o K@@', i, ..., ") — p o K(@", 0, ..., )|
<l o K(@', 2, ..., #) — @ o K@, i, ..., il")||
+lp o K@, i, ..., i) — @ o K(&, 7, ..., ilP)||

+lp o K@, 2, ..., 0") — p o K@, 7°, ..., )|
< Mlliit = 3 + Al = Pl + ... + Al — & |ll
< MDNIEY, N1(@Y) + DN, Na (7)) + ... + A DINL(E), Np(7))

(27)
< (MG + A2l + o+ A5 ) IIE = 71
= Al = #'ll, where 1 = A1Gy + A0 + oo + 4,0 (28)
Using equation (24)-(28) in equation (23), we have
1
17 (=) = T@I < Alg* + A% - 2ag?]"llx* = .
Let
I77(&1) - Tl < HlI' - 71|, where £ = A[g? + cA? — 2a¢?]". (29)

We have, A 1/¢? — 2ag* + cA? < 1. From condition (21), we have 0 < E. < 1, so (29) implies that

_ pH ()
T = R;, M) [HP(Al,Az, o Ap) =@ o 7(]

is a contraction mapping and has a unique fixed point #! in 8. Hence ¥! is a unique solution of SVLIP (15).
fB=I72< P < oo, then Theorem 4.3 blueuces to the following result:

Corollary 4.4. Let SVLIP (15) hold in assumptions My-Ms with mapping ¢ : LP — L7 such that o0 + @) =
@(B) + (@) and Ker(p) = {0}, where Ker(p) = {5 € LP : @(8) = 0}, and M, M : LP? — 2" be generalized a;f;-
(H?, )-n-accretive mappings with Y, g; > ¥, 7j, Y. &; > Y., B;. Foreachi € {1,2,...,p}, we assume the following:

(i) N is Ci-D-Lipschitz continuous;

(ii) H? is g;-Lipschitz continuous with A;;

(iii) ¢ o K is a;-strongly n-accretive with g; and HP(Aq, Az, .., Ap) in the ith-argument;

(iv) @ o K is Aj-Lipschitz continuous in ith-argument;

(v) in addition, condition A \/qz —2aq? + (p — 1)A2 < 1 is satisfied, where p — 1 is the constant of smoothness and
-1
A=[Lai-Lpi+(Zm-L7)] -

Then, the general nonlinear operator equation (15) based on generalized ;3 i-(H? , p)-n-accretive mapping frame-
work has a unique solution (%%, 4,12, .., @) in LP.

Now, we construct the following iterative algorithm for finding the approximate solution of SGVLI (15):
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Algorithm 4.5. For any given %} € B, select i} € N1(%}), 13 € Na(X}), ..., i), € Ny(}) and obtain {%}}, {1L}, {i2},...,

{iih}, by the following iterative algorithm

2., = Rl’j;((f,‘_"":)) [H (A1, As, ..., A))(EL) — @ 0 K(iIh, 22, ..., )],
T e M) s Tk, - Bl < [1+ ——=| DN, M),
e No(B) s 12—l < [ 14— | DIN(EL,), Na(Eh)),

n+l

e N < 1, = < [1+ — | DN AT,

n=0,1,2,...and D(.,.) is the Hausdorff metric on CB(8B).
Now, we establish the convergence result for the solution of SVLIP (15).

Theorem 4.6. Let SVLIP (15) hold in assumptions Mi-Ms with mapping ¢ : B — B such that (0 + @) =
@(0) + (@) and Ker(p) = {0}, where Ker(p) = {6 € B: @(®) = 0}, and M,, M : BP — 2% be generalized aif-
(H?, )-n-accretive mappings with Y, @; > Y. 7;, Y. &; > Y. B;. Foreachi € {1,2,...,p}, we assume the following:

(i) N; is Ci-D-Lipschitz continuous;

(ii) H? is g;-Lipschitz continuous with A;;

(iii) @ o K is a;-strongly n-accretive with g; and HP (A1, Ay, .., Ap) in the ith-argument;

(iv) @ o K is Ai-Lipschitz continuous in ith-argument;

(v) in addition, the following condition

AN —2ag? +cA2 < 1 (30)

is satisfied, where A = [Z a =Y. B+ (Z gi— Y 77]-)]71 .
Then iterative sequences ({L}, {iik}, {13}, ..., {it,}) developed by Algorithm 4.5 converge strongly to (¥, @', 12, .., iiP)
a solution of SVLIP (15).

Proof. Now, we prove that ¥, — &' as n — 0. Infact, it follows from Theorem 3.3 and Algorithm 4.5 that

~ ~ JHP( e ~ ~1 ~ ~
I,y = 2 = RIS [HP (A, As, . AL = @ 0 K(EL, 2, ., 0,)]

.......

< ||R$7\:(n'€’,'_;f_) [HP (A1, Ay, ..oy Ap)EL) — @ 0 KL, B2, .., 05)]

—R;';ji:g_:_{) [H (A1, As, ..., A))EY) — @ o K@, i, .., ")

HIRVS ) THY (Av, Ag, oy AR = @ 0 K@ i, ., )]

RV IH (A, Az, oy A)E) = @ 0 K@, @, .., )] (31)
By Theorem 3.3, we have
RZ;%‘E:‘_?_)[HP(Al,AZ, w AYED = @ o K (i, 7, ..., i) —

Rl’f&i’_’l'_:‘"_))[Hf’(Al,Az, W ANE) = @ o K@, i, ..., )], (32)
Let
O = IRV THV (A1, Az, o AR = @ 0 KT, 0, ., )]

—Rgfj:‘(-_;;j; [H'(A1, Ay, ..., A))EY) — @ o K@, i, ..., )] — O. (33)
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In the light of equations (22)-(25), one can obtain

IRY S HP (AL, Ag,y ey A)E) = @ 0 Ky 7, oy )]
—Rllﬂ( ) [HY(Ay, Ay, .. A)E) — @ 0 K(@L, 12, .., )]l < Bl — 71, (34)

2

= 1
where 1, = A\/q2 —2aq* + cA? (1 + E) .

Using (32)-(34) in (31), we get

||anrl - = L,J|&! - #!|| + 0, whereL = A NG —2a9% + cA2. (35)

From (30), we have

ANG? = 2aq? + cA? < 1.

Thus, we have lim,,t, —» £ with 0 < L < 1, and from (33) lim,,c 6, — 0. From Lemma 1.9,
limy, e ¥, — %'. By D-Lipschitz continuity of Ni, N, ..., N, and Algorithm 4.5, we have

~ L oot aecs
I} =7l < [1+ —= | D) M) <1+ —=] Gl - B,

~ 1 oot ace
12, =7l < [1+ | DOl Mo < [1+ =] Gl - 2,

W7, -l < [1+—]1><Np<fn+l> N < [1+ —= |Gl - 5L

It shows that {ii}}, {#2}, ..., {il,,} are Cauchy sequences, then there exists ii!,i?, ...ii" such that i1}, — ', 72 —
i2,..., i, — P, as n — co. Now, we show that ii' € N;(%!). Since ii} € N1(¥'), we have

i*, ..., i,
d@@', Ni(xY) < lla' — |l + d(ii,, N1 (%))
<lla" — |l + DN1(x;), N1 (&)
<lla' =l + Gli%, — 2.

Since Ni(#!) is closed, thus @i’ € Nl(fcl) Similarly, we can prove i? € No(&),1° € S3(x1), ..., P € Np(x'). By

continuity of H?, A;, ¢ o K, and R” )), we know that (&1, 4, #%, ..., ii") is satisfying the following relation:

= RV H“ [H”(Al,Az, Ap)(xl) — oK', i, ..., 7).
By Theorem 4.3, SVLIP (15) have a solution @&, at, a2, ..., ).

If B=17, 2 < < oo, then Theorem 4.6 blueuces to the following result:

Corollary 4.7. Let SVLIP (15) hold in assumptions My-Ms with mapping ¢ : LP — LP such that (0 + @) =
(@) + (@) and Ker(p) = {0}, where Ker(p) = (& € L7 : (@) = 0}, and M,, M : I’ — 2V be generalized
a;pi-HP (., ., ...)-accretive mappings with Y. fi; > Y. V;, Ya; > Y. pj. For each i € {1,2,...,p}, we assume the
following:

(i) N is Ci-D-Lipschitz continuous;

(ii) HP is g;-Lipschitz continuous with A;;

(iii) @ o K is a;-strongly n-accretive with g; and HP(Aq, Ay, .., Ap) in the ith-argument;

(iv) @ o K is Ai-Lipschitz continuous in ith-argument;
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(v) in addition, condition A \/qz —2aq? + (p — 1)A2 < 1 is satisfied, where p — 1 is the constant of smoothness and
-1
A= [Zai—ZﬁjJr(ZFli—Z?j)] .

Then iterative sequences ({1}, {iik}, {13}, ...., {il,}) developed by Algorithm 4.5 converge strongly to (¥, @', 12, .., iiP)
a solution of SVLIP (15).

5. Conclusions

This article is a discussion on generalized «a;;-(H?, ¢)-n-accretive mappings which consist of (H(.,.), )-
accretive mappings, the generalized af-H(., .)-accretive mappings, H(., .)-accretive mappings, etc. as special
cases. Since variational inclusions, generalized «a;B;-(H?, p)-n-accretive mappings, and proximal-point
mappings have applications in physics, economics and management sciences, we consideblue and studied
a SVLIP (15) including a generalized a;B;-(H, p)-n-accretive mapping. We also discussed the uniqueness
and existence of solution of SVVLIP (15) in 2-uniformly smooth Banach spaces. The results that are obtained
for the proximal-point mapping inline with the generalized «a;f;-(H?, ¢)-n-accretive mappings conferblue in
this article can be continued in future to the Yosida inclusion problems in the setting of semi-inner product
spaces.

Acknowledgment: The authors would like to thank the referees for their valuable comments and sugges-
tions, which improved the original version of the manuscript.
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