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Nonlinear Langevin time-delay differential equations with generalized
Caputo fractional derivatives
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Abstract. In a Banach space, we consider the nonlinear Langevin time-delay differential equations with
ψ-Caputo fractional derivatives. Using weighted norms involving Mittag-Leffler functions, we obtain
some existence and uniqueness of solutions of the problem. Besides, in some cases, the condition for the
problem having a unique solution can be relaxed using Burton’s method. We also obtain some Ulam-Hyers
and Ulam-Hyers-Rassias Mittag-Leffler stability results for the main equation. Two examples are given to
illustrate our theoretical findings.

1. Introduction

The Langevin equation plays an important role in describing the fluctuation phenomenon in Brownian
motion. It brings many benefits in depicting the time evolution of the velocity of the Brownian motion.
However, the classical Langevin equation has been restricted for some complex systems such as dynamical
processes in media (see [15]). The fractional Langevin equations have been proposed as one of the ways to
overcome the restriction (see e.g. [1, 11, 16] and reference therein). The fact shows that the fractional form
of the Langevin equations has provided a useful tool for investigating anomalous diffusion.

In recent years, fractional Langevin delay equations have attracted the attention of many researchers.
In fact that Kumar et al [13] investigated the problem of controllability of linear and nonlinear fractional
Langevin delay dynamical systems with multiple delays and distributed delays. Mahmudov [14] intro-
duced delayed Mittag-Leffler type functions and applied them to investigate non-homogeneous fractional
delayed Langevin equations with Riemann-Liouville fractional derivatives. Recently, Ahmadova and Mah-
mudov [2] considered both homogeneous and inhomogeneous fractional Langevin differential equations,
presented explicit analytical solutions, investigated Ulam-Hyers, and applied them to electric circuit theory

In 2017, Almeida [3] followed the idea in [12] to propose a concept of a Caputo fractional derivative of
a function with respect to another (called ψ-Captuto fractional derivatives) and has attracted the attention
of numerous researchers. In particular, Langevin equations involving ψ-Caputo fractional derivatives
without delays have been studied in [6–9], but, Langevin time-delays differential equations regarding these
derivatives are still not considered.

Inspired by the derivative concept and motivated by the above analyses, we study the nonlinear
Langevin time-delay differential equation involving ψ-Caputo fractional derivatives. Explicitly, let 0 <
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α, β ≤ 1 and B be a Banach space with the norm ||·||. Let µ, a, b be real numbers with µ < a < b, and let
ϱ ∈ C([µ, a],B), σ ∈ C([a, b], [µ, b]) with σ(t) ≤ t. We consider the following nonlinear Langevin time-delay
differential equation

CDψ,β
a+

(
CDψ,α

a+ + λ
)

u(t) = f (t,u(t),u(σ(t))), t ∈ [a, b] (1)

subject to the conditions

u(t) = ϱ(t), µ ≤ t ≤ a and CDψ,α
a+ u(a) = ξ, (2)

where CDψ,α
a+ , CDψ,β

a+ are ψ-Caputo fractional derivatives and λ ∈ R is a friction constant. The main aim of the
current paper is to discuss the existence and uniqueness of solutions of the problem as well as investigate
Ulam-Hyers and Ulam-Hyers-Rassias Mittag-Leffler stability for the equation.

Our main contributions are that: (i) we prove that the problem has a unique solution by using weighted
norms involving Mittag-Leffler functions; (ii) if σ(t) ≥ r for some positive number r, then the problem has
a unique solution under some weaker conditions than the general cases; (iii) we derive some Ulam-Hyers
and Ulam-Hyers-Rassias Mittag-Leffler stability results for the main equation.

The paper is organized as follows. In section 2, we present the concept ofψ-Caputo fractional derivative
and its properties. We also introduce some preparatory lemmas for the proof of the main results. In section
3, we present the main results of the paper. In section 4, we construct some examples to illustrate the
theoretical findings.

2. Preliminaries

This section presents some definitions and preliminary lemmas that we will use in the subsequent
section. We begin by recalling the Gamma function

Γ(α) =
∫
∞

0
tα−1e−t dt, α > 0.

We also recall the definition of the Mittag-Leffler function.

Definition 2.1. Let α, β > 0 and z ∈ C. The Mittag-Leffler function is defined by the power series as follows

Eα,β(z) =
∞∑

k=0

zk

Γ(kα + β)
.

Throughout the present paper, we write Eα(z) stands for Eα,1(z). Next, we give here some properties of
the Mittag-Leffler function.

Lemma 2.2 (see [10, 18]). Let α and β be two positive numbers.
(i). Suppose that λ ∈ C is not eigenvalue of the Abel integral operator. Then, we have

λ
Γ(α)

∫ t

0
(t − τ)α−1Eα(λτα) = Eα(λtα) − 1.

(ii). For any t ≥ 0, we have

0 ≤ Eα,β(−t) ≤ 1/Γ(β).

We continue by introducing the concepts of fractional integral and fractional derivative of a function
depending on another function. To this aim, we firstly define the class of the function

H1
+[a, b] =

{
ψ : ψ ∈ C[a, b] ∩ C1(a, b) and ψ′(t) > 0 for all t ∈ [a, b]

}
.
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Definition 2.3 (see [3, 12]). Let α > 0, a < b, ψ ∈ H1
+[a, b].

(i). For f ∈ L1(a, b), the fractional integral of a function f with respect to the function ψ is defined by

Iα,ψa+ f (t) =
1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1 f (τ) dτ.

(ii). For f ∈ Cn[a, b], the Caputo fractional derivative of a function f with respect to the function ψ is defined by

CDψ,α
a+ f (t) = In−α,ψ

a+

(
1

ψ′(t)
d
dt

)n

f (t),

where n = [α] + 1 for n ,N and n = α for α ∈N.

To further investigate the properties of the fractional integrals and fractional derivatives of a function
concerning another function, we refer to [3, 12].

To end this section, we define the concepts Ulam-Hyers and Ulam-Hyers-Rassias stability. These
concepts were adapted from paper [17].

Definition 2.4. Equation (1) is called Ulam-Hyers stable if there exists a positive number C f such that for each ϵ > 0
and for each solution v ∈ C([µ, b],B) of the following inequality∣∣∣∣∣∣∣∣CDψ,β

a+

(
CDψ,α

a+ + λ
)

v(t) − f (t, v(t), v(σ(t)))
∣∣∣∣∣∣∣∣ ≤ ϵ, t ∈ [a, b], (3)

there exists a solution u ∈ C([µ, b],B) of Equation (1) such that

||u(t) − v(t)|| ≤ C f ϵ, t ∈ [µ, b].

Remark 2.5. A function u is a solution of inequality (3) if there exists a function h ∈ C([a, b],B) such that

||h(t)|| ≤ ϵ

for all t ∈ [a, b] and satisfying the following equation

CDψ,β
a+

(
CDψ,α

a+ + λ
)

v(t) = f (t, v(t), v(σ(t))) + h(t), t ∈ [a, b].

Definition 2.6. Equation (1) is called Ulam-Hyers-Rassias stable with respect to φ ∈ C([a, b],R) if there exists a
positive number C f such that for each ϵ > 0 and for each v ∈ C([µ, b],B) satisfying the following inequality∣∣∣∣∣∣∣∣CDψ,β

a+

(
CDψ,α

a+ + λ
)

v(t) − f (t, v(t), v(σ(t)))
∣∣∣∣∣∣∣∣ ≤ ϵφ(t), t ∈ [a, b], (4)

there exists a solution u ∈ C([µ, b],B) of Equation (1) such that

||u(t) − v(t)|| ≤ C f ϵφ(t), t ∈ [µ, b].

The Ulam-Hyers-Rassias stable with respect to φ = Ep(·) is called Ulam-Hyers-Rassias Mittag-Leffler stable.

Remark 2.7. A function u is a solution of inequality (4) if there exists a function h ∈ C([a, b],B) such that

||h(t)|| ≤ ϵφ(t)

for all t ∈ [a, b] and satisfying the following equation

CDψ,β
a+

(
CDψ,α

a+ + λ
)

v(t) = f (t, v(t), v(σ(t))) + h(t), t ∈ [a, b].



N. M. Dien / Filomat 37:19 (2023), 6487–6495 6490

3. Uniqueness and Ulam-Hyers-Rassias stability

This section is devoted to state and prove the main results of the present paper. Thanks to Lemma 3.2
in [9], we find that if u is a solution of the problem (1) and (2) the u satisfies the following integral equation

u(t) = ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
+ (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
+

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ,u(τ),u(σ(τ))) dτ (5)

for t ∈ (a, b] and u(t) = ϱ(t) for t ∈ [µ, a].
For convenience in stating the main results, we make the following assumptions.

• Assumption (A1). ψ ∈ H1
+[a, b], f ∈ C([a, b] × B × B,B) and σ ∈ C([a, b], [µ, b]) satisfying σ(t) ≤ t on

[a, b].

• Assumption (A2). There exists L > 0 such that∣∣∣∣∣∣ f (t,u1, v1) − f (t,u2, v2)
∣∣∣∣∣∣ ≤ L (||u1 − u2|| + ||v1 − v2||)

for any u1,u2, v1, v2 ∈ B and for every t ≥ a.

• Assumption (A3). There exists L > 0 such that∣∣∣∣∣∣ f (t,u1, v) − f (t,u2, v)
∣∣∣∣∣∣ ≤ L||u1 − u2||

for any u1,u2 ∈ B and for every t ≥ a.

To obtain the main results, we use the following weighted norm involving a Mittag-Leffler function as
follows

|||u|||ω,b = max
{
||u(t)||

G(ω, t)
: µ ≤ t ≤ b

}
, (6)

where ω is a positive number, and G is a positive and continuous function (with respect to t) defined by

G(ω, t) =

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
for t ∈ [a, b]

1 for t ∈ [µ, a).

We are now in position to state and prove the first result of the paper.

Theorem 3.1. Suppose that Assumptions (A1) − (A2) are satisfied. Then the problem (1) and (2) have a unique
solution belongs to C([µ, b],B).

Proof. Let us define the following operator

Q : C([µ, b],B)→ C([µ, b],B)

defined by

Qu(t) =

the right hand side of equation (5) for t ∈ [a, b]
ϱ(t) for t ∈ [µ, a].

We will show that Q is a contraction mapping on the Banach space C([µ, b],B) with the weighted norm
given by (6). Note that Qu(t) = Qv(t) = ϱ(t) on [µ, a] for all u, v ∈ C([µ, b],B), so we only consider t ∈ (a, b].
Using Lemma 2.2, we have∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1G(ω, τ) dτ =

Γ(α + β)
ω

(
Eα+β

(
ω(ψ(t) − ψ(a))α+β

)
− 1

)
≤
Γ(α + β)
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
(7)
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for any t ∈ [a, b]. Thanks to the inequality (7) and Lemma 2.2, we get that

||Qu(t) − Qv(t)|| ≤
1

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1

∣∣∣∣∣∣ f (τ,u(τ),u(σ(τ))) − f (τ, v(τ), v(σ(τ)))
∣∣∣∣∣∣ dτ

≤
L

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1G(ω, τ)

× (||u(τ) − v(τ)|| + ||u(σ(τ)) − v(σ(τ))||) /G(ω, τ) dτ

≤
2L

Γ(α + β)
|||u − v|||ω,b

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1G(ω, τ) dτ

≤
2L
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
|||u − v|||ω,b.

This implies that

|||Qu − Qv|||ω,b ≤
2L
ω
|||u − v|||ω,b.

Choosing ω > 2L, we obtain from the latter inequality that Q is a contraction mapping. Hence, Q has a
unique fixed point belongs to C([µ, b],B), which is a solution of the problem (1) and (2). The proof process
is implemented completely.

If there exist r > 0 such that σ(t) ≤ t − r, then the conditions in order to problem (1) and (2) having a
unique solution can be relaxed. In fact, we have the following result.

Theorem 3.2. Suppose that Assumptions (A1) and (A3) hold. Suppose further that there exists a positive number
r such that σ(t) ≤ t − r for all t ∈ [a, b]. Then the problem (1) and (2) has a unique solution in C([µ, b],B).

Remark 3.3. It is obvious that Assumption (A3) is weaker than Assumption (A2). This shows the conditions in
Theorem 3.1 have been relaxed in Theorem 3.2 in the case σ(t) ≤ t − r.

Proof. We follow the Burton’s method (see [4, 5]) to prove the result of Theorem. Indeed, we divide [a, b]
into n parts by a = T0 < T1 < .. < Tn = b with Tk − Tk−1 = l (k = 1, 2, ..,n) for some l ≤ r. Fixed ω > L, we
divide the proof into n steps as follow.

Step 1. Let (B1, |||·|||ω,T1
) be the Banach space of all continuous functions u : [µ,T1]→ B such that u(t) = ϱ(t)

for t ∈ [µ, a], where the norm defined in (6). We consider the operator Q1 : B1 → B1 defined by

Q1u(t) =

the right hand side of equation (5) for t ∈ [a,T1]
ϱ(t) for t ∈ [µ, a].

Since Q1u(t) = Q1v(t) = ϱ(t) for all u, v ∈ B1 and t ∈ [µ, a], we only consider t ∈ [a,T1]. We first have
σ(t) ≤ t − r ≤ t − l ≤ a for all t ≤ T1. This implies u(σ(t)) = v(σ(t)) = ϱ(t) for t ≤ T1. Using (7), we obtain

||Q1u(t) − Q1v(t)|| ≤
1

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1

∣∣∣∣∣∣ f (τ,u(τ),u(σ(τ))) − f (τ, v(τ), v(σ(τ)))
∣∣∣∣∣∣ dτ

≤
L

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1G(ω, τ)||u(τ) − v(τ)||/G(ω, τ) dτ

≤
L

Γ(α + β)
|||u − v|||ω,T1

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1G(ω, τ) dτ

≤
L
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
|||u − v|||ω,T1

.
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This implies that

|||Q1u − Q1v|||ω,T1
≤

L
ω
|||u − v|||ω,T1

.

Since ω > L, we conclude from the latter inequality that Q1 is a contraction mapping on B1. Thus, there
exists a unique u1 ∈ C([µ,T1],B) satisfying the problem (1) and (2) on [µ,T1].

Step 2. We now extend the interval [µ,T1] in Step 1 into [µ,T1] by using u1 as the new initial function. To
this aim, we consider the the Banach space (B2, |||·|||ω,T2

) of all continuous functions u : [µ,T2]→ B such that
u(t) = u1(t) for t ∈ [µ,T1], where the norm defined in (6). We consider the operator Q2 : B2 → B2 defined by

Q2u(t) =

the right hand side of equation (5) for t ∈ [T1,T2]
u1(t) for t ∈ [µ,T1].

Since Q1u(t) = Q1v(t) = u1(t) for all u, v ∈ B2 and t ∈ [µ,T1], we now consider t ∈ [T1,T2]. We first have
σ(t) ≤ t − r ≤ t − l ≤ T1 for all t ≤ T2. So, u(σ(t)) = v(σ(t)) = u1(t) for t ≤ T2. Using the method as in Step 1,
we obtain

|||Q2u − Q2v|||ω,T2
≤

L
ω
|||u − v|||ω,T2

,

whereω > L. Thus,Q2 is also a contraction mapping onB2 and there is a unique u2 ∈ C([µ,T2],B) satisfying
the problem (1) and (2) on [µ,T2].

Step 3. Repeating this process n-times, we can find a unique u = un ∈ C([µ,Tn],B) satisfying the problem
(1) and (2) on [µ,Tn] = [µ, b]. This finishes the proof of Theorem.

We continue by presenting results on Ulam-Hyers and Ulam-Hyers-Rassias stability.

Theorem 3.4. Equation (1) is Ulam-Hyers stable when Assumptions (A1) − (A2) are true.

Proof. Since Assumptions (A1)− (A2) hold, by virtue of Theorem 3.1, we conclude that the problem (1) and
(2) has a unique solution u ∈ C([µ,T],B), which satisfies the following integral equation

u(t) = ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
+ (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
+

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ,u(τ),u(σ(τ))) dτ

on interval [a, b].
Let v is a solution of the inequality (3). Then, for each ϵ > 0, it follows from Remark 2.5 that v satisfies the
following integral equation on the interval [a, b]

v(t) = ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
+ (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
+

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
( f (τ, v(τ), v(σ(τ))) + h(τ)) dτ,

where h ∈ C([a, b],B) with ||h(t)|| ≤ ϵ for all t ∈ [a, b]. Thus, using Lemma 2.2, we get

∥v(t) − ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
− (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
−

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ, v(τ), v(σ(τ))) dτ∥

≤

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
||h(τ)|| dτ

≤
(ψ(t) − ψ(a))α+β

(α + β)Γ(α + β)
ϵ ≤

(ψ(b) − ψ(a))α+β

Γ(α + β + 1)
ϵ.
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Moreover, in the process of the proof of Theorem 3.1, we have proved that∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1

∣∣∣∣∣∣ f (τ, v(τ), v(σ(τ))) − f (τ,u(τ),u(σ(τ)))
∣∣∣∣∣∣ dτ

≤
2LΓ(α + β)

ω
Eα+β

(
ω(ψ(t) − ψ(a))α+β

)
|||u − v|||ω,b. (8)

Thanks to the two latter inequalities, we get

||v(t) − u(t)|| ≤ ∥v(t) − ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
− (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
−

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ,u(τ),u(σ(τ))) dτ∥

≤ ∥v(t) − ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
− (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
−

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ, v(τ), v(σ(τ))) dτ∥

+
1

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1

∣∣∣∣∣∣ f (τ, v(τ), v(σ(τ))) − f (τ,u(τ),u(σ(τ)))
∣∣∣∣∣∣ dτ

≤
(ψ(b) − ψ(a))α+β

Γ(α + β + 1)
ϵ +

2L
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
|||u − v|||ω,b.

Using the fact that Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
≥ 1/Γ(α + β) for all t ∈ [a, b] and u(t) = v(t) on [µ, a], we get

|||u − v|||ω,b ≤
(ψ(b) − ψ(a))α+β

α + β
ϵ +

2L
ω
|||u − v|||ω,b.

Choosing ω > 2L, then κ = 2L/ω < 1 and we obtain

||v(t) − u(t)||/Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
≤ |||u − v|||ω,b ≤

(ψ(b) − ψ(a))α+β

(α + β)(1 − κ)
ϵ

or

||v(t) − u(t)|| ≤
(ψ(b) − ψ(a))α+β

(α + β)(1 − κ)
Eα+β

(
ω(ψ(t) − ψ(a))α+β

)
ϵ

≤
(ψ(b) − ψ(a))α+β

(α + β)(1 − κ)
Eα+β

(
ω(ψ(b) − ψ(a))α+β

)
ϵ

due to the function Eα+β(·) is increasing on (0,+∞). The latter inequality shows that Equation (1) is Ulam-
Hyers stable. The proof of Theorem is completed.

Theorem 3.5. Assume that Assumptions (A1)− (A2) hold and ω > 2L. Then, Equation (1) is Ulam-Hyers-Rassias
Mittag-Leffler stable with respect to φ(t) = Eα+β

(
ω(ψ(t) − ψ(a))α+β

)
.

Proof. We denote by v a solution of the inequality (3). For each ϵ > 0, it follows from Remark 2.7 that v
satisfies the following integral equation

v(t) = ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
+ (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
+

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
( f (τ, v(τ), v(σ(τ))) + h(τ)) dτ,

where h ∈ C([a, b],B) with ||h(t)|| ≤ ϵφ(t) = ϵEα+β
(
ω(ψ(t) − ψ(a))α+β

)
for all t ∈ [a, b]. By using Lemma 2.2 and

direct computation, we have
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∥v(t) − ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
− (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
−

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ, v(τ), v(σ(τ))) dτ∥

≤
ϵ

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα+β

(
ω(ψ(τ) − ψ(a))α+β

)
dτ

≤
ϵ
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
. (9)

By straightforward, we obtain from (8) and (9) that

||v(t) − u(t)|| ≤ ∥v(t) − ϱ(0)Eα
(
−λ(ψ(t) − ψ(a))α

)
− (λϱ(0) + ξ)(ψ(t) − ψ(a))αEα,α+1

(
−λ(ψ(t) − ψ(a))α

)
−

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1Eα,α+β

(
−λ(ψ(t) − ψ(τ))α

)
f (τ, v(τ), v(σ(τ))) dτ∥

+
1

Γ(α + β)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α+β−1

∣∣∣∣∣∣ f (τ, v(τ), v(σ(τ))) − f (τ,u(τ),u(σ(τ)))
∣∣∣∣∣∣ dτ

≤
ϵ
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
+

2L
ω

Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
|||u − v|||ω,b.

This deduces that

|||u − v|||ω,b ≤
ϵ
ω
+

2L
ω
|||u − v|||ω,b.

It implies that

|||u − v|||ω,b ≤
ϵ

(1 − κ)ω
,

where κ = 1 − 2L/ω. As a consequent

||v(t) − u(t)||/Eα+β
(
ω(ψ(t) − ψ(a))α+β

)
≤ |||u − v|||ω,b ≤

ϵ
(1 − κ)ω

or

||v(t) − u(t)|| ≤
ϵ

(1 − κ)ω
Eα+β

(
ω(ψ(t) − ψ(a))α+β

)
.

The proof of Theorem is done.

4. Examples

In this section, we present two examples to show the applicability of the obtained results of the paper.

Example 4.1. Let B = R and ψ(t) = ln t. We consider the following problemCDln,3/4
1+

(
CDln,4/5

1+ + 1
)

u(t) = et/(|u(t)| + 1) + u(t2/e), t ∈ [1, e]
u(t) = sin2 t + t, t ∈ [0, 1], CDln,4/5

1+ u(1) = 2,
(10)

where a = 1, b = e, µ = 0, α = 4/5, β = 2/3, λ = 1, and f (t,u, v) = et/(|u| + 1) + v with σ(t) = t2/e. We can easily
verify that f ∈ C([1, e] ×R ×R,R), and∣∣∣ f (t,u1, v1) − f (t,u2, v2)

∣∣∣ ≤ e(|u1 − u2| + |v1 − v2|)

for all u1,u2, v1, v2 ∈ R and t ∈ [1, e]. Therefore, we conclude from Theorem 3.1 that the problem (10) has a unique
solution. Moreover, based on Theorem 3.4 and Theorem 3.5, we also conclude that the first equation of the problem is
Ulam-Hyers and Ulam-Hyers-Rassias Mittag-Leffler stable.
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Example 4.2. Let B = R and ψ(t) = t. Consider the following problemCDt,1/3
0+

(
CDt,3/5

0+ + 1/3
)

u(t) = sin u(t) + u3(t − 1/(t + 2)), t ∈ [0, 2]
u(t) = t + t2, t ∈ [−1, 0], CDt,3/5

0+ u(0) = 0,
(11)

where a = 0, b = 2, µ = −1, α = 3/5, β = 1/3, λ = 1/3, and f (t,u, v) = sin u+v3 with σ(t) = t−1/(t+2) ≤ t−1/4.
We can easily verify that f ∈ C([0, 2] ×R ×R,R), and∣∣∣ f (t,u1, v) − f (t,u2, v)

∣∣∣ ≤ |u1 − u2|

for all u1,u2, v ∈ R and t ∈ [0, 2]. Thus, we conclude from Theorem 3.2 that the problem (11) has a unique solution.

5. Conclusions

We have investigated the nonlinear Langevin time-delay differential equations connected to the gen-
eralized Caputo fractional derivatives. By using weighted norm, we have obtained the existence and
uniqueness of solutions of the problem. In some cases, we have proved that the condition for the problem
to have a unique solution can be relaxed. We have also obtained the results on Ulam-Hyers and Ulam-
Hyers-Rassias Mittag-Leffler stability. In the future works, we would like to consider Langevin time-delay
differential equations where source functions may have a singularity.
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