
Filomat 37:19 (2023), 6387–6394
https://doi.org/10.2298/FIL2319387D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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bDepartment of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Abstract. We consider the existence of limits lim
n→∞

aqn and lim
n→∞

aqn , where a is an arbitrary element of a

complex Banach algebra with the unit, and q is an integer, q ≥ 2.

1. Introduction

If B is a complex square matrix, it is useful to know conditions that imply the existence of the limit
lim
n→∞

Bn (see [3], [14]). Koliha extended these results for Banach space operators [9] and elements in Banach
algebras [10]. If a is an element of a Banach algebra, then (an)n is a power sequence. In this article we will
consider special subsequences of the power sequence and thus extend some results from [3] to complex
unital Banach algebras. Precisely, we will determine the equivalent conditions for the convergence of the
sequences (aqn)n and (aqn

)n, where q ∈N and q ≥ 2. Our results extend the well-known results of Koliha [9],
[10], and Chen and Hartwig [3].

Let A be a complex Banach algebra with the unit 1. We use A−1, A•, ANil and AqNil, respectively, to
denote the set of all invertible, idempotent, nilpotent, and quasinilpotent elements inA. If a ∈ A, let σ(a),
r(a), comm(a) and comm2(a), respectively, denote the spectrum, spectral radius, commutant, and double
commutant of a.

If p ∈ A•, then pAp is a Banach subalgebra ofAwith the unit p. If ap = pa, then σpAp(ap) is the spectrum
of ap in the Banach algebra pAp.

If S ⊂ C, then we use acc S and iso S, respectively, for the set of all points of accumulation and the set of
all isolated points of S.

If a ∈ A and λ < acc σ(a), then aπ,λ is the spectral projection of a corresponding to the spectral set {λ}.
Obviously, aπ,λ = 0 if and only if λ < σ(a). If 0 < acc σ(a), then it is common to write aπ ≡ aπ,0.

Let a ∈ A. The element ad
∈ A is the generalized Drazin inverse of a, if the following hold:

aad = ada, adaad = ad, a(aad
− 1) ∈ AqNil.
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If the generalized Drazin inverse ad of a exists, then it is unique and the notation is justified.
It is well-known that for given a ∈ A there exists ad

∈ A if and only if 0 < acc σ(a). In this case a(1 − aπ)
is invertible in the algebra (1 − aπ)A(1 − aπ), and aaπ is quasinilpotent in the algebra aπAaπ. The ordinary
inverse of a(1 − aπ) in (1 − aπ)A(1 − aπ) is the generalized Drazin inverse of a in A. The relation between
the generalized Drazin inverse ad and the spectral idempotent aπ is given by aπ = 1 − aad. The element ad

can be obtained by the analytic functional calculus. Take f (z) = 0 for z around {0}, and take f (z) = 1/z for z
around σ(a) \ {0}. Then f is analytic in a neighborhood of σ(a) and f (a) = ad. Thus, we have ad

∈ comm2(a).
A

d is the usual notation for the set of all generalized Drazin invertible elements inA. Obviously,A−1
⊂ A

d

and if a ∈ A−1 then ad = a−1. Also,AqNil
⊂ A

d and if a ∈ AqNil then ad = 0. The last statement follows from
the uniqueness of the generalized Drazin inverse in the case when it exists.

From ANil
⊂ A

qNil we see that a(aad
− 1) ∈ ANil is stronger condition then a(aad

− 1) ∈ AqNil. For given
a ∈ A, the element aD is the Drazin inverse of a, if the following hold:

aaD = aDa, aDaaD = aD, an+1aD = an for some n ∈N0.

The Drazin inverse aD of a is unique in the case when it exists. The smallest n in previous definition is the
Drazin index of a, and it is denoted by ind(a). The set of all Drazin invertible elements inA is denoted by
A

D. Thus,AD
⊂ A

d and if a ∈ AD then aD = ad. Obviously, ind(a) = 0 if and only if a ∈ A−1 and in this case
a−1 = aD.

If a ∈ A and ind(a) ≤ 1, then the Drazin inverse of a is known as the group inverse of a, denoted by a#.
In this case a# is the unique element inA that satisfies conditions:

aa#a = a, a#aa# = a#, aa# = a#a.

The set of all group invertible elements inA is denoted byA#.
If a ∈ Ad, then ind(a) ≤ 1 if and only if aaπ = 0. Also,AqNil

∩A
# = {0}.

Further results about the Drazin and group inverse, as well as spectral idempotents, can be found in
[4–7, 10].

Recall that the mapping x 7→ σ(x) is upper semi-continuous in every element a ∈ A, i.e. for every
a ∈ A and all ϵ > 0 there exists δ > 0, such that for all x ∈ A if ∥x − a∥ < δ then σ(x) ⊂ σ(a) + D(0; ϵ).
Here D(0; ϵ) = {z ∈ C : |z| < ϵ}. Moreover, if a commutes with every x ∈ A then the mapping x 7→ σ(x) is
continuous in a, i.e. for all ϵ > 0 there exists δ > 0, such that for all x ∈ A if ∥x−a∥ < δ, then σ(x) ⊂ σ(a)+D(0, ϵ)
and σ(a) ⊂ σ(x) +D(0, ϵ).

The paper is organized as follows. Section 2 contains mostly known results. Sometimes we offer a
different proof, which is simpler than the original one. In Section 3, we consider certain subsequences of
the basic power sequence. We give necessary and sufficient conditions such that lim

n→∞
aqn = d exists, where

q is an integer q ≥ 2, and give the explicit form of d. The final result of this limit has the same form as the
one obtained by Chen and Hartwig. Naturally, we use a different method to prove it. In this section we
also consider the existence and the form of the limit lim

n→∞
aqn

for the same q. The final form of this limit is
not established by Chen and Hartwig, so this is its first appearance in any structure that allows the Drazin
inverse. Again, a different approach is used in order to prove the main result of this paper.

2. Auxiliary results

In this section we present auxiliary results. We start with elementary complex limit results, which are
originally proved by Chen and Hartwig.

Lemma 2.1. ([3], pages 211-212) Let z ∈ C, |z| = 1, and q ∈ N, q ≥ 2. Then lim
n→∞

zqn
= 1 if and only if zqK

= 1 for
some K ∈N.

Proof. We suggest the original proof of Chen and Hartwig.
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Lemma 2.2. ([3], pages 212-213) Let z ∈ C, |z| = 1, and q ∈N, q ≥ 2. Then lim
n→∞

zqn exists if and only if z(q−1)qK
= 1

for some K ∈N.

Proof. We offer a more direct proof than the one in [3]. Let lim
n→∞

zqn
= w, so we get |w| = 1. Then

wq =
(

lim
n→∞

zqn
)q
= lim

n→∞
zqn+1

= w, implying that wq = w. Thus, wq−1 = 1. We conclude that lim
n→∞

z(q−1)qn
= 1.

From Lemma 2.1 we get that z(q−1)qK
= 1 for some K ∈N.

The following characterization of the generalized Drazin invertibility is proved by Koliha.

Theorem 2.3. ([7]) Let a ∈ A. Then the following statements are equivalent:
(1) 0 < acc σ(a).
(2) There exists some p ∈ A• ∩ comm(a) such that ap ∈ AqNil and a + p ∈ A−1.
Moreover, if (1) or (2) holds, then p = aπ.

We prove the following small observation, which is actually the justification of notations.

Lemma 2.4. Let a ∈ A and λ < acc σ(a). Then aπ,λ = (a − λ)π.

Proof. Since λ < acc σ(a), then 0 < acc σ(a − λ). There exists r0 > 0 such that if r ∈ (0, r0) then the graph γ∗ of
the circle γ(t) = reit, t ∈ [0, 2π], surrounds 0 and it does not surround any other point from σ(a − λ) \ {0}.

Let Γ(t) = λ + reit, t ∈ [0, 2π]. Then Γ∗ surrounds λ and it does not surround any other point from
σ(a) \ {λ}. We have

aπ,λ =
1

2πi

∫
Γ

(µ − a)−1dµ =
1

2πi

∫ 2π

0

(
λ + reit

− a
)−1

reiti dt

=
1

2πi

∫ 2π

0

(
reit
− (a − λ)

)−1
reiti dt =

1
2πi

∫
γ

(
µ − (a − λ)

)−1 dµ

= (a − λ)π

Remark 2.5. Note that, if λ < acc σ(a), then (a − λ)π = (λ − a)π. Indeed, since (−x)d = (−1)xd, then (a − λ)π =
1 − (a − λ)(a − λ)d = 1 − (λ − a)(λ − a)d = (λ − a)π.

If a ∈ A and λ ∈ iso σ(a), A1 = aπ,λAaπ,λ and A2 = (1 − aπ,λ)A(1 − aπ,λ), then σA1 (aaπ,λ) = {λ} and
σA2
(
a(1 − aπ,λ)

)
= σ(a) \ {λ}.

We prove the following interesting result, which is obviously a local generalization of the Gelfand-Mazur
theorem.

Lemma 2.6. Let a ∈ A, λ ∈ C, σ(a) = {λ} and ind(λ − a) ≤ 1. Then a = λ1.

Proof. Since σ(a) = {λ}, we get a − λ ∈ AqNil
∩A

#. By the uniqueness of the generalized Drazin inverse, we
have (a − λ)# = 0, so a − λ = 0.

The following result is classical and easy to verify.

Theorem 2.7. If a ∈ A, then the following statements are equivalent:
(1) lim

n→∞
an = 0.

(2)
∞∑

n=1
an is norm-convergent inA.

(3) r(a) < 1.
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We are interested in a more general situation.

The element a ∈ A is convergent, if lim
n→∞

an exists [9]. The set of all convergent elements inA is denoted
byAcon.

The following result is proved by Koliha. For the completeness we give a more direct proof here.

Theorem 2.8. ([10], [12]) If a ∈ A, then the following statements are equivalent:
(1) a ∈ Acon.
(2) σ(a) \ {1} ⊂ D(0; 1) and ind(1 − a) ≤ 1.
Moreover, if (1) or (2) holds, then lim

n→∞
an = (1 − a)π.

Proof. (1) =⇒ (2): Let p = lim
n→∞

an. We immediately get p = p2, ap = pa = p and (1 − a)p = 0.

Let λ ∈ σ(a). From the continuity of the spectrum (in this commutative case) and from σ(p) ⊂ {0, 1},
we conclude that lim

n→∞
λn = 0 or lim

n→∞
λn = 1. If lim

n→∞
λn = 0, then |λ| < 1. If lim

n→∞
λn = 1, then |λ| = 1 and

consequently λ = 1. Thus, σ(a) \ {1} ⊂ D(0; 1).
Notice that for every n ∈Nwe have (a−p)n = an

−p. Thus, lim
n→∞

(a−p)n = 0 = lim
n→∞

(p− a)n. From Theorem

2.7 we conclude that σ(p − a) ⊂ D(0; 1). Then 0 < 1 + σ(p − a) = σ(1 − a + p) and 1 − a + p ∈ A−1.
By Theorem 2.3 it follows that ind(1 − a) ≤ 1 and p = (1 − a)π.
(2) =⇒ (1): LetA1 = aπ,1Aaπ,1 andA2 = (1− aπ,1)A(1− aπ,1). Then σA1 (aaπ,1) = {1} and σA2

(
a(1− aπ,1)

)
=

σ(a) \ {1}. From Lemma 2.6 we have that aaπ,1 = aπ,1. From Theorem 2.7 we have that lim
n→∞

an(1 − aπ,1) = 0.

Thus, a = a(1 − aπ,1) + aaπ,1 = a(1 − aπ,1) + aπ,1. It follows that lim
n→∞

an = aπ,1 = (1 − a)π from Lemma 2.4 and
Remark 2.5.

3. Convergence of certain subsequences of the power sequence

In this section, we consider the convergence behavior of some particular subsequences of (an)n. We will
generalize Theorem 1 from [3]. Also, results from [9] and [10] will be extended.

First, we prove the following result.

Theorem 3.1. Let q ∈N and q ≥ 2, b ∈ A and λ ∈ C, such that bq = 1 and λq = 1. Then

p =
1

qλq−1 (λq−11 + λq−2b + · · · + λbq−2 + bq−1) ∈ A• ∩ comm(b),

(b − λ1)p = 0 and b − λ1 + p ∈ A−1.

Proof. Let
p1 = λ

q−11 + λq−2b + λq−3b2 + · · · + λ2bq−3 + λbq−2 + bq−1.

Since λq = 1 and bq = 1, we get

p2
1 = λ

q−1
(
λq−11 + λq−2b + λq−3b2 + · · · + λ2bq−3 + λbq−2 + bq−1

)
+ λq−1

(
λq−2b + λq−3b2 + · · · + bq−1 + λq−11

)
+ λq−1

(
λq−3b2 + λq−4b3 + · · · + bq−1 + λq−11 + λq−2b

)
...

+ λq−1
(
bq−1 + λq−11 + λq−2b + λq−3b2 + · · · + λ2bq−3 + λbq−2

)
= qλq−1p1.
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Hence, we conclude that p = q−1λ−q+1p1 is an idempotent. Obviously, p commutes with b. Notice that

0 = bq
− 1 = (b − λ1)(b − λ11) · · · (b − λq−11) = (b − λ1)p1,

where q√1 = {λ, λ1, . . . , λq−1}. Hence, (b − λ1)p = 0. Notice that bq = 1 implies (σ(b))q = {1} and σ(b) ⊂
{λ, λ1, . . . , λq−1}. Consider the polynomial

P(z) = z − λ +
1

qλq−1 (z − λ1) · · · (z − λq−1).

Then P(b) = b − λ1 + p and

σ(b − λ1 + p) = P(σ(b)) ⊂
{
P(µ) : µ ∈ {λ, λ1, . . . , λq−1}

}
=

{
1

qλq−1 (λ − λ1) · · · (λ − λq−1), λ1 − λ, . . . , λq−1 − λ

}
.

Since λ , λ1, . . . , λq−1, we conclude that 0 < σ(b − λ1 + p), so b − λ1 + p is invertible.

Now we formulate and prove the following result, extending Theorem 1 (a) in [3]. Our proof is essentially
different from the proof in [3], where the Jordan form of a complex square matrix is used.

Theorem 3.2. Let b ∈ A, and let q ∈N, q ≥ 2. The following statements are equivalent:
(1) lim

n→∞
bqn exists.

(2) If λ ∈ σ(b) then: |λ| < 1, or λq = 1 and ind(b − λ1) ≤ 1.
If (1) or (2) holds, then lim

n→∞
bqn = 1 − (1 − bq)(1 − bq)#.

Proof. (1) =⇒ (2): From Theorem 2.8 it follows that lim
n→∞

bqn exists if and only if for all µ ∈ σ(bq) either |µ| < 1,

or µ = 1 and ind(bq
− 1) ≤ 1. Since µ ∈ σ(bq) if and only if there exists λ ∈ σ(b) such that λq = µ, we get that

for all λ ∈ σ(b) either |λ| < 1, or λq = 1 and ind(bq
− 1) ≤ 1.

Let λ ∈ σ(b) and λq = 1. Since 1 < acc σ(bq) we get λ < acc σ(b). Let e = (bq
− 1)π. Since ind(bq

− 1) ≤ 1, we
get that (bq

− 1)(1 − e) is invertible in the Banach algebra (1 − e)A(1 − e) and (bq
− 1)e = 0. Since b commutes

with bq
− 1, we conclude that b commutes with e. Now we have that

(bq
− 1)(1 − e) = (b − λ1)(bq−1 + λbq−2 + · · · + λq−2b + λq−11)(1 − e)

is invertible in (1− e)A(1− e). From the commutativity of b and e we deduce that (b−λ1)(1− e) is invertible
in the algebra (1 − e)A(1 − e). On the other hand,

0 = (bq
− 1)e = (b − λ1)(bq−1 + λbq−2 + · · · + λq−2b + λq−11)e

and bqe = e. According to Theorem 3.1 we know that

p = q−1λ−q+1(bq−1 + λbq−2 + · · · + λq−2b + λq−11)e

is an idempotent in eAe, p commutes with (b − λ1)e, (b − λ1)pe = 0 and (b − λ1 + p)e is invertible in eAe.
From Theorem 2.3 we conclude that p is the spectral idempotent of (b − λ1)e in eAe corresponding to {0},
and hence ind((b − λ1)e) ≤ 1. We also know that (b − λ1)(1 − p)e is invertible in (1 − p)eAe(1 − p). Now,
pe = ep = p and we easily verify (1 − p)(1 − e) = (1 − e). Since (b − λ1)(1 − e) is invertible in (1 − e)A(1 − e),
there exists some c ∈ (1 − e)A(1 − e) such that

(b − λ1)(1 − e)c(1 − e) = (1 − e)c(1 − e)(b − λ1) = 1 − e.

Since (b − λ1)e(1 − p) is invertible in (1 − p)eAe(1 − p), there exists some d ∈ (1 − p)eAe(1 − p) such that

(b − λ1)e(1 − p)de(1 − p) = e(1 − p)de(1 − p)(b − λ1) = e(1 − p).
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Now we compute [
c(1 − e) + de(1 − p)

][
(b − λ1)(1 − e) + (b − λ1)e(1 − p)

]
=

=
[
c(1 − e) + de(1 − p)

][
(b − λ1)(1 − e)(1 − p) + (b − λ1)e(1 − p)

]
=

= (1 − e) + e(1 − p) = 1 − p.

We conclude that
(b − λ1)(1 − e)(1 − p) + (b − λ1)e(1 − p) = (b − λ1)(1 − p)

is invertible in (1 − p)A(1 − p). Also, (b − λ1)p = 0 holds, and hence (b − λ1)(1 − p) = b − λ1. There exists
some f ∈ (1 − p)A(1 − p) such that

(b − λ1)(1 − p) f (1 − p) = 1 − p = (1 − p) f (1 − p)(b − λ1).

Now it is easy to verify that (1 − p) f (1 − p) = (b − λ1)#, thus implying ind(b − λ1) ≤ 1.
(2) =⇒ (1): Now suppose that for all λ ∈ σ(b) either |λ| < 1, or λq = 1 and ind(b − λ1) = 1. We only need

to consider the q-th roots of 1: q√1 = {λ, λ1, . . . , λq−1}, ind(b−λ1) ≤ 1 and ind(b−λi1) ≤ 1 for all i = 1, . . . , q−1.
It can easily be seen that

(bq
− 1)# = (b − λ1)#(b − λ11)#

· · · (b − λq−11)#.

Hence, ind(bq
− 1) ≤ 1. From Theorem 2.8 it follows that lim

n→∞
bqn exists and

lim
n→∞

bqn = 1 − (1 − bq)(1 − bq)#.

Now we will consider the convergence of the sequence (aqn
)n.

Theorem 3.3. Let a ∈ A and q ∈N, q ≥ 2. The following statements are equivalent:
(1) lim

n→∞
aqn
= c exists.

(2) If λ ∈ σ(a) then: |λ| < 1, or there exists K ∈N0 such that λ(q−1)qK
= 1 and ind(a − λ1) ≤ 1.

If (1) or (2) holds, then cq = c =
(q−1)qK∑

j=1
aπ,λ j , (λ(q−1)qK

j = 1), and ind(c) ≤ 1.

Proof. (1) =⇒ (2): We compute

cq =
(

lim
n→∞

aqn
)q
= lim

n→∞
aqn+1

= c,

so c(1 − cq−1) = 0 and
(
cq−1
)2
= cq−1. From the Spectral mapping theorem applied to the polynomial

P(z) = z(zq−1
− 1), we conclude that σ(c) ⊂ {0} ∪ {λ1, . . . , λq−1}, where q−1√1 = {λ1, . . . , λq−1}.

Consider the spectrum of the element c + 1 − cq−1:

σ(c + 1 − cq−1) = {1 + µ − µq−1 : µ ∈ σ(c)}

⊂ {1 + µ − µq−1 : µ ∈ {0, λ1, . . . , λq−1}= {1, λ1, . . . , λq−1}.

Hence, c + 1 − cq−1
∈ A

−1. From Theorem 2.3 we conclude that 1 − cq−1 = cπ and ind(c) ≤ 1.
Since c commutes with a, from the continuity of the spectrum in this commutative case and from Lemma

2.2 we conclude that for all λ ∈ σ(a) either |λ| < 1, or |λ| = 1 and λqK(q−1) = 1 for some non-negative integer
K.
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(2) =⇒ (1): Let M = (q− 1)qK and M√1 = {λ1, . . . , λM}. We have aπ,λ1 aπ,λk = 0 if j , k. Take p =
M∑
j=1

aπ,λ j and

obtain p ∈ A•. We have

a = a(1 − p) +
M∑
j=1

aaπ,λ j

and consequently

aqn
= aqn

(1 − p) +
M∑
j=1

aqn
aπ,λ j

for every n ∈N. LetA0 = (1−p)A(1−p) andA j = aπ,λ jAaπ,λ j for j = 1, . . . ,M. We have σA0
(
a(1−p)

)
⊂ D(0; 1),

so lim
n→∞

aqn
(1 − p) = 0. Also, σA j

(
aaπ,λ j

)
= {λ j} for every j. Since ind(λ j − a) ≤ 1, we get aaπ,λ1 = λ jaπ,λ j . Thus,

lim
n→∞

aqn aπ,λ j = lim
n→∞
λqn

j aπ, j = aπ, j. We get

lim
n→∞

aqn
=

(q−1)qK∑
j=1

aπ,λ j .

Remark 3.4. It is important to mention that in Theorem 3.3 the result

lim
n→∞

aqn
=

(q−1)qK∑
j=1

aπ,λ j

is not proved in [3]. It seems that the form of this limit appears in the present article for the first time.

Remark 3.5. We mention closely related topics. If A is the Banach algebra of operators on a Banach (or Hilbert)
space, stable operators are defined in the following way [9], [2], [1]. Let H+ denote the right open half plane of C.
An operator A is stable, if σ(A) ⊂ H+. Stable and convergent operators are related by the Cayley transform: an
operator A with −1 < σ(A) is stable, if and only if its Cayley transform T = (I − A)(I + A)−1 is convergent [9].
Various generalizations and applications of stable and convergent operators can be found in [1], [2], [8], [9], [11], and
references cited there.

Remark 3.6. In [3] convergence properties of
(
aqn
)

n
and
(
aqn
)

n
are used in the investigation of the well-known

hyper-power iterative method.

Finally, we prove one more result.
An element c ∈ A is generalized quasinilpotent, if λ + (1 + λ)n , 0 for every n ∈ N and every λ ∈ σ(c).

The set of all generalized quasinilpotent elements is denoted byAGqNil and obviouslyAqNil
⊂ A

GqNil.

Theorem 3.7. If c ∈ AGqNil and 1 + c ∈ Acon, then c = 0.

Proof. Let p = lim
n→∞

(1+c)n. Then p2 = p and p commutes with c. Also, cp = (1+c−1) lim
n→∞

(1+c)n = lim
n→∞

[(1+c)n+1
−

(1+ c)n] = 0. Denote by xn = c+ (1+ c)n and notice that lim
n→∞

xn = c+ p. Then σ(xn) = {λ+ (1+ λ)n : λ ∈ σ(c)}.
Since every xn commutes with c + p, from the continuity of the spectrum in this commutative case, we
conclude that 0 < σ(c + p) and c + p ∈ A−1. By Theorem 2.3 it follows that p = cπ. Since ccπ = 0, we get that
ind(c) = 1 and 0 = cd = c#, implying c = 0.
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