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Abstract. The n-hyponormal and weakly n-hyponormal weighted shifts were developed to study bridges
of operators between the subnormal and hyponormal operators on an infinite dimensional complex Hilbert
space about 30 years ago. In this paper we discuss the distinction between the classes of n-hyponormal
and weakly n-hyponormal weighted shifts. For such a purpose we consider an arbitrary contractive
hyponormal weighted shift W, and find a sufficient condition for the weak n-hyponormality of W,. We
provide a general technique for distinction between the n-hyponormality and the weak n-hyponormality
of W,, and investigate the distinction between the classes of n-hyponormal and weakly n-hyponormal
weighted shifts with Bergman shift and some other examples.

1. Introduction and preliminaries

Let H be an infinite dimensional complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. An operator T € B(H) is subnormal if it is (unitarily equivalent to) the restriction
of a normal operator to an invariant subspace. For a positive integer n € IN, an operator T is (strongly)

n-hyponormal if the (n+1) X (n+1) operator matrix [T*f Ti]jj_o is positive. Itis well-known that T is subnormal
if and only if T is n-hyponormal for all n € IN. For n € IN, an operator T is weakly n-hyponormal if p(T) is
hyponormal for every polynomial p of degree # or less ([5],[6]). In particular, the weak 2-hyponormality
[weak 3-hyponormality, or weak 4-hyponormality, resp.] is referred to as quadratic hyponormality [cubic
hyponormality, or quartic hyponormality, resp.]. An operator T € B(H) is said to be polynomially hyponormal
if T is weakly n-hyponormal for all n € IN. Obviously, 1-hyponormal [or weakly 1-hyponormal] operator
T € B(H) is hyponormal, i.e., T'T > TT*. It is known that every subnormal operator is polynomially
hyponormal and every n-hyponormal operator is weakly n-hyponormal, namely we get
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“subnormal = n-hyponormal = weakly n-hyponormal = hyponormal (n € IN).”

Many operator theorists have studied the converse implications; for example, see [5],[6],[10],[18],[21],
[24], etc. In [12, Theorem 2.1], Curto-Putinar proved theoretically that there exists a polynomially hy-
ponormal operator which is not 2-hyponormal. One can confirm the existence of a weighted shift that is
polynomially hyponormal but not subnormal ([26, Theorem 3.4]). But one does not know any concrete
example of a weighted shift that is polynomially hyponormal but not subnormal yet. Also it is not known
whether a polynomially hyponormal weighted shift but not 2-hyponormal exists ([12, Remark 2.9]). Thus
many operator theorists have studied the structure of n-hyponormal and weakly n-hyponormal weighted
shifts for more than 30 years. The flatness is important to detect the structure of such weighted shifts
(cf. [3L[51,[6],[23]). The flatness of subnormal weighted shifts was begun by J. Stampfli ([27]); he proved
that if W, is a subnormal weighted shift with a weight sequence a = {ax};7, in R, \ {0} and ap = a1, then
ap = a1 = ap = ---, where R, is the set of nonnegative real numbers. In [6] R. Curto improved Stampfli’s
result as that if W, is a 2-hyponormal weighted shift with first two equal weights, then g = @y = ap = -+~
And he also proved that a weighted shift W, is quadratically hyponormal, where

2 2 3 4
BB "

in [6, Proposition 7]. This means that the quadratic hyponormality of a weighted shift W, does not preserve
the flatness property, which motivated the following problem.

Problem 1.1 ([7, Problem 4]). Describe all quadratically hyponormal weighted shifts W, with oy = a;.

Since R. Curto introduced Problem 1.1 in 1991, several operator theorists have studied this problem for
more than 30 years (cf. [3],[5],[6],19],[14],[15],[16],[17],[22],[23], etc.). Some of them are closely related to the
Bergman shift. In particular, Exner-Jung-Park generalized Curto’s example with weights in (1.1), namely,
in [17, Theorem 2.2], they proved that if a = {a;}77, is given by

SR N

where x is a positive real number, then the associate weighted sh1ft W, is quadratically hyponormal if and

only if 0; < x < 6p, where |67 — 0.1673] < and |6, — 0.7439| < In [23], Li-Cho-Lee proved that

1000 1000

if Wy, is a cubically hyponormal weight shift with first two equal weights, then ag = o = ap = -+ -

This means that every weakly n-hyponormal weighted shift W, with first two equal weights satisfies the
flatness property for n > 3. Hence we can see that Problem 1.1 does not extend to the weak n-hyponormality
of weighted shifts for n > 3. However, the following problem is interesting to us still.

Problem 1.2. Let a (x, y) be a weight sequence defined by
alx,y):xy a0,0,...,

where x and y are positive real variables and let Wy, be the associate weighted shift. Denote the regions
in R? := R, X R, by

’Wﬂg(’; 5 = 15, Y) : W) is weakly n-hyponormall, n > 2;
S?-(gzi , = () : Wagsy) is n-hyponormal), n > 2.
Describe the region (WWOZC y)\SW<l(>x pfornz3and2<l<n.

In terms of Problem 1.2, we recall some known results as following.
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\SH? %

3 2 . 3
o Ifa(x,y): Vrx, VY, \/g, \/g, s then(%, %) € ‘Wﬂfl(iry)\Sﬂ fx(?w),whlch means that WH® o)

a(x,y)
@ ([21, Corollary 3.5]).
e a(xy): V5 T \/g \/é cothen (5 2): 2 <x < 82y cWHY \SH (10, Corollary 5).

o Ka(oy): VT VT 3 3o then SHE) =0 SHE | = (120))

Concerning Problem 1.2, we recall that the following question as a general version of [17, Theorem 2.2]
is natural.

Fora(x,y): Vx, \JY, \/g, \/;, ..., describe the full range of the set {(x, y) : W,y is quadratically hyponormal}.

This is an open problem arising from the authors of [17]. In this paper we discuss a sufficient condition for

a nonempty region in “WW;"(; ,) Which satisfies (Wﬂggc y)\Sng(, y * @ forn>3.

This paper consists of four sections. In Section 2, we construct a subregion of WH géi W for n > 3, which

will be denoted by CWWZZ;): " (see Algorithm 2.3). And we see that the associated weighted shifts Wy,

to pair (x,y) € CWH ™ " have the weak n-hyponormality of Wy, (see Lemma 2.4). In Section 3, we

axy)
apply the Bergman shift as an example to find the subregion CWH") ' satisfying W 7{2"(1 y)\S'ngl n*o

a(xy)
for n > 3 via Lemma 2.4. The techniques of Sections 2 and 3 via Algorithm 2.3 provide an idea to find

examples of a weighted shift W, satisfying W H )\37-(<"> # @ for n > 3. In Section 4, we will discuss

alxy a(x,y)
i (n) o fui (n) (1) : . .
the subregion of ‘W ?{a(x,y) satisfying WH a(x/y)\SV‘{a(x’y) # @ for n > 3 with an example of a weighted shift

which is not Bergman shift.
Some of the calculations in this paper were aided by using the software tool Mathematica ([29]).

2. Description of a subregion CWH™  of WH™
alx,y) a(x,y)

For a sequence a = {oz,-}l‘.’zo of positive real numbers and #, k > 0, denote the Hankel matrix of a by

ag k41 e Qfetn
2738 (2735} o O+l
Hykl@) = . X } ) : (2.1)
Qk+n  Aksn+l " Aks2n

We consider y := {y;}:2, defined by

i=
Yo:=1 and y;:= al.z_ly,-_l, i>1, (2.2)

which are sometimes referred to as moments of «.

We begin this section with an equivalent condition for the weak n-hyponormality for a contractive
hyponormal weighted shift, which is revised slightly from [18, Theorem 2.3].

[e9)

Lemma 2.1. Supposen > 2. Let W, be a contractive hyponormal weighted shift with a := {a;};Z and let y := {yi}72
be as in (2.2). For any finite sequences {e;}!= and {6;)'= in Ry, it holds that W, is weakly n-hyponormal if and only
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if the following condition holds:

o _ 2 V-1 Vn Pn-1Po Pn-1P0 5
K56npr) = v fpupo] + ([ Yno Yme1 =€l ] [ Pup1 H Pupr ]) @3
Vn-k Vin-k+1 T Vn an—kPo (,bn—kpo
U Vickel Vieksz — €kt Vnrt Qr-k+1P1 Qn-k+1P1
= : : . : : :
Vn Vn+1 o Va+k (Pnpk ¢npk
‘)/O_ ‘)/1(1)1 ‘)/2_ . ‘ynﬂl ZO 1 ZO
yipr Yo +e  ysp1r 0 Y o1dn ! !
+ V2 7/3¢1 V4 T Vn+2¢n (PZPZ , ¢2p2
Vb Ve ®1Gu Vueafn oo yauldal +6 (Pn_z;f "~ (Pn_;f "~
.. . g [ 9 ]
y.k ‘ )/.n ' ykfr” P1Pk1 1Pk
n—1 . . . . : : .
L = Op . : ] :
* =1 V . 2 k k . VZ (Pn—kpn (Pn—kpn
Vik+n YVon et Vi+2n i (Pnpk-m I ¢npk+n |
qk qk
oo P1Pr+1 P1Pk+1
+ Z Houx(y) P2Pre2 || P2Prs2
k=n : .
qbnpk+n ¢npk+n

is positive for any ¢ = {qb,v}; ,p = {piteg and q = {qi} =, in C, where

n-1 n—1
e=Y e|pural and 6= oo - (2.4)
I=1 =1

Proof. Observe that the expressions of the right sides of (2.3) above and (2.8) in [18, Theorem 2.3] coincide
exactly. O

Let a = {a;}, be a weight sequence of positive real numbers and let y := {y;}?; be as in (2.2). We
consider the matrix-valued functions Fy and Gy on [0, o) defined by

_ [ Vn-1 Vn
Fi(h) = e pea—h |’ (2.5)
[ Vn-k Vn-k+1 T Vn
Viokel Vnke2—h 0 Vun
=] " i " 2<k<n-t 2.6)
Vn Vn+1 cee Vn+k
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and
')/k e ')/n e yk+l’l
Gm=| v« - Ymx—h - yum |, 15k<n-1, (2.7)
Vitn " Van ot YVk+2n
respectively.

The following lemma comes immediately from Lemma 2.1.

Lemma 2.2. Let W, be a contractive hyponormal weighted shift with a := {a;};2, and let y := {y;}?2 be as in (2.2).

Suppose Fi(ex) = 0, Gi(0x) = 0 for some € and O, in Ry for 1 <k <n—1,and H,x(y) = 0 for all k > n. Assume
that, for any ¢ = {qpi}?:l inC,

Yo o nifr Y2 oo YnPn
yigr yadpiP+e  yapr 0 Ve 1
Dy(e, 0):=| 12 V31 o o Yaendn | x0,
J/na 7/n+1¢1¢7n YVH—ZE e V2n|¢n|2 +6

where € and 6 are as in (2.4). Then W, is weakly n-hyponormal.
We now give the algorithm to construct the subregion C'W (ngi,y) of W 7‘(2:8{,” for weak n-hyponormality.

Algorithm 2.3. Suppose n > 2. Let @ = {a;}77, be a weight sequence of positive real numbers and let
y = {yi}iZ, be moments of a. Suppose a(x, ) is the 2-step backward extension weight sequence of a, namely,

a(x,y):x,y ao,a1,..., (2.8)

where x and y are positive real variables. Let Wy, be the associated weighted shift to a(x, y). To construct

the subregion CWH"")

a(ry) W€ provide steps as following.

I. Take the largest possible € so that Fy(ex) > 0for1 <k <n-2.
II. Take the largest possible Oy so that Gx(0x) 2 0for2 <k <n—1.
III. For € and 0 in Steps I and II, find the range of (x,y) satisfying G1 (0) > 0, A,(x,y) > 0 for any
¢ = {gbi}; in C with ¢; = 1, where

ﬁ % Yo e Vn-3 yn—Zan
% Yo+ (x;)z 71 VYn-2 Vn-1Pn
Y0 71 Vn®Pn
An(x,y) = : ; Hy32(y) : ’ (2.9)
V-3 Vn-2 Vn+1Pn
| 7/71—2@ Vn—lczTn yn@ toe 7/2n—1¢_n )/2;1—2|(Pn|2 + # ]

where € and 6 are as in (2.4).
IV. Denote the set CWH ff(;y) consisting of pair (x, y) obtained from Step IIL

The following lemma follows from Lemma 2.2 immediately.
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Lemma 2.4. Suppose n > 2 and W, is a contractive n-hyponormal weighted shift with a = {a;}2. Let y = {yi}2,
be a moment sequence of a and a(x, y) be a weight sequence as in (2.8).If (x, y) € C(M/V{f:g Y

n-hyponormal.

then Wox,y) is weakly

Proof. Since W, is n-hyponormal, obviously H,x(y) > 0 for all k > n. Hence, according to Algorithm 2.3,
the proof is complete. [

Before closing this section, we note that the set CWH gz; "
(1)

alry) = @ forn > 3; indeed, consider a sequence @ : a,4,a,b,b, ... with0 <a < b

can be empty possibly, namely we can find

an example satisfying CWH
for such an example.

3. Bergman weighted shift and description of C(W?{Z:i "

Let Wy, be a contractive hyponormal weighted shift with a weight sequence a(x, y) as in (2.8). In this
section, we will discuss the range of C'W' Wi’;i/y) with the Bergman weighted shift W, which is one of the typ-
ical models to study the weak n-hyponormality of weighted shifts (cf. [6],[9],[10],[13],[17],[18],[20],[21],[22],

[25]). Recall that if ar (x, y) : Vx, VY, \/g, \/g, ..., then Sﬂi;i) )= ﬂ;":lS'Hf;; ) =2 To avoid this case, we

consider the 2-step backward extension a (x, y) of { %} which is given by
i=2

a(x,y): Vx, VY, \/g, \/g, (3.1)

i (e0) (n) . .
In this case, we know that S(Ha(x,y) # @,and CWH alry) €D be compared possibly to the known results in

Section 1.
Consider the associated moment sequence y = {)/ j} ,ofa (v, y) asin (3.1) and the Hankel matrix H,, ()

j:
as in (2.1). Then it follows that for k > 2 and n > 0,

" G(n+2)2Gk+n+2)?
k+i+j+1 l./].:O_ Gk +1)G(k+2n+3)’

1
det @Hn,k(y) = det

(3.2)

where G(-) is Barnes G-functionV. (cf. [10, p.460],[13, Lemma 2.1],[25, Lemma 2.2]). Now consider the

1 [oe]
sequence = {m}

1o BY (2.1) and (3.2), we can see easily that H,, (C) is the Cauchy matrix as following

Hn,k = Hn,k (C) =

1 n
S > 0. )
k+i+j+1]i,]._0’ konz0 (3.3)

We start our work with an elementary lemma which can be proved by a direct computation.
Lemma 3.1. Let M,,x; be the submatrix obtained by deleting the I-th row and column of H, x. Then

[(n+k+D?
(k+ 20— D[(n—1+ DP[(k+ - DIP[I - D]

det My = det Hyk.

Consider a matrix H, 1,(s) whose entries /;; are defined by

hi]:{ ng_g—s ifi=j=1-1,

m otherwise.

DThe Barnes G-function is presented by G(n) = 112! -- (n — 2)! ([1]).
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Obviously we get det H,,x(s) = det H,, x — s det M, ;. For brevity, we denote by

_ G(n+1)*G(n+5)
B G(@2n +3)

Q, : (n>=3) and O =y =1.

By using (3.2) and Lemma 3.1, we obtain two elementary formulas of the Hankel matrices below.
Lemma 3.2. Suppose that x,y > 0 and n > 2. Then we have the following statements.

(i) Let Qu(y) := [qiﬂ]:lj:o be an (n + 1) X (n + 1) matrix with

1 1
Jo:=1, q1:= @, and gy := i1 k> 2.

Then
_QnTn(y)
det Q,(y) = T3
where
) = o (Ll)u(il)
M 22 me1)y (+2)m+D)\3y 2 12 \3y 2)°

(i) Let Au(x,y) = %H”,o(y) and B, (x,y) be the submatrix of An(x,y) obtained by deleting the second row and
column of A (x,y). Then

1
_ o mi-
detA(xy) = .73 [(n Thm 22 T”(y)]

and
TIZQH 1 2
Rm+3)n+1) ((@ _1)(””) +4)'

Proof. (i) Use (3.2) and Lemma 3.1.
(ii) It follows from a simple computation that

detB,(x,y) =

detA,(x,y) = (3316_y - 1) detH,_1 + det Q,(y).

According to the definition of the matrix H, in (3.3), it holds that

Q, _ Quta(y)
D+ e nd detQuly) = T

det anl,Z =

which proves this lemma. [

If we apply the weight sequence a(x, y) to (2.5)-(2.7), the functions Fi(s) and G(t) are represented by

B0 =| By o, |
L n+l n+2
3xy 3xy 3xy
—k+1 —k+2 Pl
n3x; 3Jr(’y * h gjc-y
“k+2  n—k+3 2
F(ny=| "= ) ", 2<k<n-2,
3y 3y o
n+1 n+2 n+k+1
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and
xy oo Sxy L B
k+1 n+l1 n+k+1
G =| 2 .. o 3xy 2<k<n-1
k n+l 2n—k+1 a1 |7 == ‘
Sy Sxy .Sy
L n+k+1 2n+1 2n+k+1

Lemma 3.3 ([8, Proposition 2.3 (v)]). Let A bea kX k matrix, b € C*and c € C. Assume A > 0and A is invertible.
Then a 2 X 2 operator matrix

~ A b
A.—[ b ¢ ]20
if and only ifdeth 0.

We will discuss the largest possible values €, and 6 in Steps I and 11, respectively. The sharp number
should be €, = max{h € R, : Fx(h) > 0} and 6 = max{h € R, : G(h) > 0}; we will prove them in the
following lemma.

Lemma 3.4. Taking positive real values € and ZS\k such that det Fx(e;) = 0 (1 < k < n —2) and det Gk(gk) =02<
k <n—1), we get

& = max{h € R, : Fi(h) > 0} and & = max{h € R, : Ge(h) > 0}.

Moreover, we have

. Bxy(n—k+3)[(k—1)1*[(n —k+ 1)1

€ = (1721 ,1<k<n-2,
—  3xyQn -k + DIKP[n!P[(n - k)
O = [+ DIP ,2<k<n-1.

Proof. By interchanging rows and columns (even number-times) from Fi (%), we have

n—k+2
n—k+4

— M-k s

Fi(h) == 3xy
_1
n+k+1

1 1 T . LI _ I
L n—k+2  n-k+4 n—k+5 n+k+1 | n—k+3 3xy |

By Lemma 3.1, all upper-left corner submatrices of My, » have positive determinants, and then My ,_» > 0
and My, is invertible. It follows from Lemma 3.3, we have

Fi(h) > 0 & Fi(h) = 0 &= det F(h) > 0 & det F(h) > 0,
that is,
{heR, : Fr(h) =0} = {h € R, : detFy(h) > 0}.
Since det Fx(h) = (?wcy)k+1 detHy,—x—h- (Sxy)k det My ,—x 2, we obtain easily

= _3 det Hy ,—« B 3xy(n —k + 3)[(k - DIP[(n -k +1)!]?
&= detMrn [(n+2)7 ’
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which satisfies €, = max{h € R, : Fg(h) > 0}. The case of Gi(h) is similar to the above. Then we obtain
- detH,, ; 3xy(2n — k + D[K'P[n!P[(n — k)!]?
O = 3xy - = .

det M, jn-k+1 [(2n + 1)!]2

Hence the proof is complete. [

If we apply the weight sequence a(x, y) to (2.7), the function G1(0) is represented by

1 1 1
3y 3 n+2
I/ .
3 4 +3
G1(0) :=3xy | o
S L S
n+2 n+3 2n+2

To find the sufficient and necessary condition for the positivity of G1(0), using Lemma 3.3, we obtain that

(317_%)+%‘0+% e 0+ 5
1 1
det(—Gl(O)) = det 3
3xy : H, 13
1 ,
n+2
1 1
=l— - = detH,,_lg, +detHn1 >0
3y 2 ’ ’
if and only if
2 2
y< detH,_13 _ 2m+2)(n+1)

" 3detH,13—-3detH,; 3n(n+3)(n?+3n+4)
To discuss the main results of this section, we begin with a computational lemma.
Lemma 3.5. Under the above notation, if y satisfies the inequality
_ 2(n+2)*n+1)?
3n(n+3)(n? +3n+4)’

O<y<s,:

then G1(0) > 0.

Theorem 3.6. Suppose n > 3. Let a(x,y) be given in (3.1) and let W, be the associated weighted shift. Then
(n)
C"W?{a(x’y)
(1) 0<XS]/SSnr

(i) Pulx, y,¢) =0 forany ¢ = {(pi}; in C with ¢1 = 1, where
Un(%, 9, ®) = |ul? (det Ay(x, y) + €det B, (x, v)) + O det A,_1(x, y) + €d det B,_1(x, ) (3.4)

consists of pairs (x, y) such that

. n=2__ 2 — n=1_ 2
with'e = El € |¢n—l+1| and 6 = E‘z O |¢,,_1| .

Proof. Applying the weight sequence a(x, y) to (2.9), we get

1 1 1 D

3xy 3y 3 n+1

1 1, 1 D

3y 3 3xy 4 n+2

o an+l 1 1 1 Pu

detAy(x,y) :=3""det| 3 1 5 n+3
I b B [T
n+1 n+2 n+3 2n+1 3xy

— 3n+1l,bn(x, Y, (P)



S. Baek et al. / Filomat 37:19 (2023), 6585-6601 6594

The submatrix obtained by deleting the first row and column from A,(x, y) has positive determinant as
below:

0 € 0
2 det Hy15 + =—I|puP det Hy o4 + zo— detH, 57 + z— = det H, 34 > 0.
|pul” det Hy—12 + 3xy|q5n| detH, 54 + 3y detH, ) + 3xy vy detH, 34 >0
Similarly, its all upper-left corner submatrices have positive determinants, it follows from Lemma 3.3 that
An(x,y) > 0if and only if ¢, (x, y, $) > 0. By Lemma 2.4 and Lemma 3.5, we have

CWH™

aliy) = {(x,y) : conditions (i) and (ii) hold}.

Hence the proof is complete. [

To get a useful formula for a sufficient condition of the weak n-hyponormality, we apply Theorem 3.6
with

— —

€= =€_1=01=-=0,20=0;

we can confirm that our result covers some known results by using formulas produced in this case.
Setting t := |¢,|, the equation ¥, (x, y, ¢) in (3.4) is represented by

Un(x,y,¢) = t- det A,(x, y) + £ - € det B,(x, y) + 0,1 det Ay_1(x, y) + t - €16,1 det B,_1(x, )

Q,
= 2 (f @)+ gu (o)t + (), (35)

where

n? 4 1
f”(x'y):12(n+2)(n+1)((n+1)2+@_1)’
(x )_(__ ) n3 +20m2 + 21n + 6 _(i_l)znz(n+1)
PP =\ sy " 2 1P @i+ \3y 2) 12

_(i_l) n. 1
B3y 2/(n+2)n+1) 32n+1)(m+1)>

1 [ 1 e-n(F-1) ee-1(E-1) -

) S G D D | I ael 02 era

We now obtain a sufficient condition for the weak n-hyponormality.

Theorem 3.7. Let a(x,y) be given in (3.1) and let Wy, be the associated weighted shift. Suppose n > 3. If the
following two conditions hold;

(i) 0<x<y<sy,,

7/3(]/)/ n= 3/
Z”(y)’ 4<n<15and 0 <y <8y,

ha(y), 4<n<15and 5, <y<s;
hl’l(y)/ nz= 16,

() 0<x<X,(y):=

where

2n%(n + 1)(n® — 14n? — 17n — 6)
3(n—1)(n+2)(n* — 14n3 — 1512 — 36n — 12)

Sy =
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and

12 (n4 — 5013 — 9512 — 601 — 12) v _ 14412y
Vn(]/): _ 2 _ ;h"(y): 2 _ 2 _
En(M)y? + Ea1(n)y — Ez0(n) (n? = 1)(n2(n)y* — m@n)y + 1no(n))

with

E3(m) =9 —1) (n+2) (2n” + 15n° + 491° + 95n* + 651> — 54n® + 76n + 40),
Ea1(n) = 12n(n = 1) @n +1) (n +2) (n + 1) (n* + 6n° + 151 + 220 + 8),
Exo(n) =42 2n+1) (n+2)* (n+1)*,

Ma(n) =9 (n—2)(n+2) (n4 +3n% - 12),

n(n) = 12n* (n —2) (n + 2) (n2 + 3),

no(n) = dnt(n+1)(n - 1),

then Wiy is weakly n-hyponormal.

Proof. According to the condition (i) of Theorem 3.6, we will prove this theorem under the condition
0 < y <s,. To see the positivity of 1, (x,y, ¢) in (3.5) for n > 3, we define a function ¢, (x, y, t) by

@n (%, y,t) = fn(x,y)tz+gn(x,y)t+hn(x,y), n>3, t>0.

Since @, (x, y, t) is a quadratic polynomial in ¢ > 0, the equivalent condition for ¢,(x, y,t) > 0 (t > 0) about x
and y is one of the following two cases:
Case 1. fu(x,y) =2 0,g,(x,y) = 0 and h,(x, y) = 0;
Case 2. fu(x,y) =2 0,g,(x,y) < 0and g,(x, y)2 —4£f,(x, hu(x,y) < 0.
To check Case 1, we observe that

(n+1)*
By(n—1)(n+3)’
12(n® + 2012 + 21 + 6) y
n+1)(G(n)y? - G(n)y + Co(n)

fn(x/y)20<=0<x§ﬁ:(y);:

gn(x, ) >20=0<x<7g,(y):= (

hy(x,y) >0 0<x sﬁn(y),
where

Co(m) =9 (n = 1) (n +2) (2n° + 9n* + 181 + 231 — 24n + 4),

Gi(n) =120 (n = 1) @n + 1) (n + 3) (n + 1) (n* + 2n +4),

Cotn) =4n* (n+2)2n+1) (n + 1)°.
By a simple computation, we get f;(y) > gu(y) for 0 < y <'s,. Given a fixed y € (0,s,), we obtain a range of
x satisfying Case 1is 0 < x < min{g,(y), h.(y)}.

To check Case 2, we put D;, := g,(x, y)* — 4fu(x, Y)hu(x, y) for the discriminant of quadratic polynomial.
Then we obtain

(0P () + 0P (1)) (x0D () + (1))
186624x2y4 (n +2)* 2n + 1)* (n +1)°
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where
O (y) = Ena(my? - En(m)y + Exo(n),
O (y) =12(n* —6n-3)y,
O (y) = Ea(my? - Ea1(m)y + Exo(n),
O)(y) = 12(n* — 50n° - 95n* - 60n — 12) y,
with
E12(m) = 9 (n = 1) (n + 1) (2n° + 9n* + 18> + 23n> — 8n - 28),
Enm=12n(n-1)Qn+1)(n+ 1)(n3 +4n* +7n +8),
&) =4n2 2n+1) (n + 1)*.
If D), = 0, we can obtain that x = 0,(y) or x = y,(y), where
12(712 —6n—3)y
—&(m)y? + En(n)y — Ero(n)”
Firstly, we suppose that El(y) < ga(y). Considering Case 2, since h,(x, ) < 0 when g,,(x, y) < 0, we get

12 (n* - 50n° - 95n% — 60n — 12) y
—Enm)y? + En(n)y — Eo(n)

o (y) = yu(y) =

D, > 0, which is impossible. i.e., X,(y) = h,(y). Secondly, we may assume that h,(y) > gn(y). Observe
that @ff)(y) > 0. If G)fql)(y) > 0, by some technical computations we have that 6,(y) < gx(y) < ya(y) < En(y),
i.e., a range of x satisfying Case 2 becomes §,(y) < x < y,(y). On the other hand, if @)fql)(y) < 0, then
gn(y) < yu(y) < Zn(y) < 0u(y), and we have the same range in this case also. Therefore X,,(y) = yu(y).

By direct computations, we get E3(y) > g5(y) and E,(y) < ga(y) for n > 16, which induce X3(y) = y3(y)
and X,(y) = En(y) for n > 16. For 4 < n < 15, we have the following

a(y) = Gu(y) = 0 <y <8, and hy(y) < Gu(y) & 8. <y < sn.
Thus @, (x,y,t) = 0, and so ¥, (x, y, p) = 0 for n > 3. Hence the proof is complete. [
We now discuss distinctions for the weak n-hyponormality and the n-hyponormality of a weighted shift

Wa(x,y) with the weight sequence a(x, y) in (3.1). Recall an equivalent condition for the n-hyponormality of
the weighted shift Wy, from [13] or [15] as below.

Proposition 3.8 ([13, Theorem 3.6], [15, p.1371]). Let a(x, y) be given in (3.1) and let Wa(w) be the associated
weighted shift. Then Wa(x,y) is n-hyponormal if and only if it holds that

2+ 1P (n+2° 144(n+ 17y

O<y< ; X< =:
3n(n+3)(n%+3n+4) n(n+2) (99ny? — 120y + 4¢u0)

nr

where
Puo=n(n+2)(n+1)*,
Q1 = (n—l)(n+3)(n2+2n+4)(n+1)2
O = (n—l)(n+3)(n4+4n3+9n2+10n—8).
According to Theorem 3.7 and Proposition 3.8, we may obtain the following corollary which is an
improvement of [25, Theorem 4.1].
Corollary 3.9. Let a(x, y) be given in (3.1) and let Wa(w)be the associated weighted shift. Then it holds that

{0, :0<y<s, b <x<Xu(y)) < WH

(n)
aley) \SH n>3,

a(x,y)’
where X, (y) is as in Theorem 3.7, s,, is as in Lemma 3.5 and t,, is as in Proposition 3.8.
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4. Further examples

It follows from [11, Theorem 2.7] and [4, Theorem 2.4] that if a weight sequence a = {a,};", is given by

an+b
cn+d

(n 2 0),

where a,b,c¢,d > 0 with ad — bc > 0, then the associate weighted shift W, = S(a, b, ¢, d) is subnormal with the
Berger measure

J (e b/a 1"(‘;1) et (1 ct d/c—b/a—ld
mO={3) oot U7 g
rhr(4-1)

with support [0, ”E‘] This operator S(a, b, ¢, d) covers several known examples, for example, ifa =b=c=1
and d = 2, the associated weighted shift S(1,1,1,2) is Bergman shift. In Section 3, we applied Bergman
shift 5(1,1,1,2) to Lemma 2.4 to study Problem 1.2. We may follow the same technique in Section 3 with a
sequence a(x, ) defined by

[2a +b /3a+b
a(x,y):\/i, \/y/ e+ d’ m,m,

where x and y are positive real numbers, and will find a nonempty subregion of (Wﬁf:a y)\Sﬂga " for

n > 3. For a simple computation, we consider a sequence a(x) := « (x, %) defined by

2n+1
ag:= Vx and a, := \/2214, neN, “.1)

where x is a positive real number. Observe that the moment sequence y := {y,}", of a(x) is given by

1, n=0;
yn = { 1 Cnx, n> 1’ (42)

4n-1

with C,, := L(%:l)/ which is called the Catalan number ([2]). It follows from [28] that determinants of Hankel

n+1
matrices of C,, are given by

L . k=0,1; s
[h<ijcia ZH:f;HZ, k>2. .3)

det[Ciyjiil} ;o = {

We now find the elements of the set Sﬂf;i " for n > 2 as the following proposition.
2

Proposition 4.1. Let a(x) be a sequence as in (4.1) and let W be the associate weighted shift. Then Wy is
n-hyponormal if and only if 0 < x < %L namely,

4n /
(n) _ n+1 {1}
SHaby ‘(0’ m |2

Moreover, Woy is subnormal if and only if 0 < x < 1.
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Proof. Lety = {yi}i-, be asin (4.2). Recall that W,y is n-hyponormal if and only if the Hankel matrix H,(y)
is positive for all k > 0 ([6, Theorem 4]). By (4.3), we first observe that

41—x C C, - C,
1 n2-1 Cy G, Cs oo Cuat
det Hnro(‘)/) = (Z) le+l det C2 C3 C4 e Cn+2
CVI CnJrl CVl+2 e Czn

1 n?2-1
=(;) = ((4— - Co) det{Cirjialf %y + det(Cia 1o

1V i+l
_(Z) * (4x —n)

is positive if and only if 0 < x < 4. By (4.3), we get det[Ci,js2]"7}) = n +1 > 0, and applying Lemma 3.3,

i *0
we obtain that H,,o(y) > 0 if and only if x < 21 The “moreover” part is obvious. [

Now we use the technique in Section 2 withe, =+ =¢€,_1 = :5\1 == ;S\n,z = 0 to get a formula for the
sufficient condition for the weak n-hyponormality of W,). Applying a(x) to (2.5) and (2.7), we obtain the
matrix-valued functions

Fi(h) = 4nl 7Cro1x 4u 77 CnX X Cn icn s
= 1Cnx o Cn+1x h 4”_2 %Cn 11_6C”+1 - 4711
and
Cn—l %Cn " %CrHl T 4n CZn 1
1411Cn ﬁcnfl - 471’1 %Cn+2 e %iwl Con
Gu-1(h) = 4,, Tz FC"H FCH+2 Bcn+3 IR =4 77 Const
e C2n 1 77Can 72Cm1 o C3n 1
Take €; > 0 such that detF,,_1(1) =0, i.e.,
— 3C,x
€1 = .
22n=1(n + 1)(n + 2)
Observe that
Cn—l Cn . Cn+1 e C2n—1
Cn Cn+1 - %h Cn+2 e CZn
X cee
det Gn_l(h) = W det C11.+1 Cn.+2 Crf+3 ‘ C21'1+1
CZn—l C2n C2‘r1+1 T C371—1

Under the authors’ knowledge, itlooks difficult to estimate the exact value 6\71—1 > Osuchthatdet G, (2371_1) =

0 with respect to the general number n € IN. (Nevertheless we can find the value 5,-1 > 0 in some low
numbers n € IN by using the computer software; for examples, n = 3,4, ..,20, and more, etc.) Since

det[Citjin-1]! Piz0 > 0, there exists a unique value 6 _1 > 0 such that det G,,— 1( — 1) = 0. Hence the hypothesis
of Proposition 4.2 below is valid.
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Proposition 4.2. Let a(x) be given in (4.2) and let W) be the associated weighted shift. Suppose

+ &) Cy a Cn Vt
Ci GCo+xut Cs o Cun VE
Pn(x, t) == det G Cs Cy o G Vi >0 forall t>0,
Cu \/E Cist ‘/E Cus2 \/Z o Copt+vy

2n-1"2"

4 —On-1, Where 5:1_1 is some positive real number such that det Gn_l(gn_l) =

. o— E — 3cn o—
withky := 7+ = smrc oy T and v, :=

0. Then Wy is weakly n-hyponormal.

Proof. In Lemma 2.2, if we put ¢t := Iqbnl2 and ¢ = 1, then € = et and 6 = ;5\,1_1. By some determinant
properties, we get

- xn+1
det®,(¢,5) = det D, (e1t, 6,1) = 4nT_llpn(x, t).

Similarly to the proof of Theorem 3.6, the submatrix obtained by deleting the first row and column from
D, (€,0) has positive determinant and its all upper-left corner submatrices have positive determinants.
Hence, by Lemma 3.3, we have @,(¢, 6) > 0if and only if det @, (¢, 6) > 0if and only if 1, (x, t) > 0. Applying
to Lemma 2.4, we obtain this proposition. [

In Proposition 4.2, ifs\n_l vanishes, then we obtain that i,,(x, t) > Oforallt > Oif and only ifx < %, which
is the sufficient and necessary condition for the n-hyponormality. In this situation we can not distinguish
between the n-hyponormality and the weak n-hyponormality. To avoid such undesirable situation, we

have to find :5\7,_1 > 0 such that det G,,_l(gn_l) =0.
Recall an element fact that if a Hankel matrix [SH. j]i 0 has rank r (1 < r < n), it holds that

r—1

r— —
i,j i,j=0

det [Si+]'] ]io det [Si+j+m]r 0= det [Si+j+1]

r=1
ij i,j

pdet [sijn] o (4.4)

forall 1 <m < 2n —2r + 2; see [19, p.60]. By using this recurrence formula, we see the gap between the

n-hyponormality and weak n-hyponormality as following lemma.

Lemma 4.3. Let a(x) be given in (4.1) and let W) be the associated weighted shift. Then WH ;’3 ) \SH Zz L FED
’2 ’2

forn > 3.

Proof. Let y = {y;};-, be the associated moment sequence of a(x) as in (4.2). For our convenience, we let

M, (x) := H,0(y) and M,(x) be the submatrix obtained by deleting the second row and column from M,,(x).
By a direct computation, we have

Pu(x, 1) = 1, det My ()1 + (det M, (x) + K, vy det M, (x)) £ + vy, det My, (x). (4.5)

Since the range of x for the weak n-hyponormality contains the interval (0, %], we may assume that

Yu(x,t) > 0forallt >0and 0 < x < ”4—;1. Ifx = % in (4.5), it follows from the proof of Proposition 4.1 that

1 1 1
Yy (%, t) = K, det M, (%) £ + 1,V detM;_, (%)t + v, det M, 1 (

n+1)
an )’

and detMn_l(’Z—J;l) > 0. Since M,_; (%) > 0, its all submatrices have positive determinants. i.e.,

detM; , (%) > 0. To show ¢, (%, t) > O forall f > 0, we claim that det M, (%) > 0. Letr = rankM,, (%)
Since detM,, (%

~—

=0,wehavel < r <n. Then

n+1 n r=2 r—1 n—-r+1
detM,1 (L) = (2 = Co)det[Cugua] [ + det[ci] ] = 2,

4n n+1
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r-1

detH, 11(y) = det [Ci+j+1]l.j=0 =1,

and

r—1
det H,_1(y) = det [c,-+j+2]ij=0 ——

By (4.4) with m = 2, we obtain that =Z1(r + 1) = 1, i.e., r = n. Thus the rank of M, (””) becomes n, which
implies det M, (””) > 0. Since there is 6 > 0 such that det M, (x) > 0 on (O, "4:1 + 6] we have that for each
X € (0, %1 + 6], P (x, t) has the minimum on [0, o). We consider a continuous function ,(x) on (O, ”4;1 + 6)
defined by

my(x) = min{y,(x, t) : t > 0}.

Since mn(””) is strictly positive, there exists ¢ € (0,0) such that m,(x) > 0 on (O, %1 + e], i.e., for each
€ (0 nl g g] Yn(x,t) > 0 for all t > 0. Therefore we have this Lemma. [J

7 an

We now obtain a nonempty subregion of WH 28{ )\SH fk’zi , forn>3.

Theorem 4.4. Let a(x, y) be a sequence defined by

2k+1
ap = Vx,a1 = \y, ax:= \/m/ k=2,

and let Woy,y) be the associated weighted shift. Then for each n > 3, there exist &, > 0 and a continuous positive real
function ¢,(x) such that

\87,{04)

n+1 n+1 1 1
{(x, y) : ? <x < + &y, and E —O‘n(x) <y< E + Cfn(X)} c (Wq_{m) S

4n a(x,y)
Proof. The existence of ¢, > 0 follows from Lemma 4.3, and so it is sufficient to find o,(x) > 0 for n > 3.
Supposen > 3. Lets € (”4;1 Sy an) be fixed. We apply a weight sequence a(s, y) to Algorithm 2.3. Firstly,
we check for the positivity of G1(0) in (2.7). Set f(y) := det G1(0) = det[yisj+1]! =07 where ) are moments of

a(s, y). Then

1 1 n(n+1) 1 n(n+1)
f(z) = (Z) S det[ci+j+l]::f]':0 =S (Z) > 0.

By the continuity of f, there exists oﬁ,l)(s) > 0 such that f(y) > 0 for

1 1
5" aDs) <y < 5+ a(s).

Secondly, we check for positivity of A,(Vs, /) in (2.9) with'e; = 0 = 5 (G =2,...,n—2). Set g(y) =
det A,(Vs, /). Then g is a rational function in y and it is continuous obviously. According to the proof
of Lemma 4.3, we see that g(%) > 0. Similarly to the first case, there exists a,(f) (s) > 0 such that g(y) > 0 for

% - aff)(s) <y< % + o,(f)(s). Taking 0,(s) := min{ofll)(s),aflz)(s)}, we can see that

n+1 n+1 1 1
{(x,y):? X< tew E—Un(x)<y< §+an(x)}C(W7{ggcy

(n)
)\Sﬂa(x,w

which proves the theorem. [
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\ 87‘{<n>

Remark 4.5. Asseeing in this section, we can find several weighted shifts W) such that WH ) o)

alvy)
has a nonempty subregion for any # > 3. We leave such an attempt to the interesting readers.

We close this paper with a concluding open problem.

Problem 4.6. Let a (x, y) be given in (3.1) and let W, be the associated weighted shift.

Find the full range of (W‘ery)\S?-( g&y) forn > 2.

a(x

This problem is closely related to the long-standing open problems; “find a concrete weighted shift that is
polynomially hyponormal but not subnormal” and “whether a polynomially hyponormal weighted shift but not
2-hyponormal exists?”.
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