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Available at: http://www.pmf.ni.ac.rs/filomat

A further generalization of the Catalan numbers and its explicit
formula and integral representation

Wen-Hui Lia, Omran Koubab, Issam Kaddourac, Feng Qid,e,∗

aSchool of Economics, Henan Kaifeng College of Science Technology and Communication, Kaifeng 475001, Henan, China
bDepartment of Mathematics, Higher Institute for Applied Sciences and Technology, P.O. Box 31983, Damascus, Syria

cDepartment of Mathematics, School of Arts and Sciences, International University of Beirut, Lebanese International University, Beirut, Lebanon
dInstitute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China

eIndependent Researcher, Dallas, TX 75252-8024, USA

Abstract. In the paper, motivated by the generating function of the Catalan numbers in combinatorial
number theory and with the aid of Cauchy’s integral formula in complex analysis, the authors generalize the
Catalan numbers and its generating function, establish an explicit formula and an integral representation
for the generalization of the Catalan numbers and corresponding generating function, and derive several
integral formulas and combinatorial identities.

1. Backgrounds and motivations

The Catalan numbers

Cn =
1

n + 1

(
2n
n

)
=

4nΓ(n + 1/2)
√
πΓ(n + 2)

(1.1)

form a sequence of integers (see [13, 14, 63]), can be interpreted combinatorially (see [7, 21, 60]), date back
to the year 1730 (see [23, 24, 28]), and can be generated (see [31, 60, 64]) by

G(x) =
2

1 +
√

1 − 4x
=

∞∑
n=0

Cnxn, (1.2)

whereℜ(z) denotes the real part of z ∈ C and

Γ(z) =
∫
∞

0
tz−1 e−t dt, ℜ(z) > 0
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or

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

is the classical Euler gamma function (see [1, Chapter 6], [32, Chapter 5], [65, Chapter 3], and [42]).
The Catalan numbers Cn have been combinatorially generalized as the Fuss numbers (see [11] and [21,

pp. 377–378]), the Fuss–Catalan numbers (see [3, 6, 10, 62] and [21, Exercise A14, p. 108]), and others
(see [2, 16, 20] and [21, pp. 375–376]). Motivated by the second expression in (1.1), several mathematicians
analytically generalized the Catalan numbers Cn, the Fuss numbers, and the Fuss–Catalan numbers and
investigated plenty of their properties in the papers [27, 30, 35–38, 40, 41, 43–45, 47–49, 52–56, 58, 59, 61, 67]
and closely related references. Other than the Fuss numbers, the Fuss–Catalan numbers, and the Catalan–Qi
numbers, there are other generalizations and associated number families regarding the Catalan numbers
such as the Motzkin numbers [46, 68], the super-Catalan numbers [47] (see also https://en.wikipedia.
org/wiki/Catalan_number), Narayana numbers [8, 19], and Catalan type numbers Vn(λ) in [22], and so
on, in the literature.

Motivated by the generating function G(x) in (1.2), several mathematicians generalized the Catalan
numbers Cn to Cn(a, b), the Catalan–Qi numbers of the second kind, in [5] by considering the generating
function

Ga,b(x) =
1

a +
√

b − x
=

∞∑
n=0

Cn(a, b)xn (1.3)

for real numbers a ≥ 0 and b > 0. It is clear that G1/2,1/4(x) = G(x) and Cn

(
1
2 ,

1
4

)
= Cn. The main results in [5]

are as follows.

1. The Catalan–Qi numbers of the second kind Cn(a, b) for n ≥ 0, a ≥ 0, and b > 0 can be explicitly
computed by

Cn(a, b) =
1

(2n)!!bn+1/2

n∑
k=0

(
2n − k − 1
2(n − k)

)
k![2(n − k) − 1]!!(

1 + a/
√

b
)k+1

, (1.4)

where the double factorial of negative odd integers −(2k + 1) is defined by

(−2k − 1)!! =
(−1)k

(2k − 1)!!
= (−1)k 2kk!

(2k)!
, k ∈N0.

2. The principal branch of the generating function Ga,b(z) for a ≥ 0 and b > 0 can be represented by

Ga,b(z) =
1
π

∫
∞

0

√
t

a2 + t
1

b + t − z
dt, z ∈ C \ [b,∞). (1.5)

Consequently, the Catalan–Qi numbers of the second kind Cn(a, b) for a ≥ 0 and b > 0 can be
represented by

Cn(a, b) =
1
π

∫
∞

0

√
t

a2 + t
1

(b + t)n+1 dt, n ≥ 0. (1.6)

In this paper, motivated and inspired by the generating function in (1.3), we consider the functional
sequence Cn(a, b; p) which is defined by

Ga,b;p(x) =
1

a + (b − x)p =

∞∑
n=0

Cn(a, b; p)xn (1.7)

https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Catalan_number
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for a ≥ 0, b > 0, and 0 < p < 1. It is clear that

Ga,b;1/2(x) = Ga,b(x), G1/2,1/4;1/2(x) = G(x), Cn

(
a, b;

1
2

)
= Cn(a, b), Cn

(1
2
,

1
4

;
1
2

)
= Cn,

but one can neither express Ga,b;p(x) in terms of Ga,b(x) or G(x) nor express Cn(a, b; p) in terms of Cn(a, b) or
Cn. In this paper, we will establish an explicit formula for Cn(a, b; p), present integral representations for
Ga,b;p(x) and Cn(a, b; p), and derive several integral formulas and combinatorial identities.

2. An explicit formula for Cn(a, b; p)

In this section, we establish an explicit formula for Cn(a, b; p), from which we can derive the explicit
formula (1.4).

Theorem 2.1. Let a ≥ 0, b > 0, and 0 < p < 1 be real numbers. Then the functional sequence Cn(a, b; p) for n ≥ 0
can be explicitly computed by

Cn(a, b; p) =
(−1)n

n!bn(a + bp)

n∑
k=0

1
(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n, (2.1)

where the notation

⟨α⟩n =

α(α − 1) · · · (α − n + 1), n ≥ 1
1, n = 0

(2.2)

for α ∈ C is called the falling factorial.

Proof. In [7, p. 139, Theorem C], Faà di Bruno’s formula is described by

dn

dxn f (h(x)) =
n∑

k=0

f (k)(h(x)) Bn,k

(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
, (2.3)

where the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 satisfy

Bn,k

(
αβx1, αβ

2x2, . . . , αβ
n−k+1xn−k+1

)
= αkβn Bn,k(x1, x2, . . . , xn−k+1) (2.4)

in [7, p. 135] and the formula

Bn,k(⟨α⟩1, ⟨α⟩2, . . . , ⟨α⟩n−k+1) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨αℓ⟩n (2.5)

in [50, Theorem 2.1] and [51, Section 1.3] for α, β ∈ C.
Let h = hp(x) = (b − x)p for 0 < p < 1. Then h(k)

p (x) = (−1)k
⟨p⟩k(b − x)p−k for k ≥ 0 and, in light of the

formula (2.3) with f (x) = 1
a+x , by the aid of the identities (2.4) and (2.5),

dnGa,b;p(x)
dxn =

n∑
k=0

dk

dhk

( 1
a + h

)
Bn,k

(
h′p(x), h′′p (x), . . . , h(n−k+1)

p (x)
)

=

n∑
k=0

(−1)k k!
[a + hp(x)]k+1

Bn,k

(
h′p(x), h′′p (x), . . . , h(n−k+1)

p (x)
)

=

n∑
k=0

(−1)k k!
[a + (b − x)p]k+1

Bn,k

(
−⟨p⟩1(b − x)p−1, . . . , (−1)n−k+1

⟨p⟩n−k+1(b − x)p−(n−k+1)
)
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=

n∑
k=0

(−1)k k!
[a + (b − x)p]k+1

(−1)n(b − x)kp−n Bn,k(⟨p⟩1, ⟨p⟩2, . . . , ⟨p⟩n−k+1)

=
(−1)n

(b − x)n

n∑
k=0

(b − x)kp

[a + (b − x)p]k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

Accordingly, we obtain

lim
x→0

dnGa,b;p(x)
dxn =

(−1)n

bn(a + bp)

n∑
k=0

1
(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

The equation (1.7) means that

n!Cn(a, b; p) = lim
x→0

dnGa,b;p(x)
dxn .

Consequently, we obtain the explicit formula

Cn(a, b; p) =
1
n!

lim
x→0

dnGa,b;p(x)
dxn =

(−1)n

n!bn(a + bp)

n∑
k=0

1
(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

The proof of Theorem 2.1 is complete.

Remark 2.1. When taking p = 1
2 in (2.1), we derive

Cn

(
a, b;

1
2

)
= Cn(a, b) =

(−1)n

n!bn
(
a +
√

b
) n∑

k=0

1(
1 + a/

√
b
)k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)〈
ℓ
2

〉
n
.

Further employing the identity

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)〈
ℓ
2

〉
n
= (−1)n k![2(n − k) − 1]!!

2n

(
2n − k − 1
2(n − k)

)
(2.6)

in [50, Theorem 3.2] and [51, Section 1.5], which can be derived from comparing (2.5) for α = 1
2 with the identity

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n − k) − 1]!!) = [2(n − k) − 1]!!
(
2n − k − 1
2(n − k)

)
in [54, Theorem 1.2] and [51, Section 1.5] or with the identity

Bn,k

(〈1
2

〉
1
,
〈1

2

〉
2
, . . . ,

〈1
2

〉
n−k+1

)
= (−1)n+k[2(n − k) − 1]!!

(1
2

)n(2n − k − 1
2(n − k)

)
(2.7)

in [50, p. 169] and [51, Section 1.5], we recover (1.4) straightforwardly.

3. An integral representation of the generating function Ga,b;p(z)

In this section, we establish an integral representation for the principal branch of the complex generating
function Ga,b;p(z) by virtue of Cauchy’s integral formula in complex analysis.
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Theorem 3.1. Let a ≥ 0, b > 0, and 0 < p < 1 be real numbers. Then the principal branch of the complex function

Ga,b;p(z) =
1

a + (b − z)p , z ∈ C \ [b,∞)

can be represented by

Ga,b;p(z) =
sin(pπ)
π

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
b + t − z

dt, arg(z − b) ∈ (0, 2π). (3.1)

Proof. In complex analysis, on the cut plane C \ (−∞, 0], the logarithmic function ln z = ln |z|+ i arg z, where
i =
√
−1 is the imaginary unit, and the principal value arg z of the argument of z satisfies | arg z| < π.

For a ≥ 0 and 0 < p < 1, let

Fa;p(z) =
1

a + ep ln(−z)
, z ∈ C \ [0,∞), arg z ∈ (0, 2π).

By virtue of Cauchy’s integral formula in complex analysis, for any fixed point z0 = x0 + iy0 ∈ C \ [0,∞), we
have

Fa;p(z0) =
1

2πi

∫
L(r,R)

Fa;p(ξ)
ξ − z0

dξ,

where L(r,R) is a positively oriented contour in C \ [0,∞), as showed in Figure 1, such that

Figure 1: The positively oriented contour L(r,R) in C \ [0,∞)

1. 0 < r < |z0| < R;
2. L(r,R) consists of the half circle z = reiθ for θ ∈

[
π
2 ,

3π
2

]
;

3. L(r,R) consists of the line segments z = x ± ir for x ∈ (0,R(r)], where R(r) =
√

R2 − r2 ;
4. L(r,R) consists of the circular arc z = Reiθ for

θ ∈
(
arctan

r
R(r)
, 2π − arctan

r
R(r)

)
=

(
arcsin

r
R
, 2π − arcsin

r
R

)
;
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5. the line segments z = x ± ir for x ∈ (0,R(r)] cut the circle |z| = R at the points R(r) ± ir and R(r)→ R as
r→ 0+.

The integral on the circular arc z = Reiθ with positive orientation of the contour L(r,R) equals

1
2πi

∫ 2π−arcsin(r/R)

arcsin(r/R)

Rieiθ

Reiθ − z0

1
a + ep ln(−Reiθ)

dθ =
1

2π

∫ 2π−arcsin(r/R)

arcsin(r/R)

Reiθ

Reiθ − z0

1
a + Rp eip arg(−Reiθ)

dθ

which tends to 0 uniformly with respect to θ as R→∞, where we used the limits

lim
R→∞

Reiθ

Reiθ − z0
= lim

R→∞

eiθ

eiθ −z0/R
= 1 and lim

R→∞

∣∣∣Rp eip arg(−Reiθ)
∣∣∣ = lim

R→∞
Rp = ∞.

The integral on the half circle z = reiθ for θ ∈
[
π
2 ,

3π
2

]
with positive orientation of the contour curveL(r,R)

is

1
2πi

∫ π/2

3π/2

rieiθ

reiθ − z0

1
a + ep ln(−reiθ)

dθ = −
1

2π

∫ 3π/2

π/2

reiθ

reiθ − z0

1
a + rp eip arg(−reiθ)

dθ

= −
1

2π

∫ 3π/2

π/2

eiθ

eiθ −z0/r
1

a + rp eip arg(−reiθ)
dθ

which tends to 0 uniformly with respect to θ as r→ 0+, where we used the limits

lim
r→0+

eiθ

eiθ −z0/r
= 0 and lim

r→0+

∣∣∣rp eip arg(−reiθ)
∣∣∣ = lim

r→0+
rp = 0.

On the half line z = x + ir for x ∈ (0,R(r)] and r > 0, direct computation gives

Fa;p(x + ir) =
1

a + ep ln(−x−ri)
=

1

a + ep ln
√

x2+r2 +ip[arctan(r/x)−π]
.

Accordingly, we obtain

lim
r→0+

Fa;p(x + ir) =
1

a + xp cos(pπ) − ixp sin(pπ)

=
a + xp cos(pπ) + ixp sin(pπ)

[a + xp cos(pπ)]2 + [xp sin(pπ)]2 =
a + xp cos(pπ) + ixp sin(pπ)

a2 + 2axp cos(pπ) + x2p .

Since ez = ez̄ and ln z = ln z̄, it follows that

Fa;p(z) =
1

a + ep ln(−z)
=

1

a + ep ln(−z)
=

1

a + ep ln(−z)
=

1
a + ep ln(−z)

=
1

a + ep ln(−z̄)
= Fa;p(z̄).

Accordingly, the integral on the line segments z = x ± ir for x > 0 with positive orientation of the contour
L(r,R) is equal to

1
2πi

[∫ R(r)

0

Fa;p(x + ir)
x + ir − z0

dx +
∫ 0

R(r)

Fa;p(x − ir)
x − ir − z0

dx
]

=
1

2πi

∫ R(r)

0

(x − ir − z0)Fa;p(x + ir) − (x + ir − z0)Fa;p(x − ir)
(x + ir − z0)(x − ir − z0)

dx

=
1

2πi

∫ R(r)

0

(x − z0)[Fa;p(x + ir) − Fa;p(x − ir)] − ir[Fa;p(x + ir) + Fa;p(x − ir)]
(x + ir − z0)(x − ir − z0)

dx



W.-H. Li et al. / Filomat 37:19 (2023), 6505–6524 6511

=
1

2πi

∫ R(r)

0

(x − z0)
[
Fa;p(x + ir) − F

(
x + ir

)]
− ir

[
Fa;p(x + ir) + F

(
x + ir

)]
(x + ir − z0)(x − ir − z0)

dx

=
1

2πi

∫ R(r)

0

(x − z0)
[
Fa;p(x + ir) − Fa;p(x + ir)

]
− ir

[
Fa;p(x + ir) + Fa;p(x + ir)

]
(x + ir − z0)(x − ir − z0)

dx

=
1

2πi

∫ R(r)

0

(x − z0)[2iℑ(Fa;p(x + ir))] − ir[2ℜ(Fa;p(x + ir))]
(x + ir − z0)(x − ir − z0)

dx,

where ℑ(z) denotes the imaginary part of z ∈ C. Consequently, it follows that

lim
r→0+
R→∞

1
2πi

[∫ R(r)

0

Fa;p(x + ir)
x + ir − z0

dx +
∫ 0

R(r)

Fa;p(x − ir)
x − ir − z0

dx
]
=

1
2πi

∫
∞

0

2i
x − z0

xp sin(pπ)
a2 + 2axp cos(pπ) + x2p dx

=
1
π

∫
∞

0

1
x − z0

xp sin(pπ)
a2 + 2axp cos(pπ) + x2p dx

and

1
a + ep ln(−z0)

=
1
π

∫
∞

0

1
x − z0

xp sin(pπ)
a2 + 2axp cos(pπ) + x2p dx (3.2)

for z0 ∈ C \ [0,∞) and arg z0 ∈ (0, 2π). Due to the point z0 in (3.2) being arbitrary, the integral formula (3.2)
can be rewritten as

Fa;p(z) =
1

a + ep ln(−z)
=

sin(pπ)
π

∫
∞

0

1
t − z

tp

a2 + 2a cos(pπ)tp + t2p dt, (3.3)

where z ∈ C \ [0,∞) and arg z ∈ (0, 2π).
For a ≥ 0, b > 0, 0 < p < 1, and arg(z − b) ∈ (0, 2π), it is easy to see that Ga,b;p(z) = Fa;p(z − b). Therefore,

from (3.3), the integral representation (3.1) follows. The proof of Theorem 3.1 is complete.

Remark 3.1. When taking z = x ∈ (−∞, b), the integral representation (3.1) becomes

1
a + (b − x)p =

sin(pπ)
π

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
b + t − x

dt. (3.4)

When taking x → b−, the integral in (3.4) converges. Consequently, the integral representation (3.4) is valid on
(−∞, b].

Remark 3.2. Taking p = 1
2 in the integral representation (3.1) recovers the integral representation (1.5).

Remark 3.3. When taking p = 1
3 and p = 1

4 respectively, the integral representation (3.1) becomes

1

a +
3√
b − z

=

√
3

2π

∫
∞

0

3√t

a2 + a 3√t +
3√

t2

1
b + t − z

dt

and

1

a +
4√
b − z

=

√
2

2π

∫
∞

0

4√t

a2 +
√

2 a 4√t +
√

t

1
b + t − z

dt

for arg(z − b) ∈ (0, 2π) respectively.
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4. An integral representation for Cn(a, b; p)

From the integral representation (3.1) or (3.4), we can derive an integral representation for the functional
sequence Cn(a, b; p) as follows.

Theorem 4.1. Let a ≥ 0, b > 0, and 0 < p < 1 be real numbers. Then the functional sequence Cn(a, b; p) for n ≥ 0
can be represented by

Cn(a, b; p) =
sin(pπ)
π

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
(b + t)n+1 dt. (4.1)

Proof. Differentiating n ≥ 0 times with respect to z on both sides of (3.1) and taking the limit z→ 0 yield

lim
z→0

dnGa,b;p(z)
dz

=
sin(pπ)
π

lim
z→0

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

dn

dzn

( 1
b + t − z

)
dt

=
sin(pπ)
π

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p lim
z→0

n!
(b + t − z)n+1 dt

=
n! sin(pπ)
π

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
(b + t)n+1 dt.

As a result, by virtue of (1.7), we have the assertion of Theorem 4.1, which completes its proof.

Remark 4.1. If taking p = 1
2 in (4.1), one can recover (1.6) immediately.

Remark 4.2. When taking p = 1
3 and p = 1

4 respectively, the integral representation (4.1) becomes

Cn

(
a, b;

1
3

)
=

√
3

2π

∫
∞

0

3√t

a2 + a 3√t +
3√

t2

1
(b + t)n+1 dt

and

Cn

(
a, b;

1
4

)
=

√
2

2π

∫
∞

0

4√t

a2 +
√

2 a 4√t +
√

t

1
(b + t)n+1 dt

respectively.

5. Two integral formulas

Combining the explicit formula (2.1) in Theorem 2.1 with the integral representation (4.1) in Theorem 4.1
and combining (1.4) with (1.6), we can conclude two integral formulas.

Theorem 5.1. Let a ≥ 0 and b > 0 be real numbers and let n ≥ 0 be integers. If 0 < p < 1, then∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
(b + t)n+1 dt =

π
(a + bp) sin(pπ)

(−1)n

n!bn

n∑
k=0

1
(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n. (5.1)

In particular, if p = 1
2 , then∫

∞

0

√
t

a2 + t
1

(b + t)n+1 dt =
π

(2n)!!bn+1/2

n∑
k=0

(
2n − k − 1
2(n − k)

)
k![2(n − k) − 1]!!(

1 +
√

a/b
)k+1

. (5.2)
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Proof. [Alternative proof of the integral formula (5.1) for a, b > 0 and 0 < p < 1] The formula of Faà di Bruno
and Schlömilch [18, p. 33] states that

dn( f ◦ 1)
dxn =

n∑
k=1

(
f (k)
◦ 1

)
Yn,k(1) (5.3)

where the operator Yn,k has the explicit form

Yn,k(1) =
1
k!

k∑
j=0

(−1)k− j
(
k
j

)
1k− j

(
1 j

)(n)
(5.4)

An inductive proof for this formula can also be found in [29].
Consider the case 1(x) = xp with 0 < p < 1. According to (5.4), we have

Yn,k(xp) =
1
k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

)
x(k−ℓ)p

(
xpℓ

)(n)
=

1
k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

)
x(k−ℓ)p

⟨pℓ⟩nxpℓ−n =
xkp−n

k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

)
⟨pℓ⟩n.

When setting f (x) = 1
1+x , according to (5.3), we have

dn

dxn

( 1
1 + xp

)
=

n∑
k=1

(−1)kk!
(1 + xp)k+1

xkp−n

k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

)
⟨pℓ⟩n =

1
xn+p

n∑
k=1

( xp

1 + xp

)k+1 k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n. (5.5)

Let 0 < p < 1 and λ > 0. Consider the meromorphic function

F(z) =
1

(1 − λ e−z)(1 + epz)
.

Consider also the positively oriented rectangle R = ABCD with vertices A(−R − πi), B(R − πi), C(R + πi),
and D(−R+πi) for R > | lnλ|, as indicated in Figure 2. In the interior of the region enclosed by the rectangle

Figure 2: The positively oriented rectangle R = ABCD

R, the function F has a unique pole p = lnλ of the residue Res(F, p) = 1
1+λp . Therefore, by Cauchy’s residue

theorem in complex analysis, it follows that∫
R

F(z)dz =
2πi

1 + λp . (5.6)
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On the other hand, from∣∣∣∣∣∫
BC

F(z)dz
∣∣∣∣∣ = ∣∣∣∣∣i ∫ π

−π
F(R + it)dt

∣∣∣∣∣ ≤ π

(1 − λ e−R)(epR −1)

and ∣∣∣∣∣∫
DA

F(z)dz
∣∣∣∣∣ = ∣∣∣∣∣i ∫ π

−π
F(−R + it)dt

∣∣∣∣∣ ≤ π

(λ eR −1)(1 − e−pR)
,

we derive

lim
R→∞

∫
BC

F(z)dz = lim
R→∞

∫
DA

F(z)dz = 0.

Further, we have∫
AB

F(z)dz +
∫

CD
F(z)dz =

∫ R

−R
F(x − πi)dx −

∫ R

−R
F(x + πi)dx

=

∫ R

−R

1
1 + λ e−x

( 1
1 + epx−ipπ −

1
1 + epx+ipπ

)
dx

= 2i sin(pπ)
∫ R

−R

1
1 + λ e−x

epx

1 + 2 cos(pπ) epx + e2px dx.

Consequently, letting R tend to∞ in (5.6) and rearranging lead to∫
∞

−∞

1
1 + λ e−x

epx

1 + 2 cos(pπ) epx + e2px dx =
π

sin(pπ)
1

1 + λp .

The change of variables ex = t yields∫
∞

0

tp

1 + 2 cos(pπ)tp + t2p

dt
t + λ

=
π

sin(pπ)
1

1 + λp .

Taking the nth derivative with respect to λ arrives at∫
∞

0

tp

1 + 2 cos(pπ)tp + t2p

dt
(t + λ)n+1 =

π
sin(pπ)

(−1)n

n!
dn

dλn

( 1
1 + λp

)
.

Combining this with (5.5) reveals∫
∞

0

tp

1 + 2 cos(pπ)tp + t2p

dt
(t + λ)n+1 =

π
sin(pπ)

(−1)n

n!λn+p

n∑
k=1

(
λp

1 + λp

)k+1 k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

Now the change of variables t = a−1/pu with a > 0 yields∫
∞

0

up

a2 + 2a cos(pπ)up + u2p

a1+n/pdu
(u + a1/pλ)n+1

=
π

sin(pπ)
(−1)n

n!λn+p

n∑
k=1

(
λp

1 + λp

)k+1 k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

Finally, applying this to λ = a−1/pb for b > 0 results in∫
∞

0

up

a2 + 2a cos(pπ)up + u2p

du
(u + b)n+1 =

π
sin(pπ)

(−1)n

n! bn

n∑
k=1

bpk

(a + bp)k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n
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or, equivalently,∫
∞

0

up

a2 + 2a cos(pπ)up + u2p

du
(u + b)n+1 =

π
(a + bp) sin(pπ)

(−1)n

n! bn

n∑
k=1

1
(1 + a/bp)k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

The required proof is complete.

Remark 5.1. By analytic continuation, we claim that the integral formula (5.1) is valid for

a ∈
{
z ∈ C : | arg(z)| < (1 − p)π

}
and b ∈ C \ (−∞, 0]. For example, if 0 < p < 1

2 , b = 1, and a = i, then∫
∞

0

up

−1 + 2i cos(pπ)up + u2p

du
(u + 1)n+1 =

π
sin(pπ)

(−1)n

n!

n∑
k=0

1
(1 + i)k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n

which is equivalent to∫
∞

0

up[u2p
− 1 − 2i cos(pπ)up]

1 + 2 cos(2pπ)u2p + u4p

du
(u + 1)n+1 =

π
sin(pπ)

(−1)n

n!

n∑
k=0

e−iπ(k+1)/4

2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

Further comparing imaginary parts of this equality gives∫
∞

0

u2p

1 + 2 cos(2pπ)u2p + u4p

du
(u + 1)n+1 =

π
sin(2pπ)

(−1)n

n!

n∑
k=0

sin(π(k + 1)/4)
2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

On the other hand, setting a = b = 1 and replacing p by 2p in (5.1) result in∫
∞

0

u2p

1 + 2 cos(2pπ)up + u2p

du
(u + 1)n+1 =

π
sin(2pπ)

(−1)n

n!

n∑
k=0

1
2k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨2pℓ⟩n.

Accordingly, for 0 < p < 1
2 , we obtain

n∑
k=0

1
2k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨2pℓ⟩n =

n∑
k=0

sin(π(k + 1)/4)
2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

Since both sides of this equality are polynomials in the variable p, we acquire

n∑
k=0

1
2k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨2ℓz⟩n =

n∑
k=0

sin(π(k + 1)/4)
2(k+1)/2

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨ℓz⟩n

for all z ∈ C.

Remark 5.2. From the proof of Theorem 2.1, we conclude that

dnGa,b;p(x)
dxn =

(−1)n

(b − x)n

n∑
k=0

(b − x)kp

[a + (b − x)p]k+1

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

Combining this with the integral representation (3.1) in Theorem 3.1 derives the integral formula
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∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
(b + t − x)n+1 dt

=
π

[a + (b − x)p] sin(pπ)
(−1)n

n!(b − x)n

n∑
k=0

1
[1 + a/(b − x)p]k

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n.

This is essentially same as the integral formula (5.1).

Remark 5.3. Letting a = 0 and computing integrals in (5.1) and (5.2) leads to∫
∞

0

1
tp

1
(b + t)n+1 dt =

Γ(1 − p)Γ(n + p)
n!bn+p =

π
bp sin(pπ)

(−1)n

n!bn

n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n

and ∫
∞

0

1
√

t (b + t)n+1
dt =

√
πΓ

(
n + 1

2

)
n!bn+1/2

=
π

(2n)!!bn+1/2

n∑
k=0

k![2(n − k) − 1]!!
(
2n − k − 1
2(n − k)

)
.

As a result, we obtain two interesting formulas

Γ(1 − p)Γ(n + p) = (−1)n π
sin(pπ)

n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n (5.7)

and

Γ
(
n +

1
2

)
=

√
π

2n

n∑
k=0

k![2(n − k) − 1]!!
(
2n − k − 1
2(n − k)

)
(5.8)

for 0 < p < 1 and n ≥ 0.
The equality (5.7) is rewritten and extended in [17, Theorem 3.2] as

n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨αℓ⟩n = ⟨−α⟩n

for n ≥ 0 and α ∈ C, where the falling factorial ⟨−α⟩n is defined by (2.2).
By the recurrence relation

Γ(z + 1) = zΓ(z) (5.9)

and Euler’s reflection formula Γ(z)Γ(1 − z) = π
sin(zπ) for z , 0,±1, . . . (see [32, Chapter 5]), we can rewrite the

identity (5.7) as

(p)n = (−1)n
n∑

k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
⟨pℓ⟩n = (−1)n

n∑
ℓ=0

(−1)ℓ⟨pℓ⟩n
n∑

k=ℓ

(
k
ℓ

)

= (−1)n
n∑
ℓ=0

(−1)ℓ⟨pℓ⟩n
n∑

k=ℓ

[(k + 1
ℓ + 1

)
−

(
k
ℓ + 1

)]
= (−1)n

n∑
ℓ=0

(−1)ℓ
(
n + 1
ℓ + 1

)
⟨pℓ⟩n

(5.10)

for 0 < p < 1 and n ≥ 0, where the notation

(α)n =

α(α + 1) · · · (α + n − 1), n ≥ 1
1, n = 0
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for α ∈ C is called the rising factorial, the Pochhammer symbol, or shifted factorial. Because all sides in (5.10) are
polynomials in p for 0 < p < 1, all equalities in (5.10) must be valid for all p ∈ C and n ≥ 0. Thus, we obtain the
identity

(z)n = (−1)n
n∑
ℓ=0

(−1)ℓ
(
n + 1
ℓ + 1

)
⟨ℓz⟩n, z ∈ C.

By the recurrence relation (5.9) and the formula Γ
(

1
2

)
=
√
π (see [32, Chapter 5]), we can rewrite the identity (5.8)

as

(2n − 1)!! =
n∑

k=0

k![2(n − k) − 1]!!
(
2n − k − 1
2(n − k)

)
, n ≥ 0. (5.11)

The identity (5.11) is also derived in [17, Theorem 4.2] and in the proof of [57, Theorem 3.2].
By the way, we can rearrange [15, Theorem 2.1] as

1
(2n − 1)!!

=
(−1)n+1

23n−2(n − 1)!

2n−1∑
k=0

(−1)k

2n − 2k − 1

(
2n − 1

k

)
, n ≥ 1.

Comparing this with (5.11) leads to the identity[ n∑
k=0

k![2(n − k) − 1]!!
(
2n − k − 1
2(n − k)

)][2n−1∑
k=0

(−1)k

2n − 2k − 1

(
2n − 1

k

)]
= (−1)n+123n−2(n − 1)!, n ≥ 1.

6. An elementary computation of the integral in (5.2)

In this section, we will compute the integral in (5.2) elementarily.

Lemma 6.1. For real numbers a, b with a , b and any positive integer n, we have

1
(a + x)(b + x)n =

1
(b − a)n(a + x)

−

n∑
ℓ=1

1
(b − a)n−ℓ+1(b + x)ℓ

. (6.1)

Proof. The equality (6.1) can be proved straightforwardly by induction on n. However, we will demonstrate
an alternative proof as follow.

The right hand side of the equality (6.1) can be restructured and computed as

1
(b − a)n+1

[
b − a
a + x

−

n∑
ℓ=1

( b − a
b + x

)ℓ]
=

1
(b − a)n+1

[b − a
a + x

−
b − a
a + x

(
1 −

( b − a
b + x

)n)]
=

1
(b − a)n+1

[b − a
a + x

( b − a
b + x

)n)]
=

1
(a + x)(b + x)n .

The proof of Lemma 6.1 is complete.

Lemma 6.2. For real number b > 0 and integer ℓ ≥ 1, we have∫
∞

0

√
t

(b + t)ℓ+1
dt =

π

bℓ−1/2

(2ℓ − 3)!!
(2ℓ)!!

. (6.2)

For a, b ≥ 0, we have∫
∞

0

√
t
( 1

a + t
−

1
b + t

)
dt = π

(√
b −
√

a
)
. (6.3)
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Proof. It is straightforward that∫
∞

0

√
t

(b + t)ℓ+1
dt =

1
bℓ+1

∫
∞

0

√
t

(1 + t/b)ℓ+1
dt =

1
bℓ−1/2

∫
∞

0

√
u

(1 + u)ℓ+1
du =

1
bℓ−1/2

B
(3

2
, ℓ −

1
2

)
=

1
bℓ−1/2

Γ
(

3
2

)
Γ
(
ℓ − 1

2

)
Γ(ℓ + 1)

=
1

bℓ−1/2

1
2Γ

(
1
2

)(
ℓ − 3

2

)(
ℓ − 5

2

)
· · ·

3
2

1
2Γ

(
1
2

)
ℓ!

=
π

bℓ−1/2

(2ℓ − 3)!!
(2ℓ)!!

,

where B(z,w) denotes the classical beta function

B(z,w) =
∫ 1

0
tz−1(1 − t)w−1dt =

∫
∞

0

tz−1

(1 + t)z+w dt

forℜ(z) > 0 andℜ(w) > 0 and satisfies

B(z,w) =
Γ(z)Γ(w)
Γ(z + w)

= B(w, z).

See [1, p. 258, 6.2.1 and 6.2.2].
When a, b > 0 and a , b, the first proof of the formula (6.3) is straightforward as follows:∫

∞

0

√
t
( 1

a + t
−

1
b + t

)
dt = 2

∫
∞

0
s2
( 1

a + s2 −
1

b + s2

)
ds

= 2(b − a)
∫
∞

0

s2

(a + s2)(b + s2)
ds

= 2(b − a)
∫
∞

0

d
ds

[ √a arctan s
√

a
−
√

b arctan s
√

b

a − b

]
ds

= 2(b − a)

√
a arctan s

√
a
−
√

b arctan s
√

b

a − b

∣∣∣∣∣∣
s=∞

s=0

= π
(√

b −
√

a
)
.

When a, b > 0 and a , b, we can alternatively prove the formula (6.3) as follows:∫
∞

0

√
t
( 1

a + t
−

1
b + t

)
dt =

∫
∞

0

[ b

(b + t)
√

t
−

a

(a + t)
√

t

]
dt

= 2
√

b arctan

√
t
b

∣∣∣∣∣t=∞
t=0
− 2
√

a arctan

√
t
a

∣∣∣∣∣t=∞
t=0
= π

(√
b −
√

a
)
.

The proof of Lemma 6.2 is complete.

Theorem 6.1. If n ≥ 0 is an integer and a ≥ 0, b > 0, and a , b are real numbers, then∫
∞

0

√
t

a + t
1

(b + t)n+1 dt = −
π

(b − a)n+1

[
√

a +
√

b
n∑
ℓ=0

(
1 −

a
b

)ℓ (2ℓ − 3)!!
(2ℓ)!!

]
. (6.4)

Proof. [First proof of Theorem 6.1] From Lemma 6.1, it follows that

1
(a + t)(b + t)n+1 =

1
(b − a)n+1

( 1
a + t

−
1

b + t

)
−

n+1∑
ℓ=2

1
(b − a)n−ℓ+2(b + t)ℓ

.
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Further integrating on both sides with respect to t and applying the formulas (6.2) and (6.3) in Lemma 6.2
arrive at∫

∞

0

√
t

a + t
1

(b + t)n+1 dt =
1

(b − a)n+1

∫
∞

0

√
t
( 1

a + t
−

1
b + t

)
dt −

∫
∞

0

n+1∑
ℓ=2

√
t

(b − a)n−ℓ+2(b + t)ℓ
dt

=
π
(√

b −
√

a
)

(b − a)n+1 −

n∑
ℓ=1

1
(b − a)n−ℓ+1

∫
∞

0

√
t

(b + t)ℓ+1
dt

=
π
(√

b −
√

a
)

(b − a)n+1 −

n∑
ℓ=1

1
(b − a)n−ℓ+1

π

bℓ−1/2

(2ℓ − 3)!!
(2ℓ)!!

=
π
(√

b −
√

a
)

(b − a)n+1 −
π
√

b
(b − a)n+1

n∑
ℓ=1

(
1 −

a
b

)ℓ (2ℓ − 3)!!
(2ℓ)!!

= −
π

(b − a)n+1

[
√

a +
√

b
n∑
ℓ=0

(
1 −

a
b

)ℓ (2ℓ − 3)!!
(2ℓ)!!

]
.

The proof of Theorem 6.1 is complete.

Proof. [Second proof of Theorem 6.1] The formula (6.3) can be rewritten as∫
∞

0

√
t

(a + t)(b + t)
dt = π

( √b
b − a

−

√
a

b − a

)
.

Differentiating n times with respect to b on both sides of the above equality and making use of Leibnitz’s
rule for differentiation yield∫

∞

0

(−1)nn!
√

t
(a + t)(b + t)n+1 dt = π

[ dn

dbn

( √b
b − a

)
−

dn

dbn

( √a
b − a

)]
= π

[ n∑
ℓ=0

(
n
ℓ

)
dℓ

dbℓ
(√

b
) dn−ℓ

dbn−ℓ

( 1
b − a

)
−

√
a (−1)nn!

(b − a)n+1

]

= π

[ n∑
ℓ=0

(
n
ℓ

)〈1
2

〉
ℓ
b1/2−ℓ (−1)n−ℓ(n − ℓ)!

(b − a)n−ℓ+1
−

√
a (−1)nn!

(b − a)n+1

]

= −π
(−1)nn!

(b − a)n+1

[
√

a −
(b − a)n+1

(−1)nn!

n∑
ℓ=0

(
n
ℓ

)〈1
2

〉
ℓ
b1/2−ℓ (−1)n−ℓ(n − ℓ)!

(b − a)n−ℓ+1

]

= −π
(−1)nn!

(b − a)n+1

[
√

a −
√

b
n∑
ℓ=0

(−1)ℓ

ℓ!

〈1
2

〉
ℓ

(
1 −

a
b

)ℓ]

= −π
(−1)nn!

(b − a)n+1

[
√

a −
√

b
n∑
ℓ=0

(−1)ℓ

ℓ!
1
2

(
−

1
2

)
· · ·

(1
2
− ℓ + 1

)(
1 −

a
b

)ℓ]

= −π
(−1)nn!

(b − a)n+1

[
√

a +
√

b
n∑
ℓ=0

(2ℓ − 3)!!
(2ℓ)!!

(
1 −

a
b

)ℓ]
.

The integral formula (6.4) is thus proved.

Remark 6.1. The formula (6.3) can also be rearranged as∫
∞

0

√
t

(a + t)(b + t)
dt =

π
√

a +
√

b
.
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Differentiating n times with respect to b on both sides of the above equality, utilizing Faà di Bruno’s formula (2.3),
making use of the identity (2.4), and employing the formula (2.7) reveal∫

∞

0

(−1)nn!
√

t
(a + t)(b + t)n+1 dt =

dn

dbn

(
π

√
a +
√

b

)
=

n∑
k=0

dk

dxk

(
π

√
a + x

)∣∣∣∣∣
x=
√

b
Bn,k

((√
b
)′
,
(√

b
)′′
, . . . ,

(√
b
)n−k+1)

= π
n∑

k=0

(−1)kk!
(
√

a + x)k+1

∣∣∣∣∣
x=
√

b
Bn,k

(
b1/2−1

〈1
2

〉
1
, b1/2−2

〈1
2

〉
2
, . . . , b1/2−(n−k+1)

〈1
2

〉
n−k+1

)
= π

n∑
k=0

(−1)kk!

(
√

a +
√

b )k+1
bk/2−n Bn,k

(〈1
2

〉
1
,
〈1

2

〉
2
, . . . ,

〈1
2

〉
n−k+1

)
= π

n∑
k=0

(−1)kk!

(
√

a +
√

b )k+1
bk/2−n(−1)n+k[2(n − k) − 1]!!

(1
2

)n(2n − k − 1
2(n − k)

)
which recovers the integral formula (5.2), where a ≥ 0 and b > 0.

Remark 6.2. For a ≥ 0 and b > 0, combining (5.2) and (6.4) results in an identity

n∑
k=0

(
2n − k − 1
2(n − k)

)
k![2(n − k) − 1]!!(

1 +
√

a/b
)k+1

= −
(2n)!!

(1 − a/b)n+1

[√
a
b
+

n∑
ℓ=0

(
1 −

a
b

)ℓ (2ℓ − 3)!!
(2ℓ)!!

]

which can be further simplified as

n∑
k=0

(
2n − k − 1
2(n − k)

)
k![2(n − k) − 1]!!

(1 + x)k+1
= −

(2n)!!
(1 − x2)n+1

[
x +

n∑
ℓ=0

(2ℓ − 3)!!
(2ℓ)!!

(
1 − x2

)ℓ]
(6.5)

for x ≥ 0.
More extensively, the identity (6.5) is valid for all x ∈ C \ {−1, 1}, because both sides of (6.5) are analytic on the

set C \ {−1, 1}.

Remark 6.3. We note that all proofs in this section are elementary. In other words, Cauchy’s integral formula in
complex analysis is not employed in all proofs of Lemma 6.1, Lemma 6.2, and Theorem 6.1.

7. More remarks

Finally, we list more remarks on main results of this paper.

Remark 7.1. Let a ≥ 0, b > 0, and 0 < p < 1. Then, motivated by (4.1), one can consider the function

C(a, b; p; x) =
sin(pπ)
π

∫
∞

0

tp

a2 + 2a cos(pπ)tp + t2p

1
(b + t)x+1 dt

for x ≥ 0. Can one compute this integral explicitly in terms of closed forms? For more details on so-called closed
forms, please refer to [4] and closely related references therein.

Remark 7.2. We do not find integral formulas (5.1), (5.2), and (6.4) in monographs and handbooks [1, 12, 32, 66].
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Remark 7.3. Integral representations of the Catalan numbers Cn for n ≥ 0 have been reviewed and surveyed in [43,
Section 2]. The first integral representation

Cn =
1

2π

∫ 4

0

√
4 − x

x
xndx, n ≥ 0 (7.1)

was discovered in [34] and applied in [59]. An alternative integral representation

Cn =
1
π

∫
∞

0

√
t

(t + 1/4)n+2 dt (7.2)

was derived in [53, Theorem 1.3]. The equivalence of integral representations (7.1) and (7.2) was proved in [36,
Theorem 1.3]. The integral representation (7.2) can be recovered from (4.1) by setting a = 1

2 , b = 1
4 , and p = 1

2 .

Remark 7.4. For α ∈ R, we consider the sequence Zn,k(α) generated by

[(1 + T)α − 1]k

k!
=

∑
n≥k≥0

Zn,k(α)
Tn

n!
.

See [7, p. 158]. When α = 1
2 , straightforward computation yields

[(1 + T)1/2
− 1]k

k!
=

1
k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

)
(1 + T)ℓ/2

=
1
k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

) ∞∑
n=0

(
ℓ/2
n

)
Tn =

∞∑
n=0

[
1
k!

k∑
ℓ=0

(−1)k−ℓ
(
k
ℓ

)〈
ℓ
2

〉
n

]
Tn

n!

which means that

Zn,k

(1
2

)
=

(−1)k

k!

n∑
ℓ=0

(−1)ℓ
(
k
ℓ

)〈
ℓ
2

〉
n
.

On the other hand, it is listed in [7, p. 158] that

Zn,k

(1
2

)
= (−1)n−k (n − 1)!

(k − 1)!

(
2n − k − 2

n − 1

)
1

22n−k
.

Accordingly, we obtain the equality

(−1)k

k!

n∑
ℓ=0

(−1)ℓ
(
k
ℓ

)〈
ℓ
2

〉
n
= (−1)n−k (n − 1)!

(k − 1)!

(
2n − k − 2

n − 1

)
1

22n−k

which can be rearranged as (2.6). Consequently, we recover the identity (2.6).

Remark 7.5. One of anonymous referees pointed out that, in the paper [33], there is a computation of the quantity
⟨pℓ⟩n appearing in (5.1) and other places in Section 5. Concretely speaking, combining the equations (1) and (7)
in [33],

⟨xy⟩k =
k∑

ℓ,m=1

[ k∑
p=1

s(k, p)S(p, ℓ)S(p,m)
]
⟨x⟩ℓ⟨y⟩m, k ≥ 1,

where s(k, p) and S(p,m) denote the Stirling numbers of the first and second kinds, which can be analytically generated
by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
and

(ex
−1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!

respectively. See [17, p. 782] and [39, Section 2].

Remark 7.6. This paper is a revised version of the electronic preprints [25, 26] which have been cited in [9].
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