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Abstract. In the present paper, we introduce and study the pseudo semi-Browder essential spectra of
bounded linear operators in a Banach space. We start by defining the pseudo semi-Browder operators and
we prove the stability of these operators under commuting Riesz operator perturbations. Then, we apply
the obtained results to study the stability of the pseudo semi-Browder essential spectra. We show as well
the relation between the pseudo semi-Browder spectrum of the sum of two bounded linear operators and
the pseudo semi-Browder spectrum of each of these operators. As an application, we study the pseudo
semi-Browder spectra of 2 × 2 block operator matrices.

1. Introduction

In the literature, there are several applications in science and engineering that are based on eigenvalues
problems. The main two object of interest when dealing with such applications are, to extract (determine)
and localize the eigenvalues. Due to the insufficiency of the classical spectral analysis to achieve both aims,
given that the latter approach can determine but cannot localize the eigenvalues in question, researchers
resorted to another tools, namely the concept of pseudo spectrum that was first introduced by Varah [15].
As a matter of fact, this technic has been relayed on in more than one occasion (see [7, 9, 10, 14]) and in
many different fields of mathematical physics. For instance, it was used in engineering (e.g. electrical),
where the eigenvalues may determine the accuracy of power system at the national level or the frequency
response of an amplifier. Also, in aeronautics, where the eigenvalues may determine if the flow is laminar
or turbulent over a plane wing. In ecology, the eigenvalues may determine if a food web will settle into
a steady equilibrium. At last, in chemistry, the eigenvalues may determine the states of energy in stable
hydrogen atom.

Throughout this paper, let X be a Banach spaces and let C(X) be the set of all closed densely defined linear
operators from X. We denote byL(X) the space of all bounded linear operators from X into X and byK (X)
the subspace of compact operators from X into X. For A ∈ C(X), we write D(T) for the domain, N(A) ⊂ X
for the null space and R(A) ⊂ X for the range of A. The nullity, α(A), of A is defined as the dimension of
N(A) and the deficiency, β(A), of A is defined as the codimension of R(A) in X. Let σ(A) (resp. ρ(A) ) denote
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the spectrum (resp. the resolvent set) of A. The definition of pseudo spectrum of a closed densely linear
operator A for every ε > 0 is given by:

σε(A) := σ(A) ∪
{
λ ∈ C :

∥∥∥(λ − A)−1
∥∥∥ > 1

ε

}
. (1)

By convention, we write
∥∥∥(λ − A)−1

∥∥∥ = ∞ if (λ−A)−1 is unbounded or nonexistent, i.e., if λ is in the spectrum
σ(A). In [7], Davies defined another equivalent of the pseudo spectrum, one that is in terms of perturbations
of the spectrum. In fact for A ∈ C(X), we have that

σε(A) :=
⋃
∥D∥<ε

σ(A +D). (2)

An operator A ∈ L(X) is called upper(resp. lower) semi Fredholm operator if the range R(A) is closed and
α(A) < ∞

(
resp. β(A) < ∞

)
.We denote byΦ+(X) (resp. Φ−(X)) the set of upper (resp. lower) semi-Fredholm

operators. A is called semi-Fredholm if it is lower or upper semi Fredholm operator and it is called Fredholm
operator if it is upper and lower semi Fredholm operator. We denote respectively by Φ±(X) and Φ(X) the
set of semi Fredholm and Fredholm operator. Then we have

Φ±(X) = Φ+(X) ∪Φ−(X) and Φ(X) = Φ+(X) ∩Φ−(X).

If A is a semi-Fredholm operator, then the index of A is defined by i(A) = α(A) − β(A). Clearly, if A ∈ Φ(X)
then i(A) < ∞. If A ∈ Φ+(X)\Φ(X) then i(A) = −∞ and if A ∈ Φ−(X)\Φ(X) then i(A) = +∞. Let R ∈ L(X),R is
said to be a Riesz operator if ΦR(X) = C\{0} and we denote by R(X) the set of Riesz operators. Recall that
for A ∈ L(X), the ascent, a(A), and the descent, d(A), are defined by

a(A) = inf
{
n ≥ 0 : N (An) = N

(
An+1

)}
, d(A) = inf

{
n ≥ 0 : R (An) = R

(
An+1

)}
.

If no such n exists, then a(A) = ∞ (resp. d(A) = ∞ ). An operator A is called upper semi-Browder if
A ∈ Φ+(X), i(A) ≤ 0 and a(A) < ∞ and A is called lower semi-Browder if A ∈ Φ−(X), i(A) ≥ 0 and d(A) < ∞.
Let B+(X) (resp. B−(X)) denote the set of upper (resp. lower) semi-Browder operators. An operator in a
Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder and we denoted
by B±(X) the set of semi-Browder operator. An operator A ∈ L(X) is called Browder if it is both upper
semi-Browder and lower semi-Browder, that is, A ∈ Φ(X), i(A) = 0, a(A) < ∞ and d(A) < ∞. Let B(X) and
B±(X) be respectively the sets of Browder and semi-Brower operators, then we have that,

B(X) = B+(X) ∩ B−(X) and B±(X) = B+(X) ∪ B−(X).

The corresponding spectra of an operator A ∈ L(X) are defined as follows:

σB+ (A) := {λ ∈ C : A − λ < B+(X)} -the upper semi-Browder essential spectrum ,

σB− (A) := {λ ∈ C : A − λ < B−(X)} -the lower semi-Browder essential spectrum ,

σB± (A) := {λ ∈ C : A − λ < B±(X)} -the semi-Browder essential spectrum ,

σB(A) := {λ ∈ C : A − λ < B(X)} -the Browder essential spectrum.

For further information on the family of Fredholm operator and Browder operator we refer the reader to
[11, 13].

Rakoc̆ević in [12] characterized the Browder essential spectrum for A ∈ L(X) by the following equality:

σB4(A) =
⋂

K∈K (X),
AK=KA

σ(A + K). (3)
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Inspired by the notion of pseudospectra, Ammar and Jeribi in their works [3–5], aimed to extend these results
for the essential pseudo-spectra of bounded linear operators on a Banach space and give the definitions
of pseudo-Fredholm operator as follows: for A ∈ L(X) and for all D ∈ L(X) such that ∥D∥ < ε we have
A is called a pseudo-upper (resp. lower) semi-Fredholm operator if A + D is an upper (resp. lower)
semi-Fredholm operator and it is called a pseudo semi-Fredholm operator if A + D is a semi-Fredholm
operator. A is called a pseudo-Fredholm operator if A+D is a Fredholm operator. They are noted by Φε(X)
the set of pseudo-Fredholm operators, by Φε

±
(X) the set of pseudo-semi-Fredholm operator and by Φε+(X)

(resp. Φε
−

(X)) the set of pseudo-upper semi-Fredholm (resp. lower semi-Fredholm) operator. A complex
number λ is in Φε

±A, Φε
+A, Φε

−A or ΦεA if λ −A is in Φε
±

(X), Φε+(X), Φε
−

(X) or Φε(X). Let the following essential
pseudospectra:

σe1,ε(A) :=
{
λ ∈ C such that λ − A < Φε+(X)

}
= C\Φε+A,

σe2,ε(A) :=
{
λ ∈ C such that λ − A < Φε−(X)

}
= C\Φε

−A,

σe3,ε(A) :=
{
λ ∈ C such that λ − A < Φε±(X)

}
= C\Φε

±A,

σe4,ε(A) := {λ ∈ C such that λ − A < Φε(X)} = C\ΦεA,

σe5,ε(A) :=
⋂

K∈K (X)

σε(A + K).

F. Abdmouleh et al. defined in [2] the notion of pseudo Browder essential spectrum for densely closed
linear operators in the Banach space as follows:

σB,ε(A) = σB(A) ∪
{
λ ∈ C : ∥RB(λ,A)∥ >

1
ε

}
,

where RB(λ,A) =
(
(λ − A)|Kλ

)−1
(I − Pλ)+Pλ, being Pλ the Riesz projection, Kλ a kernel of Pλ and Rλ a range

of Pλ. By convention, we write ∥RB(λ,A)∥ = ∞ if RB(λ,T) is unbounded or nonexistent, i.e., if λ is in the
spectrum σB(A).Also in [2], the authors characterized the pseudo Browder essential spectrum for bounded
linear operator in Banach space by

σB,ε(A) =
⋃
∥D∥<ε,

AD=DA

σB(A +D). (4)

This notions of pseudospectra and the essential pseudospectra is an interesting subject by itself since
these pseudospectra carry more information than spectra, especially about the transient instead of just
the asymptotic behaviour of dynamical systems. Also, they have better convergence and approximation
properties than spectra. These include the existence of approximate eigenvalues far from the spectrum, the
instability of the spectrum even under small perturbations. The analysis of pseudospectra and essential
pseudospectra has been performed in order to determine and localize the spectrum of operators, hence
leading to many applications of the pseudospectra.

F. Abdmouleh and B. Elgabeur in [2] defined the concept of pseudo left (right)-Fredholm and pseudo
left(right)-Browder operator, as well as their spectra in Banach spaces. These spectra are called the pseudo
left (right)-Fredholm spectra, and pseudo left (right)-Browder essential spectra, and they are denoted as
follows:

σBl,ε(A) :=
{
λ ∈ C such that λ − A < Bεl (X)

}
,

σBr,ε(A) :=
{
λ ∈ C such that λ − A < Bεr (X)

}
,

σel,ε(A) :=
{
λ ∈ C such that λ − A < Φεl (X)

}
,

σer,ε(A) :=
{
λ ∈ C such that λ − A < Φεr (X)

}
,

where, Bεl (X) (resp. Bεr (X)
)

the set of left (resp. right)-pseudo Browder operators and we denote by Φεl (X)
(resp. Φεr (X)

)
the set of left (resp. right)-pseudo Fredholm operators.

In this paper, motivated by the works done in [1–5], we will continue by introducing new essential
pseudospectra for bounded linear operators in Banach space . We study the pseudo-semi Browder operator
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and the pseudo-semi Browder spectra for bounded linear operators in Banach space. Our aim is, to give
some properties of the pseudo semi-Browder spectra. We start by showing the stability of pseudo semi-
Browder spectra under Riesz operator perturbations in Banach space. One of the basic questions consists
in, characterizing the relation between the pseudo semi-Browder spectra of the sum of two bounded linear
operators and the pseudo semi-Browder spectrum of each of these operators. In the last section of the paper
we shall apply the results described above to study the pseudo essential spectra of 2 × 2 block operator
matrices in Banach space.

The paper is organized as follows. In Section 2, we give the definitions and the properties of the pseudo
semi-Browder operators and the pseudo semi-Browder spectra of bounded linear operators in Banach space
and we move on to study the stability of these spectra under commuting Riesz operator perturbations. In
section 3, we show the relation between the pseudo semi-Browder spectra of the sum of two bounded linear
operators and the pseudo semi-Browder spectrum of each of these operators. Finally in section 4, as an
application we study the pseudo semi-Browder spectra of 2 × 2 block operator matrix.

2. Pseudo semi-Browder spectra

We start this section by giving the necessary definitions of the pseudo semi-Browder operators and their
corresponding spectra.

Definition 2.1. Let ε > 0 and A ∈ L(X).

(i) A is called a pseudo-upper (resp. lower) semi-Browder operator if A+D is an upper (resp. lower) semi-Browder
operator for all D ∈ L(X) such that ∥D∥ < ε and AD = DA.

(ii) A is called a pseudo-semi-Browder operator if A + D is a semi-Browder operator for all D ∈ L(X) such that
∥D∥ < ε and AD = DA.

(iii) A is called a pseudo-Browder operator if A +D is a Browder operator for all D ∈ L(X) such that ∥D∥ < ε and
AD = DA.

We denote by Bε(X) the set of pseudo-Browder operators, by Bε
±

(X) the set of pseudo semi-Browder
operators and by Bε+(X) (resp. Bε

−
(X)

)
the sets of pseudo-upper semi-Browder (resp. lower semi-Browder)

operators. A complex number λ is in Bε
±A, Bε

+A,B
ε
−A or BεA if λ − A is in Bε

±
(X),Bε+(X),Bε

−
(X) or Bε(X). In

this paper, we are concerned with the following pseudo semi-Browder essential spectra.

Definition 2.2. Let ε > 0 and A ∈ L(X), we define the following sets:

- Pseudo upper semi-Browder essential spectrum, σB1,ε(A) :=
{
λ ∈ C such that λ − A < Bε+(X)

}
= C\Bε

+A

- Pseudo lower semi-Browder essential spectrum, σB2,ε(A) :=
{
λ ∈ C such that λ − A < Bε

−
(X)

}
= C\Bε

−A

- Pseudo semi-Browder essential spectrum, σB3,ε(A) :=
{
λ ∈ C such that λ − A < Bε

±
(X)

}
= C\Bε

±A

- Pseudo Browder essential spectrum, σB4,ε(A) := {λ ∈ C such that λ − A < Bε(X)} = C\BεA
- Essential pseudo Browder spectrum. σε,e(A) :=

⋂
K∈K (X),
AK=KA

σε(A + K).

Note that if ε tends to 0,we recover the usual definition of the semi-Browder essential spectra of a bounded
linear operator A.

Proposition 2.3. Let A ∈ L(X) and consider i ∈ {1, . . . , 4}.

(1) σBi,ε(A) ⊂ σε(A).

(2)
⋂
ε>0

σBi,ε(A) = σBi(A).
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(3) If ε1 < ε2 then σBi,ε1 (A) ⊂ σBi,ε2 (A).

(4) Both pseudo semi-Browder essential and the pseudo Browder essential spectra can be ordered as follows

σB3,ε(A) = σB1,ε(A) ∩ σB2,ε(A) ⊆ σB4,ε(A) = σB1,ε(A) ∪ σB2,ε(A).

.

Proof. (1) For i ∈ {1, 2} and by Definition 2.2 we have that

σB1,ε(A) =
⋃
∥D∥<ε,

AD=DA

σB1(A +D) and σB2,ε(A) =
⋃
∥D∥<ε,

AD=DA

σB2(A +D).

Since σB1(A +D) ⊂ σB4(A +D) and σB2(A +D) ⊂ σB4(A +D) and using [1] we get

σB1,ε(A) ⊂
⋃
∥D∥<ε,

AD=DA

σB4(A +D) ⊂ σε(A) and σB2,ε(A) ⊂
⋃
∥D∥<ε,

AD=DA

σB4(A +D) ⊂ σε(A).

With the same raison for (i = 3, 4).

(2) For i ∈ {1, . . . , 4}we have that⋂
ε>0

σBi,ε(A) =
⋂
ε>0

⋃
∥D∥<ε,

AD=DA

σBi(A +D) = σBi(A).

(3) If ε1 < ε2, then for all i ∈ {1, . . . , 4}, we have that⋃
∥D∥<ε1,

AD=DA

σBi(A +D) ⊂
⋃
∥D∥<ε2,

AD=DA

σBi(A +D).

(4) For all D ∈ L(X) such that ∥D∥ < ε and AD = DA, we have

σB3(A +D) = σB1(A +D) ∩ σB2(A +D) and σB4(A +D) = σB1(A +D) ∪ σB2(A +D).

Then

σB3,ε(A) =
⋃
∥D∥<ε,

AD=DA

σB3(A +D) =
⋃
∥D∥<ε,

AD=DA

σB1(A +D) ∩ σB2(A +D)

=
⋃
∥D∥<ε,

AD=DA

σB1(A +D)
⋂ ⋃

∥D∥<ε,
AD=DA

σB2(A +D)

= σB1,ε(A) ∩ σB2,ε(A).

σB4,ε(A) =
⋃
∥D∥<ε,

AD=DA

σB4(A +D) =
⋃
∥D∥<ε,

AD=DA

σB1(A +D) ∪ σB2(A +D)

=
⋃
∥D∥<ε,

AD=DA

σB1(A +D)
⋃ ⋃

∥D∥<ε,
AD=DA

σB2(A +D).

= σB1,ε(A) ∪ σB2,ε(A).



F. Abdmouleh, B. Elgabeur / Filomat 37:19 (2023), 6373–6386 6378

Proposition 2.4. Let A ∈ L(X) and ε > 0, then the following hold:

(i) σε,e(A) ⊂ σε(A).

(ii)
⋂
ε>0 σε,e(A) = σB4(A).

(iii) If ε1 < ε2 then σB(A) ⊂ σε1,e(A) ⊂ σε2,e(A).

(iv) σε,e(A + K) = σε,e(A) for all K ∈ K(X) satisfying AK = KA.

Proof. (i) Let λ ∈ σε,e(A) then, λ ∈ σε(A + K) for all K ∈ K(X) and AK = KA.
By choosing K = 0, one obtains λ ∈ σε(A).

(ii) Indeed one has: ⋂
ε>0

σε,e(A) =
⋂

K∈K (X),
AK=KA

σ(A + K) = σB4(A).

(iii) Let λ ∈ σB4(A), then by Equation 3, we obtain λ ∈ σ(A + K) for all K ∈ K (X) and AK = KA.
Since σ(A + K) ⊂ σε(A + K), then λ ∈ σε(A + K) for all K ∈ K (X) and KA = AK. Hence we get

λ ∈
⋂

K∈K (X),
AK=KA

σε(A + K) = σε,e(A).

If ε1 < ε2 then σε1 (A + K) ⊂ σε2 (A + K) for all K ∈ K (X) and KA = AK.
Therefore, ⋂

K∈K (X),
AK=KA

σε1 (A + K) ⊂
⋂

K∈K (X),
AK=KA

σε2 (A + K).

(iv) σε,e(A + K) =
⋂

K′∈K (X),
(A+K)K′=K′(A+K)

σε1 (A + K + K′).

Let us choose K1 = K + K′, we have that K1 ∈ K (X) and AK1 = A(K + K′) = AK + AK′ = KA + K′A =
(K + K′)A = K1A. We infer that

σε,e(A + K) =
⋂

K1∈K (X),
A+K1=K1A

σε1 (A + K1) = σε,e(A).

In the following theorem we present the relation between the essential pseudo Browder spectrum and
the pseudo essential Browder spectra for bounded linear operator A in the Banach space X.

In the following theorem we present the relation between the essential pseudo Browder spectrum and the
pseudo essential Browder spectra for bounded linear operator A in the Banach space X.

Theorem 2.5. Let A ∈ L(X) and ε > 0. Then

(1) σε,e(A) ⊂ σB4,ε(A).

(2) σB4,ε(A) ⊂ σε,e(A).
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Proof. (1) Let λ ∈ σε,e(A), then λ ∈
⋂

K∈K (X),
AK=KA

σε(A + K). We obtain that

λ ∈ σε(A + K) ∀K ∈ K (X), AK = KA.

By Equation (1), we have that λ ∈ σ(A + K) ∪
{
λ ∈ C such that

∥∥∥(A + K − λI)−1
∥∥∥ > 1

ε

}
.

So there are two possible cases:

• Case 1: If λ ∈ σ(A + K) for all K ∈ K (X) and AK = KA. Then

λ ∈
⋂

K∈K (X),
AK=KA

σ(A + K) = σB4(A) ⊂ σB4,ε(A).

• Case 2: If λ ∈ σε,e(A) and λ < σ(A + K). Then we have

∥(A + K − λI)−1
∥ >

1
ε
, ∀K ∈ K (X),AK = KA. (5)

We infer there exist a nonzero vector f ∈ X such that ∥(A + K − λI)∥ ≤ ε∥ f ∥. Let ψ ∈ X∗ such that
∥ψ∥ = 1 andψ( f ) = 1.Let us define the rank one operator D : X −→ X by D1 = −ψ(1) (A + K − λ) f .
We see immediately that ∥D∥ < ε and AD = DA. Furthermore (A + D + K − λ) f = 0, then
(A +D + K − λ) is not invertible. Therefore

λ ∈
⋃
∥D∥<ε,

AD=DA

σB4(A +D) = σB4,ε(A).

(2) Let λ ∈ σB,ε(A), then by Equation (4) there are two cases:

• Case 1: Let λ ∈ σB4,ε(A) and λ ∈ σB4(A) we have that

λ ∈ σB4(A) =
⋂

K∈K (X),
AK=KA

σ(A + K) ⊂
⋂

K∈K (X),
AK=KA

σε(A + K).

In this case we obtain
σB4,ε(A) ⊂ σε,e(A).

• Case 2: Let λ ∈ σB4,ε(A) and λ < σB4(A) then we have that λ ∈
{
λ ∈ C, ∥RB(A, λ)∥ >

1
ε

}
. Suppose

that λ <
{
λ ∈ C, ∥(A + K − λI)−1

∥ >
1
ε

}
, then we obtain that ∥(A + K − λI)−1

∥ ≤
1
ε
. The operator

A − λ can read as follows:

A − λ = (A + K − λ)
(
I − (A + K − λ)−1K

)
.

The fact that,
∥∥∥(A + K − λ)−1K

∥∥∥ ≤ ∥(A + K − λ)−1
∥∥K∥ < 1 implies that I − (A + K − λ)−1K is an

invertible operator and

(A − λ)−1 =
(
I − (A + K − λ)−1K

)−1
(A + K − λ)−1.

However, KA = AK, then

(I − (A + K − λ)−1 K)−1 =

+∞∑
n=0

(
(−1)(A + K − λ)−1

)n
Kn.
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Then
∥∥∥∥(I + (A + K − λ)−1K

)−1∥∥∥∥ < ε
ε + ∥K∥

. Consequently

∥∥∥(A − λ)−1
∥∥∥ ≤ ε∥(A + K − λ)−1

∥

ε + ∥K∥
≤

1
ε
.

Finally, we obtain that

λ <
{
λ ∈ C such that ∥RB(A, λ)∥ >

1
ε

}
. (6)

Since λ < σB4(A) then by Equation (6) we deduce that λ < σB4,ε(A).

3. Stability of the Pseudo Essential Spectrum

Now, once the spectra are determined, we are able to study the stability of pseudo semi-Browder spectra
by Riesz operator perturbations satisfying some assumptions.

Theorem 3.1. Let A ∈ L(X) and ε > 0 then we have ,that

(i) If R ∈ R(X) and AR = RA, then for all D ∈ L(X) such that ∥D∥ < ε and DR = RD we have

σBi,ε(A) = σB,ε(A + R), i ∈ {1, . . . , 4}.

(ii) If K ∈ K (X) and AK = KA, then for all D ∈ L(X) such that ∥D∥ < ε and DK = KD we have

σBi,ε(A) = σBi,ε(A + K), i ∈ {1, . . . , 4}.

Proof. (i) We start by proving σB1,ε(A + R) ⊂ σB1,ε(A). Let λ < σB1,ε(A) then λ − A ∈ Bε+(X) we infer that

λ − (A +D) ∈ B+(X) ∀∥D∥ < ε and AD = DA.

Since (A +D)R = R(A +D), Rakoc̆ ević [12] which ensure that

λ − (A + R +D) ∈ B+(X), ∀∥D∥ < ε and (A + R)D = D(A + R).

we get λ < σB1,ε(A + R). A similar raison we obtain σB1,ε(A + R) ⊂ σB1,ε(A).

We prove know σB2,ε(A + R) ⊂ σB2,ε(A). let λ < σB2,ε(A) then λ − A ∈ Bε
−

(X), we obtain that

λ − (A +D) ∈ B−(X), ∀∥D∥ < ε and AD = DA.

Since (A +D)R = R(A +D) then by Rakoc̆ević [12] we have that

λ − (A + R +D) ∈ B−(X) ∀∥D∥ < ε and (A + R)D = D(A + R).

we get λ < σB2,ε(A + R). A similar raison, we show that σB2,ε(A + R) ⊂ σB2,ε(A).

We deduce from Proposition 2.3 (4) that

σB3,ε(A + R) = σB1,ε(A + R) ∪ σB2,ε(A + R) = σB1,ε(A) ∪ σB2,ε(A) = σB3,ε(A),

and
σB4,ε(A + R) = σB1,ε(A + R) ∩ σB2,ε(A + R) = σB1,ε(A) ∩ σB2,ε(A) = σB4,ε(A).

(ii) SinceK (X) ⊂ R(X) and using (i), we obtain the result.
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In the following theorem, we examine the stability of the essential pseudo spectrum under Riesz operator
perturbations.

Theorem 3.2. Let ε > 0,A ∈ L(X) and R ∈ R(X) such that R(A+K) = (A+K)R for all K ∈ K (X). If ∥R∥ < ε then
there exist ε0, ε1 such that 0 < ε0 < ε < ε1 satisfying

σε0,e(A + R) ⊂ σε,e(A) ⊂ σε1,e(A + R).

Proof. Let λ ∈ σε,e(A) =
⋂

K∈K (X),
AK=KA

σε(A + K). If λ ∈ σ(A + K), for all K ∈ K (X) and AK = KA, then

λ ∈
⋂

K∈K (X),
AK=KA

σ(A + K) = σB4(A).

First, we prove that there exists ε0 such that 0 < ε0 < ε and σε0,e(A + R) ⊂ σε,e(A). For that let λ <{
λ ∈ C, such that ∥(A + K − λI)−1

∥ >
1
ε
, ∀K ∈ K (X)

}
, so ∥(A + K − λI)−1

∥ ≤
1
ε
.

By writing A + K + λ in the form

A + K + R − λ = (A + K − λ)
(
I + (A + K − λ)−1R

)
,

and due to the fact that ∥(A + K − λI)−1R∥ ≤ ∥(A + K − λI)−1
∥∥R∥ < 1, one gets that

(
I + (A + K − λ)−1R

)
is an

invertible operator and its inverse is written as follows:

(A + K + R − λ)−1 =
(
I + (A + K − λ)−1R

)−1
(A + K − λ)−1.

Using the fact that R(A + K) = (A + K)R, we have that

(
I + (A + K − λ)−1R

)−1
=

+∞∑
n=0

(
(−1)(A + K − λ)−1

)n
.

Which implies that

(A + K + R − λ)−1 =

+∞∑
n=0

(
(−1)(A + K − λ)−1

)n
Rn.

Since ∥∥∥∥(I + (A + K − λ)−1R
)−1∥∥∥∥ ≤ ε

ε − ∥R∥
,

this shows that
∥∥∥(A + K + R − λ)−1

∥∥∥ ≤ ∥∥∥(A + K − λ)−1
∥∥∥ ε

ε − ∥R∥
. Consequently, we infer that

∥∥∥(A + K + R − λ)−1
∥∥∥ ≤ 1

ε − ∥R∥
.

By taking ε0 = ε − ∥R∥ then 0 < ε0 < ε and λ < σε0,e(A + R), we conclude that, there exists ε0 such that
0 < ε0 < ε and

σε0,e(A + R) ⊆ σε,e(A).

Hence we prove that there exists ε1 such that 0 < ε < ε1 and σε,e(A) ⊂ σε1,e(A + R). Let ε1 = ε + ∥R∥, then for
λ <

{
λ ∈ C,

∥∥∥(A + K + R)−1
∥∥∥ > 1

ε1

}
implies

∥∥∥(A + K + R)−1
∥∥∥ ≤ ε−1

1 . By writing A + K − λ in the following form

A + K − λ = (A + K + R − λ)
(
I − (A + K + R − λ)−1R

)
, (7)
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and by the fact that,
∥∥∥(A + K + R − λ)−1R

∥∥∥ < 1 one gets that I − (A + K + R − λ)−1R is an invertible operator
and using Equation (7) we obtain,

(A + K − λ)−1 =
(
I − (A + K + R − λ)−1R

)−1
(A + K + R − λ)−1.

However, (R + K)A = A(R + K), then
∥∥∥∥(I + (A + K + R − λ)−1R

)−1∥∥∥∥ < ε1

ε1 − ∥R∥
. Consequently

∥∥∥(A + K − λ)−1
∥∥∥ ≤ 1

ε
.

Then one can conclude that, there exists ε1 such that 0 < ε < ε1 satisfying

σε,e(A + R) ⊆ σε1,e(A).

4. Pseudo semi-Browder spectra of the sum of two operators

This section devoted to the study of the pseudo semi-Browder spectra of the sum of two bounded linear
operators by exhibiting its relation with the pseudo semi-Browder spectrum of each of these operator.

Theorem 4.1. Let A, B and D three operators in L(X) such that AB = BA, AD = DA and A(B + D) ∈ R(X) and
let ε > 0. Then

σB1,ε(A + B)\{0} =
[
σB1(A) ∪ σB1,ε(B)

]
\{0}.

Proof. For λ ∈ C, we can write

(λ − A)(λ − B −D) = A(B +D) + λ(λ − A − B −D), (8)

and

(λ − B −D)(λ − A) = (B +D)A + λ(λ − A − B −D). (9)

Suppose that λ , 0 such that λ < σB1(A) ∪ σB1,ε(B) then (λ − A) ∈ B1(X) and (λ − B) ∈ Bε+(X), hence

(λ − A) ∈ B+(X) and (λ − B −D) ∈ B+(X), ∀∥D∥ < ε, BD = DB. (10)

Since A(B +D) = (B +D)A, then

(λ − A) (λ − B −D) = (λ − B −D) (λ − A) . (11)

By Equations (10), (11) and [ [8], Theorem7.9.2, page 276 ], we obtain that

(λ − A)(λ − B −D) ∈ B+(X), ∀∥D∥ < ε and BD = DB.

So, applying Equation (8), we deduce that

A(B +D) + λ(λ − A − B −D) ∈ B+(X). (12)

Since AB = BA, AD = DA and BD = DB, then

A(B +D)(λ − A − B −D) = (λ − A − B −D)A(B +D). (13)

We have A(B +D) ∈ R(X) then by Rakoc̆ević [12] and Equations (12), (13), we obtain that

λ − A − B −D ∈ B+(X) ∀D ∈ L(X) with ∥D∥ < ε and (A + B)D = D(A + B).



F. Abdmouleh, B. Elgabeur / Filomat 37:19 (2023), 6373–6386 6383

By Definition 2.1, we obtain that λ < σB1,ε(A + B)\{0}. Therefore

σB1,ε(A + B)\{0} ⊂
[
σB1(A) ∪ σB1,ε(B)

]
\{0}.

Conversely, let λ < σB1,ε(A + B)\{0}, then (λ − A − B) ∈ Bε+(X) and by Definition 2.1 we obtain that

(λ − A − B −D) ∈ B+(X) ∀D ∈ L(X) with ∥D∥ < ε and (λ − A − B)D = D(λ − A − B).

Since A(B +D) ∈ R(X) and (B +D)A ∈ R(X) then by using Rakoc̆ević [12] and Equation (13) we obtain that

A(B +D) + λ(λ − A − B −D) ∈ B+(X) and (B +D)A + λ(λ − A − B −D) ∈ B+(X).

Using Equations (8) and (9) we get

(λ − A)(λ − B −D) ∈ B+(X) and (λ − B −D)(λ − A) ∈ B+(X).

By Equations (11) and [ [8], Theorem 7.9.2, page 276], we obtain that

λ − A ∈ B+(X) and (λ − B −D) ∈ B+(X), ∀D ∈ L(X) with ∥D∥ < ε, (λ − B)D = D(λ − B).

Hence λ <
[
σB1(A) ∪ σB1,ε(B)

]
\{0}. Therefore

σB1,ε(A + B)\{0} =
[
σB1(A) ∪ σB1,ε(B)

]
\{0}.

Theorem 4.2. Let A, B and D three operators in L(X) such that AB = BA, AD = DA and A(B + D) ∈ R(X) and
let ε > 0. Then

σB2,ε(A + B)\{0} =
[
σB2(A) ∪ σB2,ε(B)

]
\{0}.

Proof. Suppose that λ , 0 such that λ < σB− (A) ∪ σB2,ε(B). Then (λ − A) ∈ B−(X) and (λ − B) ∈ Bϵ
−

(X), hence
(λ − A) ∈ B−(X) and (λ − B − D) ∈ B−(X) for all ∥D∥ < ε and BD = DB. As a consequence we get that
Equations (11) and

[
[8], Theorem 7.9.2, page 276

]
, yields

(λ − A)(λ − B −D) ∈ B−(X).

Using Equation (8) we obtain A(B+D)+λ(λ−A−B−D) ∈ B−(X). Since A(B+D) ∈ R(X) then, by Equation
(13) and Rakoc̆ević [12] we obtain that

λ − A − B −D ∈ B−(X) ∀D ∈ L(X) with ∥D∥ < ε and (A + B)D = D(A + B),

Applying Definition 2.1, we get that λ < σB2,ε(A + B)\{0}. Therefore

σB2,ε(A + B)\{0} ⊂
[
σB2(A) ∪ σB2,ε(B)

]
\{0}.

To prove the inverse, let λ < σB2,ε(A + B)\{0}, then (λ −A − B) ∈ Bε
−

(X). We deduce from Definition 2.1, that

(λ − A − B −D) ∈ B−(X) ∀D ∈ L(X) with ∥D∥ < ε and (A + B)D = D(A + B).

Since A(B +D) ∈ R(X) and (B +D)A ∈ R(X), it follows from Rakoc̆ević [12] and Equation (13) that

A(B +D) + λ(λ − A − B −D) ∈ B−(X) and (B +D)A + λ(λ − A − B −D) ∈ B−(X).

We can apply Equations (8) and (9) we infer that

(λ − A)(λ − B −D) ∈ B−(X) and (λ − B −D)(λ − A) ∈ B−(X).

Due to Equation (11) and
[

[8], Theorem 7.9.2, page 276
]
, we obtain that

λ − A ∈ B−(X) and (λ − B −D) ∈ B−(X) ∀D ∈ L(X) with ∥D∥ < ε and (λ − B)D = D(λ − B).

Then we have λ <
[
σB1(A) ∪ σB2,ε(B)

]
\{0}. Therefore

σB2,ε(A + B)\{0} =
[
σB2(A) ∪ σB2,ε(B)

]
\{0}.
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We derive from the previous results the following Corollary.

Corollary 4.3. Let A, B and D three operators in L(X) such that AB = BA, AD = DA and A(B +D) ∈ R(X) and
let ε > 0. Then

(i) σB3,ε(A + B)\{0} =
[
(σB3(A) ∪ σB3,ε(B)) ∪ (σB1(A) ∩ σB2,ε(B)) ∪ (σB2(A)∩ σB1,ε(B)

)]
\{0}.

(ii) σB4,ε(A + B)\{0} =
[
σB4(A) ∪ σB4,ε(B)

]
\{0}.

Proof. (i) Let A ∈ L(X), then by Proposition 2.3 one gets

σB3(A) = σB1(A) ∩ σB2(A) and σB3,ε(A) = σB1,ε(A) ∩ σB2,ε(A).

So from Proposition 2.3, we deduce that

σB3(A + B) = σB1(A + B) ∩ σB2(A + B) and σB3,ε(A + B) = σB1,ε(A + B) ∩ σB2,ε(A + B). (14)

The proof is concluded by using Theorem(4.1), Theorem(4.2) and Equation (14).

(ii) Applying Proposition 2.3, one gets

σB4(A + B) = σB1(A + B) ∪ σB2(A + B) and σB4,ε(A + B) = σB1,ε(A + B) ∪ σB2,ε(A + B). (15)

The proof is concluded by using Theorem(4.1), Theorem(4.2) and Equation (15).

5. Application to block operator matrices

The purpose of this section is to apply the main result of sections and to study the semi pseudo Browder
spectra of 2 × 2 block operator matrices

Theorem 5.1. Let X1 and X2 be two Banach spaces and consider the 2×2 block operator matrix defined on X1×X2 by

MC :=
(

A C
0 B

)
where A ∈ L (X1) ,B ∈ L (X2) ,C ∈ L (X1,X2) and let T =

(
T1 0
0 T2

)
where Ti ∈ L (Xi) , i = 1, 2. If AT1 =

T1A, AT2 = T2A and CT2 = T1C then

(i) σBi,ε (MC) ⊂ σBi,ε(A) ∪ σBi,ε(B), i = 1, 2, 4.

(ii) σB3,ε (MC) ⊂
[(
σB3,ε(A) ∪ σB3,ε(B)

)
∪

(
σB1,ε(A) ∩ σB2,ε(B)

)
∪

(
σB1,ε(B) ∩ σB2,ε(A)

)]
.

Proof. (i) The expression λ −MC − T can read as follows:

λ −MC − T =
(

I 0
0 λ − B − T2

) (
I −C
0 I

) (
λ − A − T1 0

0 I

)
. (16)

If λ < σB1,ε(A) ∪ σB1,ε(B)
(
resp. σB2,ε(A) ∪ σB2,ε(B)

)
then λ − A ∈ Bε+ (X1)

(
resp. Bε

−
(X1)

)
and λ − B ∈

B
ε
+ (X2)

(
resp. Bε

−
(X2)

)
Since ∥T∥ < ε and AT1 = T1A and AT2 = T2A then ∥T1∥ < ε and ∥T2∥ < ε, so

λ − A − T1 ∈ B+(X)
(
resp. Bε

−
(X1)

)
and λ − B − T2 ∈ B+(X)

(
resp. Bε

−
(X1)

)
. Using [[16], Theorem 2.7 ],

we infer that (
λ − A − T1 0

0 I

)
∈ B+ (X1 × X2)

(
resp. B−(X1 × X2)

)
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and (
I 0
0 λ − B − T2

)
∈ B+ (X1 × X2)

(
resp. B−(X1 × X2)

)
Since

(
I C
0 I

)
is invertible, then by Equation(16) we obtain that

λ −MC − T ∈ B+(X1)
(
resp. B−(X1)

)
, ∀ ∥T∥ < ε and MCT = TMC.

Thus λ −MC ∈ B
ε
+ (X1 × X2)

(
resp. Bε

−
(X1 × X2)

)
. Hence

σB1,ε (MC) ⊂ σB1,ε(A) ∪ σB1,ε(B) and σB2,ε (MC) ⊂ σB2,ε(A) ∪ σB2,ε(B). (17)

Using the same approach for σB4,ε (MC) and σB4,ε (MC), we obtain the following result

σB4,ε (MC) ⊂ σB4,ε(A) ∪ σB4,ε(B).

(ii) We have σB3,ε (MC) = σB1,ε (MC) ∩ σB2,ε (MC) and by Equation (17) we obtain that

σB3,ε (MC) ⊂
[(
σB3,ε(A) ∪ σB3,ε(B)

)
∪

(
σB1,ε(A) ∩ σB2,ε(B)

)
∪

(
σB1,ε(B) ∩ σB2,ε(A)

)]
.

Theorem 5.2. Let X1 and X2 be two Banach spaces and consider the 2 × 2 block operator matrix defined on X1 ×X2
by

L :=
(

A B
C D

)
,

where A ∈ L (X1) ,B ∈ L (X2,X1) ,C ∈ L (X1,X2) and D ∈ L (X2). Let T =
(

T1 0
0 T2

)
where Ti ∈ L (Xi) and

∥T∥ < ε. If


CB ∈ B (X2)
C (A + T1) ∈ B (X1,X2)
AT1 = T1A, CT1 = T2C
BT2 = T2B, DT2 = T2D

Then

(i) σBi,ε(L)\{0} ⊆
[
σBi,ε(A) ∪ σBi,ε(D)

]
\{0}, i = 1, 2, 4.

(ii) σB3,ε(L)\{0} ⊆
[(
σB3,ε(A) ∪ σB3,ε(D)

)
∪

(
σB1,ε(A) ∩ σB2,ε(D)

)
∪

(
σB1,ε(D) ∩ σB2,ε(A)

)]
.

Proof. (i) For λ ∈ C\{0}, we can write (λ − L − T) in the following form

(λ − L − T) =
1
λ

(
0 0

−C (A + T1) −CB

)
+

(
I 0
−

C
λ I

) (
λ − A − T1 −B

0 λ −D − T2

)
. (18)

Let λ < σB1,ε(A) ∪ σB1,ε(D)
(
resp. σB2,ε(A) ∪ σB2,ε(D)

)
, Using [[16], Theorem 2.7 ], we obtain(

λ − A − T1 B
0 λ −D − T2

)
∈ B+ (X1 × X2)

(
resp. B− (X1 × X2)

)
.

Since
(

I 0
−

C
λ I

)
is invertible then we obtain that

(
I 0
−

C
λ I

) (
λ − A − T1 B

0 λ −D − T2

)
∈ B (X1 × X2) (19)
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Since CB ∈ B+ (X2)
(
resp. B−(X2)

)
and C (A + T1) ∈ B+ (X1 × X2)

(
resp. B− (X1 × X2)

)
, then one gets

that (
0 0

−C (A + T1) −CB

)
∈ B+ (X1 × X2) (rep. B− (X1 × X2)) (20)

Applying Equations (18), (19) and (20) we obtain that

(λ − L − T) ∈ B+(X)
(
resp. B−(X)

)
∀ ∥T∥ < ε and TL = LT.

Definition 2.2 states that λ < σB1,ε(L)
(
resp. σB2,ε(L)

)
.

The proof for i = 4 follows the same approach of that used for i = 1, 2.

(ii) For i = 3, it suffice to show that σB3,ε(L) = σB1,ε(L) ∩ σB2,ε(L), the proof is afterwards concluded using
(i).
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