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Abstract. The n-hyponormal and weakly n-hyponormal weighted shifts were developed to study bridges
of operators between the subnormal and hyponormal operators on an infinite dimensional complex Hilbert
space about 30 years ago. In this paper we discuss the distinction between the classes of n-hyponormal
and weakly n-hyponormal weighted shifts. For such a purpose we consider an arbitrary contractive
hyponormal weighted shift Wα and find a sufficient condition for the weak n-hyponormality of Wα. We
provide a general technique for distinction between the n-hyponormality and the weak n-hyponormality
of Wα, and investigate the distinction between the classes of n-hyponormal and weakly n-hyponormal
weighted shifts with Bergman shift and some other examples.

1. Introduction and preliminaries

Let H be an infinite dimensional complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H . An operator T ∈ B(H) is subnormal if it is (unitarily equivalent to) the restriction
of a normal operator to an invariant subspace. For a positive integer n ∈ N, an operator T is (strongly)
n-hyponormal if the (n+1)×(n+1) operator matrix

[
T∗ jTi

]n

i, j=0
is positive. It is well-known that T is subnormal

if and only if T is n-hyponormal for all n ∈ N. For n ∈ N, an operator T is weakly n-hyponormal if p(T) is
hyponormal for every polynomial p of degree n or less ([5],[6]). In particular, the weak 2-hyponormality
[weak 3-hyponormality, or weak 4-hyponormality, resp.] is referred to as quadratic hyponormality [cubic
hyponormality, or quartic hyponormality, resp.]. An operator T ∈ B(H) is said to be polynomially hyponormal
if T is weakly n-hyponormal for all n ∈ N. Obviously, 1-hyponormal [or weakly 1-hyponormal] operator
T ∈ B(H) is hyponormal, i.e., T∗T ≥ TT∗. It is known that every subnormal operator is polynomially
hyponormal and every n-hyponormal operator is weakly n-hyponormal, namely we get
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“subnormal⇒ n-hyponormal⇒weakly n-hyponormal⇒ hyponormal (n ∈N).”

Many operator theorists have studied the converse implications; for example, see [5],[6],[10],[18],[21],
[24], etc. In [12, Theorem 2.1], Curto-Putinar proved theoretically that there exists a polynomially hy-
ponormal operator which is not 2-hyponormal. One can confirm the existence of a weighted shift that is
polynomially hyponormal but not subnormal ([26, Theorem 3.4]). But one does not know any concrete
example of a weighted shift that is polynomially hyponormal but not subnormal yet. Also it is not known
whether a polynomially hyponormal weighted shift but not 2-hyponormal exists ([12, Remark 2.9]). Thus
many operator theorists have studied the structure of n-hyponormal and weakly n-hyponormal weighted
shifts for more than 30 years. The flatness is important to detect the structure of such weighted shifts
(cf. [3],[5],[6],[23]). The flatness of subnormal weighted shifts was begun by J. Stampfli ([27]); he proved
that if Wα is a subnormal weighted shift with a weight sequence α = {αk}

∞

k=0 in R+ \ {0} and α0 = α1, then
α0 = α1 = α2 = · · · , where R+ is the set of nonnegative real numbers. In [6] R. Curto improved Stampfli’s
result as that if Wα is a 2-hyponormal weighted shift with first two equal weights, then α0 = α1 = α2 = · · · .
And he also proved that a weighted shift Wα is quadratically hyponormal, where

α :

√
2
3
,

√
2
3
,

√
3
4
,

√
4
5
, . . . , (1.1)

in [6, Proposition 7]. This means that the quadratic hyponormality of a weighted shift Wα does not preserve
the flatness property, which motivated the following problem.

Problem 1.1 ([7, Problem 4]). Describe all quadratically hyponormal weighted shifts Wα with α0 = α1.

Since R. Curto introduced Problem 1.1 in 1991, several operator theorists have studied this problem for
more than 30 years (cf. [3],[5],[6],[9],[14],[15],[16],[17],[22],[23], etc.). Some of them are closely related to the
Bergman shift. In particular, Exner-Jung-Park generalized Curto’s example with weights in (1.1), namely,
in [17, Theorem 2.2], they proved that if α = {αi}

∞

i=0 is given by

α :
√

x,
√

x,

√
3
4
,

√
4
5
, . . . ,

where x is a positive real number, then the associate weighted shift Wα is quadratically hyponormal if and
only if δ1 ≤ x ≤ δ2, where |δ1 − 0.1673| < 1

1000 and |δ2 − 0.7439| < 1
1000 . In [23], Li-Cho-Lee proved that

if Wα is a cubically hyponormal weight shift with first two equal weights, then α0 = α1 = α2 = · · · .

This means that every weakly n-hyponormal weighted shift Wα with first two equal weights satisfies the
flatness property for n ≥ 3. Hence we can see that Problem 1.1 does not extend to the weak n-hyponormality
of weighted shifts for n ≥ 3. However, the following problem is interesting to us still.

Problem 1.2. Let α
(
x, y

)
be a weight sequence defined by

α
(
x, y

)
: x, y, α0, α1, . . . ,

where x and y are positive real variables and let Wα(x,y) be the associate weighted shift. Denote the regions
in R2

+ := R+ ×R+ by

WH
⟨n⟩
α(x,y) = {(x, y) : Wα(x,y) is weakly n-hyponormal}, n ≥ 2;

SH
⟨n⟩
α(x,y) = {(x, y) : Wα(x,y) is n-hyponormal}, n ≥ 2.

Describe the regionWH ⟨n⟩α(x,y)\SH
⟨l⟩
α(x,y) for n ≥ 3 and 2 ≤ l ≤ n.

In terms of Problem 1.2, we recall some known results as following.
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• Ifα
(
x, y

)
:
√

x,
√

y,
√

3
4 ,

√
4
5 , . . ., then

(
141
250 ,

2
3

)
∈ WH

⟨3⟩
α(x,y)\SH

⟨2⟩
α(x,y), which means thatWH ⟨3⟩α(x,y)\SH

⟨2⟩
α(x,y) ,

∅ ([21, Corollary 3.5]).

• If α
(
x, y

)
:
√

x,
√

y,
√

4
5 ,

√
5
6 , . . ., then {(x, 3

4 ) : 200
297 < x ≤ 667

990 } ⊂ WH
⟨4⟩
α(x,y)\SH

⟨3⟩
α(x,y) ([10, Corollary 5]).

• If α
(
x, y

)
:
√

x,
√

y,
√

2
3 ,

√
3
4 , . . ., then SH ⟨∞⟩α(x,y) = ∩

∞

n=1SH
⟨n⟩
α(x,y) = ∅ ([20]).

Concerning Problem 1.2, we recall that the following question as a general version of [17, Theorem 2.2]
is natural.

For α
(
x, y

)
:
√

x,
√

y,
√

3
4 ,

√
4
5 , . . ., describe the full range of the set {(x, y) : Wα(x,y) is quadratically hyponormal}.

This is an open problem arising from the authors of [17]. In this paper we discuss a sufficient condition for
a nonempty region inWH ⟨n⟩α(x,y) which satisfiesWH ⟨n⟩α(x,y)\SH

⟨n⟩
α(x,y) , ∅ for n ≥ 3.

This paper consists of four sections. In Section 2, we construct a subregion ofWH ⟨n⟩α(x,y) for n ≥ 3, which

will be denoted by CWH ⟨n⟩α(x,y) (see Algorithm 2.3). And we see that the associated weighted shifts Wα(x,y)

to pair (x, y) ∈ CWH ⟨n⟩α(x,y) have the weak n-hyponormality of Wα(x,y) (see Lemma 2.4). In Section 3, we

apply the Bergman shift as an example to find the subregion CWH ⟨n⟩α(x,y) satisfyingWH ⟨n⟩α(x,y)\SH
⟨n⟩
α(x,y) , ∅

for n ≥ 3 via Lemma 2.4. The techniques of Sections 2 and 3 via Algorithm 2.3 provide an idea to find
examples of a weighted shift Wα satisfyingWH ⟨n⟩α(x,y)\SH

⟨n⟩
α(x,y) , ∅ for n ≥ 3. In Section 4, we will discuss

the subregion ofWH ⟨n⟩α(x,y) satisfyingWH ⟨n⟩α(x,y)\SH
⟨n⟩
α(x,y) , ∅ for n ≥ 3 with an example of a weighted shift

which is not Bergman shift.
Some of the calculations in this paper were aided by using the software tool Mathematica ([29]).

2. Description of a subregion CWH ⟨n⟩
α(x,y)

ofWH ⟨n⟩
α(x,y)

For a sequence α = {αi}
∞

i=0 of positive real numbers and n, k ≥ 0, denote the Hankel matrix of α by

Hn,k(α) :=


αk αk+1 · · · αk+n
αk+1 αk+2 · · · αk+n+1
...

...
. . .

...
αk+n αk+n+1 · · · αk+2n

 . (2.1)

We consider γ := {γi}
∞

i=0 defined by

γ0 := 1 and γi := α2
i−1γi−1, i ≥ 1, (2.2)

which are sometimes referred to as moments of α.
We begin this section with an equivalent condition for the weak n-hyponormality for a contractive

hyponormal weighted shift, which is revised slightly from [18, Theorem 2.3].

Lemma 2.1. Suppose n ≥ 2. Let Wα be a contractive hyponormal weighted shift with α := {αi}
∞

i=0 and let γ := {γi}
∞

i=0
be as in (2.2). For any finite sequences {ϵi}

n−1
i=1 and {δi}

n−1
i=1 inR+, it holds that Wα is weakly n-hyponormal if and only
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if the following condition holds:

∆αn(ϕ, p, q) = γn

∣∣∣ϕnp0

∣∣∣2 + ([
γn−1 γn
γn γn+1 − ϵ1

] [
ϕn−1p0
ϕnp1

]
,

[
ϕn−1p0
ϕnp1

])
(2.3)

+

n−1∑
k=2



γn−k γn−k+1 · · · γn
γn−k+1 γn−k+2 − ϵk · · · γn+1
...

...
. . .

...
γn γn+1 · · · γn+k



ϕn−kp0
ϕn−k+1p1

...
ϕnpk

 ,

ϕn−kp0
ϕn−k+1p1

...
ϕnpk




+





γ0 γ1ϕ1 γ2 · · · γnϕn

γ1ϕ1 γ2|ϕ1|
2 + ϵ γ3ϕ1 · · · γn+1ϕ1ϕn

γ2 γ3ϕ1 γ4 · · · γn+2ϕn
...

...
...

. . .
...

γnϕn γn+1ϕ1ϕn γn+2ϕn · · · γ2n|ϕn|
2 + δ





q0
p1
ϕ2p2
...

ϕn−1pn−1
pn


,



q0
p1
ϕ2p2
...

ϕn−1pn−1
pn





+

n−1∑
k=1





γk · · · γn · · · γk+n
...

. . .
...

. . .
...

γn · · · γ2n−k − δk · · · γ2n
...

. . .
...

. . .
...

γk+n · · · γ2n · · · γk+2n





qk
ϕ1pk+1
...

ϕn−kpn
...

ϕnpk+n


,



qk
ϕ1pk+1
...

ϕn−kpn
...

ϕnpk+n





+

∞∑
k=n


Hn,k(γ)


qk

ϕ1pk+1
ϕ2pk+2
...

ϕnpk+n


,


qk

ϕ1pk+1
ϕ2pk+2
...

ϕnpk+n




is positive for any ϕ =

{
ϕi

}n

i=1
, p =

{
pi
}∞
i=0 and q =

{
qi
}∞
i=0 in C, where

ϵ =
n−1∑
l=1

ϵl

∣∣∣ϕn−l+1

∣∣∣2 and δ =
n−1∑
l=1

δl

∣∣∣ϕn−l

∣∣∣2 . (2.4)

Proof. Observe that the expressions of the right sides of (2.3) above and (2.8) in [18, Theorem 2.3] coincide
exactly.

Let α = {αi}
∞

i=0 be a weight sequence of positive real numbers and let γ := {γi}
∞

i=0 be as in (2.2). We
consider the matrix-valued functions Fk and Gk on [0,∞) defined by

F1(h) =
[
γn−1 γn
γn γn+1 − h

]
, (2.5)

Fk(h) =


γn−k γn−k+1 · · · γn
γn−k+1 γn−k+2 − h · · · γn+1
...

...
. . .

...
γn γn+1 · · · γn+k

 , 2 ≤ k ≤ n − 1. (2.6)
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and

Gk(h) =



γk · · · γn · · · γk+n
...

. . .
...

. . .
...

γn · · · γ2n−k − h · · · γ2n
...

. . .
...

. . .
...

γk+n · · · γ2n · · · γk+2n


, 1 ≤ k ≤ n − 1, (2.7)

respectively.
The following lemma comes immediately from Lemma 2.1.

Lemma 2.2. Let Wα be a contractive hyponormal weighted shift with α := {αi}
∞

i=0 and let γ := {γi}
∞

i=0 be as in (2.2).
Suppose Fk(ϵk) ≥ 0, Gk(δk) ≥ 0 for some ϵk and δk in R+ for 1 ≤ k ≤ n − 1, and Hn,k(γ) ≥ 0 for all k ≥ n. Assume
that, for any ϕ :=

{
ϕi

}n

i=1
in C,

Φn(ϵ, δ) :=



γ0 γ1ϕ1 γ2 · · · γnϕn

γ1ϕ1 γ2|ϕ1|
2 + ϵ γ3ϕ1 · · · γn+1ϕ1ϕn

γ2 γ3ϕ1 γ4 · · · γn+2ϕn
...

...
...

. . .
...

γnϕn γn+1ϕ1ϕn γn+2ϕn · · · γ2n|ϕn|
2 + δ


≥ 0,

where ϵ and δ are as in (2.4). Then Wα is weakly n-hyponormal.

We now give the algorithm to construct the subregionCWH ⟨n⟩α(x,y) ofWH ⟨n⟩α(x,y) for weak n-hyponormality.

Algorithm 2.3. Suppose n ≥ 2. Let α = {αi}
∞

i=0 be a weight sequence of positive real numbers and let
γ = {γi}

∞

i=0 be moments of α. Suppose α(x, y) is the 2-step backward extension weight sequence of α, namely,

α
(
x, y

)
: x, y, α0, α1, . . . , (2.8)

where x and y are positive real variables. Let Wα(x,y) be the associated weighted shift to α(x, y). To construct
the subregion CWH ⟨n⟩α(x,y), we provide steps as following.

I. Take the largest possible ϵk so that Fk(ϵk) ≥ 0 for 1 ≤ k ≤ n − 2.
II. Take the largest possible δk so that Gk(δk) ≥ 0 for 2 ≤ k ≤ n − 1.

III. For ϵk and δk in Steps I and II, find the range of (x, y) satisfying G1 (0) ≥ 0, ∆n(x, y) ≥ 0 for any
ϕ :=

{
ϕi

}n

i=1
in Cwith ϕ1 = 1, where

∆n(x, y) :=



1
(xy)2

1
y2 γ0 · · · γn−3 γn−2ϕn

1
y2 γ0 +

ϵ
(xy)2 γ1 · · · γn−2 γn−1ϕn

γ0 γ1 γnϕn
...

... Hn−3,2(γ)
...

γn−3 γn−2 γn+1ϕn

γn−2ϕn γn−1ϕn γnϕn · · · γ2n−1ϕn γ2n−2|ϕn|
2 + δ

(xy)2


, (2.9)

where ϵ and δ are as in (2.4).
IV. Denote the set CWH ⟨n⟩α(x,y) consisting of pair (x, y) obtained from Step III.

The following lemma follows from Lemma 2.2 immediately.
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Lemma 2.4. Suppose n ≥ 2 and Wα is a contractive n-hyponormal weighted shift with α = {αi}
∞

i=0. Let γ = {γi}
∞

i=0

be a moment sequence of α and α(x, y) be a weight sequence as in (2.8).If (x, y) ∈ CWH ⟨n⟩α(x,y), then Wα(x,y) is weakly
n-hyponormal.

Proof. Since Wα is n-hyponormal, obviously Hn,k(γ) ≥ 0 for all k ≥ n. Hence, according to Algorithm 2.3,
the proof is complete.

Before closing this section, we note that the set CWH ⟨n⟩α(x,y) can be empty possibly, namely we can find

an example satisfying CWH ⟨n⟩α(x,y) = ∅ for n ≥ 3; indeed, consider a sequence α : a, a, a, b, b, .....with 0 < a < b
for such an example.

3. Bergman weighted shift and description of CWH ⟨n⟩
α(x,y)

Let Wα(x,y) be a contractive hyponormal weighted shift with a weight sequence α(x, y) as in (2.8). In this
section, we will discuss the range ofCWH ⟨n⟩α(x,y) with the Bergman weighted shift Wα which is one of the typ-
ical models to study the weak n-hyponormality of weighted shifts (cf. [6],[9],[10],[13],[17],[18],[20],[21],[22],

[25]). Recall that if α
(
x, y

)
:
√

x,
√

y,
√

2
3 ,

√
3
4 , . . ., then SH ⟨∞⟩α(x,y) = ∩

∞

n=1SH
⟨n⟩
α(x,y) = ∅. To avoid this case, we

consider the 2-step backward extension α
(
x, y

)
of

{√
i+1
i+2

}∞
i=2

which is given by

α
(
x, y

)
:
√

x,
√

y,

√
3
4
,

√
4
5
, . . . . (3.1)

In this case, we know that SH ⟨∞⟩α(x,y) , ∅, and CWH ⟨n⟩α(x,y) can be compared possibly to the known results in
Section 1.

Consider the associated moment sequence γ =
{
γ j

}∞
j=0

of α
(
x, y

)
as in (3.1) and the Hankel matrix Hn,k(γ)

as in (2.1). Then it follows that for k ≥ 2 and n ≥ 0,

det
1

3xy
Hn,k(γ) = det

[
1

k + i + j + 1

]n

i, j=0
=

G(n + 2)2G(k + n + 2)2

G(k + 1)G(k + 2n + 3)
, (3.2)

where G(·) is Barnes G-function1). (cf. [10, p.460],[13, Lemma 2.1],[25, Lemma 2.2]). Now consider the
sequence ζ =

{
1

k+1

}∞
k=0
. By (2.1) and (3.2), we can see easily that Hn,k (ζ) is the Cauchy matrix as following

Hn,k := Hn,k (ζ) =
[

1
k + i + j + 1

]n

i, j=0
, k,n ≥ 0. (3.3)

We start our work with an elementary lemma which can be proved by a direct computation.

Lemma 3.1. Let Mn,k,l be the submatrix obtained by deleting the l-th row and column of Hn,k. Then

det Mn,k,l =
[(n + k + l)!]2

(k + 2l − 1)[(n − l + 1)!]2[(k + l − 1)!]2[(l − 1)!]2 det Hn,k.

Consider a matrix Hn,k,l(s) whose entries hi j are defined by

hi j =

{ 1
k+2l−3 − s if i = j = l − 1,

1
k+i+ j−1 otherwise.

1)The Barnes G-function is presented by G(n) = 1!2! · · · (n − 2)! ([1]).
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Obviously we get det Hn,k,l(s) = det Hn,k − s det Mn,k,l. For brevity, we denote by

Ωn :=
G(n + 1)3 G(n + 5)

G(2n + 3)
(n ≥ 3) and Ω1 = Ω2 = 1.

By using (3.2) and Lemma 3.1, we obtain two elementary formulas of the Hankel matrices below.

Lemma 3.2. Suppose that x, y > 0 and n ≥ 2. Then we have the following statements.

(i) Let Qn(y) :=
[
qi+ j

]n

i, j=0
be an (n + 1) × (n + 1) matrix with

q0 := 1, q1 :=
1

3y
, and qk :=

1
k + 1

, k ≥ 2.

Then

det Qn(y) =
Ωnτn(y)

n + 3
,

where

τn(y) =
1

(n + 2)2 (n + 1)3 −
n

(n + 2) (n + 1)

(
1

3y
−

1
2

)
−

n2 (n + 1)
12

(
1

3y
−

1
2

)2

.

(ii) Let An(x, y) := 1
3xy Hn,0(γ) and Bn(x, y) be the submatrix of An(x, y) obtained by deleting the second row and

column of An(x, y). Then

det An(x, y) =
Ωn

n + 3

 1
3xy − 1

(n + 1)(n + 2)2 + τn(y)


and

det Bn(x, y) =
n2Ωn

12 (n + 3) (n + 1)

((
1

3xy
− 1

)
(n + 1)2 + 4

)
.

Proof. (i) Use (3.2) and Lemma 3.1.
(ii) It follows from a simple computation that

det An(x, y) =
(

1
3xy
− 1

)
det Hn−1,2 + det Qn(y).

According to the definition of the matrix Hn,k in (3.3), it holds that

det Hn−1,2 =
Ωn

(n + 1)(n + 3)(n + 2)2 and det Qn(y) =
Ωnτn(y)
(n + 3)

,

which proves this lemma.

If we apply the weight sequence α(x, y) to (2.5)-(2.7), the functions Fk(s) and Gk(t) are represented by

F1(h) =
[ 3xy

n
3xy
n+1

3xy
n+1

3xy
n+2 − h

]
,

Fk(h) =


3xy

n−k+1
3xy

n−k+2 · · ·
3xy
n+1

3xy
n−k+2

3xy
n−k+3 − h · · ·

3xy
n+2

...
...

. . .
...

3xy
n+1

3xy
n+2 · · ·

3xy
n+k+1

 , 2 ≤ k ≤ n − 2,
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and

Gk(h) =



3xy
k+1 · · ·

3xy
n+1 · · ·

3xy
n+k+1

...
. . .

...
. . .

...
3xy
n+1 · · ·

3xy
2n−k+1 − h · · ·

3xy
2n+1

...
. . .

...
. . .

...
3xy

n+k+1 · · ·
3xy

2n+1 · · ·
3xy

2n+k+1


, 2 ≤ k ≤ n − 1.

Lemma 3.3 ([8, Proposition 2.3 (v)]). Let A be a k× k matrix, b ∈ Ck and c ∈ C. Assume A ≥ 0 and A is invertible.
Then a 2 × 2 operator matrix

Ã :=
[

A b
b∗ c

]
≥ 0

if and only if det Ã ≥ 0.

We will discuss the largest possible values ϵk and δk in Steps I and II, respectively. The sharp number
should be ϵk = max{h ∈ R+ : Fk(h) ≥ 0} and δk = max{h ∈ R+ : Gk(h) ≥ 0}; we will prove them in the
following lemma.

Lemma 3.4. Taking positive real values ϵ̂k and δ̂k such that det Fk (̂ϵk) = 0 (1 ≤ k ≤ n − 2) and det Gk(δ̂k) = 0 (2 ≤
k ≤ n − 1), we get

ϵ̂k = max{h ∈ R+ : Fk(h) ≥ 0} and δ̂k = max{h ∈ R+ : Gk(h) ≥ 0}.

Moreover, we have

ϵ̂k =
3xy(n − k + 3)[(k − 1)!]2[(n − k + 1)!]2

[(n + 2)!]2 , 1 ≤ k ≤ n − 2,

δ̂k =
3xy(2n − k + 1)[k!]2[n!]2[(n − k)!]2

[(2n + 1)!]2 , 2 ≤ k ≤ n − 1.

Proof. By interchanging rows and columns (even number-times) from Fk(h), we have

F̃k(h) := 3xy



1
n−k+2

1
n−k+4

Mk,n−k,2
1

n−k+5
...
1

n+k+1
1

n−k+2
1

n−k+4
1

n−k+5 · · ·
1

n+k+1
1

n−k+3 −
h

3xy


.

By Lemma 3.1, all upper-left corner submatrices of Mk,n−k,2 have positive determinants, and then Mk,n−k,2 ≥ 0
and Mk,n−k,2 is invertible. It follows from Lemma 3.3, we have

Fk(h) ≥ 0⇐⇒ F̃k(h) ≥ 0⇐⇒ det F̃k(h) ≥ 0⇐⇒ det Fk(h) ≥ 0,

that is,

{h ∈ R+ : Fk(h) ≥ 0} = {h ∈ R+ : det Fk(h) ≥ 0}.

Since det Fk(h) = (3xy)k+1 det Hk,n−k − h · (3xy)k det Mk,n−k,2, we obtain easily

ϵ̂k = 3xy
det Hk,n−k

det Mk,n−k,2
=

3xy(n − k + 3)[(k − 1)!]2[(n − k + 1)!]2

[(n + 2)!]2 ,
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which satisfies ϵ̂k = max{h ∈ R+ : Fk(h) ≥ 0}. The case of Gk(h) is similar to the above. Then we obtain

δ̂k = 3xy
det Hn,k

det Mn,k,n−k+1
=

3xy(2n − k + 1)[k!]2[n!]2[(n − k)!]2

[(2n + 1)!]2 .

Hence the proof is complete.

If we apply the weight sequence α(x, y) to (2.7), the function G1(0) is represented by

G1(0) := 3xy


1

3y
1
3 · · ·

1
n+2

1
3

1
4 · · ·

1
n+3

...
...

. . .
...

1
n+2

1
n+3 · · ·

1
2n+2

 .
To find the sufficient and necessary condition for the positivity of G1(0), using Lemma 3.3, we obtain that

det
(

1
3xy

G1(0)
)
= det


(

1
3y −

1
2

)
+ 1

2 0 + 1
3 · · · 0 + 1

n+2
1
3
... Hn−1,3
1

n+2


=

(
1

3y
−

1
2

)
det Hn−1,3 + det Hn,1 ≥ 0

if and only if

y ≤
det Hn−1,3

3
2 det Hn−1,3 − 3 det Hn,1

=
2(n + 2)2(n + 1)2

3n(n + 3)(n2 + 3n + 4)
.

To discuss the main results of this section, we begin with a computational lemma.

Lemma 3.5. Under the above notation, if y satisfies the inequality

0 < y ≤ sn :=
2(n + 2)2(n + 1)2

3n(n + 3)(n2 + 3n + 4)
,

then G1(0) ≥ 0.

Theorem 3.6. Suppose n ≥ 3. Let α
(
x, y

)
be given in (3.1) and let Wα(x,y) be the associated weighted shift. Then

CWH
⟨n⟩
α(x,y) consists of pairs (x, y) such that

(i) 0 < x ≤ y ≤ sn,
(ii) ψn(x, y, ϕ) ≥ 0 for any ϕ =

{
ϕi

}n

i=1
in C with ϕ1 = 1, where

ψn(x, y, ϕ) = |ϕn|
2 (

det An(x, y) + ϵ̂det Bn(x, y)
)
+ δ̂det An−1(x, y) + ϵ̂δ̂det Bn−1(x, y) (3.4)

with ϵ̂ =
n−2∑
l=1
ϵ̂l

∣∣∣ϕn−l+1

∣∣∣2 and δ̂ =
n−1∑
l=2
δ̂l

∣∣∣ϕn−l

∣∣∣2.

Proof. Applying the weight sequence α(x, y) to (2.9), we get

det∆n(x, y) := 3n+1 det



1
3xy

1
3y

1
3 · · ·

ϕn

n+1
1

3y
1
3 +

ϵ̂
3xy

1
4 · · ·

ϕn

n+2
1
3

1
4

1
5 · · ·

ϕn

n+3
...

...
...

. . .
...

ϕn

n+1
ϕn

n+2
ϕn

n+3 · · ·
|ϕn |

2

2n+1 +
δ̂

3xy


= 3n+1ψn(x, y, ϕ).
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The submatrix obtained by deleting the first row and column from ∆n(x, y) has positive determinant as
below:

|ϕn|
2 det Hn−1,2 +

ϵ̂
3xy
|ϕn|

2 det Hn−2,4 +
δ̂

3xy
det Hn−2,2 +

ϵ̂
3xy

δ̂
3xy

det Hn−3,4 > 0.

Similarly, its all upper-left corner submatrices have positive determinants, it follows from Lemma 3.3 that
∆n(x, y) ≥ 0 if and only if ψn(x, y, ϕ) ≥ 0. By Lemma 2.4 and Lemma 3.5, we have

CWH
⟨n⟩
α(x,y) = {(x, y) : conditions (i) and (ii) hold}.

Hence the proof is complete.

To get a useful formula for a sufficient condition of the weak n-hyponormality, we apply Theorem 3.6
with

ϵ̂2 = · · · = ϵ̂n−1 = δ̂1 = · · · = δ̂n−2 = 0;

we can confirm that our result covers some known results by using formulas produced in this case.
Setting t := |ϕn|

2, the equation ψn(x, y, ϕ) in (3.4) is represented by

ψn(x, y, ϕ) = t · det An(x, y) + t2
· ϵ̂1 det Bn(x, y) + δ̂n−1 det An−1(x, y) + t · ϵ̂1δ̂n−1 det Bn−1(x, y)

=
Ωn

n + 3

(
fn

(
x, y

)
t2 + 1n

(
x, y

)
t + hn

(
x, y

))
, (3.5)

where

fn
(
x, y

)
=

n2

12(n + 2)(n + 1)

(
4

(n + 1)2 +
1

3xy
− 1

)
,

1n
(
x, y

)
=

(
1

3xy
− 1

)
n3 + 20n2 + 21n + 6

12 (n + 1)3 (n + 2)(2n + 1)
−

(
1

3y
−

1
2

)2 n2(n + 1)
12

−

(
1

3y
−

1
2

)
n

(n + 2)(n + 1)
+

1

3 (2n + 1) (n + 1)3 ,

hn
(
x, y

)
=

1
(2n + 1)(n + 2)(n + 1)

 1
n2(n + 1)2 −

(n − 1)
(

1
3y −

1
2

)
n + 1

−

n2(n − 1)2
(

1
3y −

1
2

)2

12
+

1
3xy − 1

(n + 1)2

 .
We now obtain a sufficient condition for the weak n-hyponormality.

Theorem 3.7. Let α
(
x, y

)
be given in (3.1) and let Wα(x,y) be the associated weighted shift. Suppose n ≥ 3. If the

following two conditions hold;

(i) 0 < x < y ≤ sn,

(ii) 0 < x ≤ Xn
(
y
)

:=


γ3(y), n = 3;
γn(y), 4 ≤ n ≤ 15 and 0 < y ≤ s̆n;
h̃n(y), 4 ≤ n ≤ 15 and s̆n < y ≤ sn;
h̃n(y), n ≥ 16,

where

s̆n :=
2n2(n + 1)(n3

− 14n2
− 17n − 6)

3(n − 1)(n + 2)(n4 − 14n3 − 15n2 − 36n − 12)
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and

γn
(
y
)
=

12
(
n4
− 50n3

− 95n2
− 60n − 12

)
y

−ξ32(n)y2 + ξ31(n)y − ξ30(n)
; h̃n

(
y
)
=

144n2y
(n2 − 1)(η2(n)y2 − η1(n)y + η0(n))

with

ξ32(n) = 9 (n − 1) (n + 2) (2n7 + 15n6 + 49n5 + 95n4 + 65n3
− 54n2 + 76n + 40),

ξ31(n) = 12n (n − 1) (2n + 1) (n + 2) (n + 1)
(
n4 + 6n3 + 15n2 + 22n + 8

)
,

ξ30(n) = 4n2 (2n + 1) (n + 2)2 (n + 1)4 ,

η2(n) = 9 (n − 2) (n + 2)
(
n4 + 3n2

− 12
)
,

η1(n) = 12n2 (n − 2) (n + 2)
(
n2 + 3

)
,

η0(n) = 4n4(n + 1)(n − 1),

then Wα(x,y) is weakly n-hyponormal.

Proof. According to the condition (i) of Theorem 3.6, we will prove this theorem under the condition
0 < y ≤ sn. To see the positivity of ψn(x, y, ϕ) in (3.5) for n ≥ 3, we define a function φn

(
x, y, t

)
by

φn
(
x, y, t

)
:= fn

(
x, y

)
t2 + 1n

(
x, y

)
t + hn

(
x, y

)
, n ≥ 3, t ≥ 0.

Since φn(x, y, t) is a quadratic polynomial in t ≥ 0, the equivalent condition for φn(x, y, t) ≥ 0 (t ≥ 0) about x
and y is one of the following two cases:
Case 1. fn(x, y) ≥ 0, 1n(x, y) ≥ 0 and hn(x, y) ≥ 0;
Case 2. fn(x, y) ≥ 0, 1n(x, y) < 0 and 1n(x, y)2

− 4 fn(x, y)hn(x, y) ≤ 0.
To check Case 1, we observe that

fn
(
x, y

)
≥ 0⇐⇒ 0 < x ≤ f̃n

(
y
)

:=
(n + 1)2

3y(n − 1)(n + 3)
,

1n
(
x, y

)
≥ 0⇐⇒ 0 < x ≤ 1̃n

(
y
)

:=
12

(
n3 + 20n2 + 21n + 6

)
y

(n + 1)(ζ2(n)y2 − ζ1(n)y + ζ0(n))
,

hn
(
x, y

)
≥ 0⇐⇒ 0 < x ≤ h̃n

(
y
)
,

where

ζ2(n) = 9 (n − 1) (n + 2)
(
2n5 + 9n4 + 18n3 + 23n2

− 24n + 4
)
,

ζ1(n) = 12n (n − 1) (2n + 1) (n + 3) (n + 1)
(
n2 + 2n + 4

)
,

ζ0(n) = 4n2 (n + 2) (2n + 1) (n + 1)3 .

By a simple computation, we get f̃n(y) ≥ 1̃n(y) for 0 < y ≤ sn. Given a fixed y ∈ (0, sn), we obtain a range of
x satisfying Case 1 is 0 < x ≤ min{1̃n(y), h̃n(y)}.

To check Case 2, we put Dn := 1n(x, y)2
− 4 fn(x, y)hn(x, y) for the discriminant of quadratic polynomial.

Then we obtain

Dn =

(
xΘ(1)

n (y) + Θ(2)
n (y)

) (
xΘ(3)

n (y) + Θ(4)
n (y)

)
186624x2y4 (n + 2)2 (2n + 1)2 (n + 1)6 ,
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where

Θ(1)
n (y) = ξ12(n)y2

− ξ11(n)y + ξ10(n),

Θ(2)
n (y) = 12

(
n2
− 6n − 3

)
y,

Θ(3)
n (y) = ξ32(n)y2

− ξ31(n)y + ξ30(n),

Θ(4)
n (y) = 12

(
n4
− 50n3

− 95n2
− 60n − 12

)
y,

with

ξ12(n) = 9 (n − 1) (n + 1)
(
2n5 + 9n4 + 18n3 + 23n2

− 8n − 28
)
,

ξ11(n) = 12n (n − 1) (2n + 1) (n + 1)
(
n3 + 4n2 + 7n + 8

)
,

ξ10(n) = 4n2 (2n + 1) (n + 1)4 .

If Dn = 0, we can obtain that x = δn(y) or x = γn(y), where

δn
(
y
)
=

12
(
n2
− 6n − 3

)
y

−ξ12(n)y2 + ξ11(n)y − ξ10(n)
, γn

(
y
)
=

12
(
n4
− 50n3

− 95n2
− 60n − 12

)
y

−ξ32(n)y2 + ξ31(n)y − ξ30(n)
.

Firstly, we suppose that h̃n(y) ≤ 1̃n(y). Considering Case 2, since hn(x, y) < 0 when 1n(x, y) < 0, we get
Dn > 0, which is impossible. i.e., Xn(y) = h̃n(y). Secondly, we may assume that h̃n(y) ≥ 1̃n(y). Observe
that Θ(3)

n (y) > 0. If Θ(1)
n (y) ≥ 0, by some technical computations we have that δn(y) < 1̃n(y) < γn(y) < h̃n(y),

i.e., a range of x satisfying Case 2 becomes 1̃n(y) ≤ x ≤ γn(y). On the other hand, if Θ(1)
n (y) < 0, then

1̃n(y) < γn(y) < h̃n(y) < δn(y), and we have the same range in this case also. Therefore Xn(y) = γn(y).
By direct computations, we get h̃3(y) ≥ 1̃3(y) and h̃n(y) ≤ 1̃n(y) for n ≥ 16, which induce X3(y) = γ3(y)

and Xn(y) = h̃n(y) for n ≥ 16. For 4 ≤ n ≤ 15, we have the following

h̃n(y) ≥ 1̃n(y)⇐⇒ 0 < y ≤ s̆n and h̃n(y) ≤ 1̃n(y)⇐⇒ s̆n ≤ y ≤ sn.

Thus φn
(
x, y, t

)
≥ 0, and so ψn(x, y, ϕ) ≥ 0 for n ≥ 3. Hence the proof is complete.

We now discuss distinctions for the weak n-hyponormality and the n-hyponormality of a weighted shift
Wα(x,y) with the weight sequence α(x, y) in (3.1). Recall an equivalent condition for the n-hyponormality of
the weighted shift Wα(x,y) from [13] or [15] as below.

Proposition 3.8 ([13, Theorem 3.6], [15, p.1371]). Let α
(
x, y

)
be given in (3.1) and let Wα(x,y) be the associated

weighted shift. Then Wα(x,y) is n-hyponormal if and only if it holds that

0 < y ≤
2 (n + 1)2 (n + 2)2

3n (n + 3) (n2 + 3n + 4)
; 0 < x ≤

144 (n + 1)2 y
n (n + 2)

(
9φn2y2 − 12φn1y + 4φn0

) =: tn,

where

φn0 = n (n + 2) (n + 1)4 ,

φn1 = (n − 1) (n + 3)
(
n2 + 2n + 4

)
(n + 1)2

φn2 = (n − 1) (n + 3)
(
n4 + 4n3 + 9n2 + 10n − 8

)
.

According to Theorem 3.7 and Proposition 3.8, we may obtain the following corollary which is an
improvement of [25, Theorem 4.1].

Corollary 3.9. Let α
(
x, y

)
be given in (3.1) and let Wα(x,y)be the associated weighted shift. Then it holds that{

(x, y) : 0 < y ≤ sn, tn < x ≤ Xn(y)
}
⊂WH

⟨n⟩
α(x,y)\SH

⟨n⟩
α(x,y), n ≥ 3,

where Xn(y) is as in Theorem 3.7, sn is as in Lemma 3.5 and tn is as in Proposition 3.8.
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4. Further examples

It follows from [11, Theorem 2.7] and [4, Theorem 2.4] that if a weight sequence α = {αn}
∞

n=0 is given by

αn =

√
an + b
cn + d

(n ≥ 0),

where a, b, c, d > 0 with ad − bc > 0, then the associate weighted shift Wα ≡ S(a, b, c, d) is subnormal with the
Berger measure

dµ(t) =
( c

d

)b/a Γ( d
c )

Γ( b
a )Γ

(
d
c −

b
a

) tb/a−1
(
1 −

ct
a

)d/c−b/a−1
dt

with support
[
0, a

c

]
. This operator S(a, b, c, d) covers several known examples, for example, if a = b = c = 1

and d = 2, the associated weighted shift S(1, 1, 1, 2) is Bergman shift. In Section 3, we applied Bergman
shift S(1, 1, 1, 2) to Lemma 2.4 to study Problem 1.2. We may follow the same technique in Section 3 with a
sequence α(x, y) defined by

α(x, y) :
√

x,
√

y,

√
2a + b
2c + d

,

√
3a + b
3c + d

, ...,

where x and y are positive real numbers, and will find a nonempty subregion of WH ⟨n⟩α(x,y)\SH
⟨n⟩
α(x,y) for

n ≥ 3. For a simple computation, we consider a sequence α(x) := α
(
x, 1

2

)
defined by

α0 :=
√

x and αn :=

√
2n + 1
2n + 4

, n ∈N, (4.1)

where x is a positive real number. Observe that the moment sequence γ := {γn}
∞

n=0 of α(x) is given by

γn =

{
1, n = 0;

1
4n−1 Cnx, n ≥ 1, (4.2)

with Cn := 1
n+1

(2n
n
)
, which is called the Catalan number ([2]). It follows from [28] that determinants of Hankel

matrices of Cn are given by

det[Ci+ j+k]n
i, j=0 =

{
1, k = 0, 1;∏

1≤i≤ j≤k−1
i+ j+2n+2

i+ j , k ≥ 2. (4.3)

We now find the elements of the set SH ⟨n⟩
α(x, 1

2 )
for n ≥ 2 as the following proposition.

Proposition 4.1. Let α(x) be a sequence as in (4.1) and let Wα(x) be the associate weighted shift. Then Wα(x) is
n-hyponormal if and only if 0 < x ≤ n+1

4n , namely,

SH
⟨n⟩
α(x, 1

2 )
=

(
0,

n + 1
4n

]
×

{1
2

}
.

Moreover, Wα(x) is subnormal if and only if 0 < x ≤ 1
4 .
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Proof. Let γ =
{
γi

}∞
i=0 be as in (4.2). Recall that Wα(x) is n-hyponormal if and only if the Hankel matrix Hn,k(γ)

is positive for all k ≥ 0 ([6, Theorem 4]). By (4.3), we first observe that

det Hn,0(γ) =
(1

4

)n2
−1

xn+1 det



1
4x C1 C2 · · · Cn
C1 C2 C3 · · · Cn+1
C2 C3 C4 · · · Cn+2
...

...
...

. . .
...

Cn Cn+1 Cn+2 · · · C2n


=

(1
4

)n2
−1

xn+1
(( 1

4x
− C0

)
det[Ci+ j+2]n−1

i, j=0 + det[Ci+ j]n
i, j=0

)
=

(1
4

)n2
−1

xn+1
(n + 1

4x
− n

)
is positive if and only if 0 < x < n+1

4n . By (4.3), we get det[Ci+ j+2]n−1
i, j=0 = n + 1 > 0, and applying Lemma 3.3,

we obtain that Hn,0(γ) ≥ 0 if and only if x ≤ n+1
4n . The “moreover” part is obvious.

Now we use the technique in Section 2 with ϵ̂2 = · · · = ϵ̂n−1 = δ̂1 = · · · = δ̂n−2 = 0 to get a formula for the
sufficient condition for the weak n-hyponormality of Wα(x). Applying α(x) to (2.5) and (2.7), we obtain the
matrix-valued functions

F1(h) =
[

1
4n−2 Cn−1x 1

4n−1 Cnx
1

4n−1 Cnx 1
4n Cn+1x − h

]
=

x
4n−2

[
Cn−1

1
4 Cn

1
4 Cn

1
16 Cn+1 −

4n−2

x h

]
and

Gn−1(h) =
x

4n−2



Cn−1
1
4 Cn

1
42 Cn+1 · · ·

1
4n C2n−1

1
4 Cn

1
42 Cn+1 −

4n−2

x h 1
43 Cn+2 · · ·

1
4n+1 C2n

1
42 Cn+1

1
43 Cn+2

1
44 Cn+3 · · ·

1
4n+2 C2n+1

...
...

...
. . .

...
1
4n C2n−1

1
4n+1 C2n

1
4n+2 C2n+1 · · ·

1
42n C3n−1


.

Take ϵ̂1 > 0 such that det Fn−1 (̂ϵ1) = 0, i.e.,

ϵ̂1 =
3Cnx

22n−1(n + 1)(n + 2)
.

Observe that

det Gn−1(h) =
x

4n2+2n−2
det


Cn−1 Cn Cn+1 · · · C2n−1

Cn Cn+1 −
4n

x h Cn+2 · · · C2n
Cn+1 Cn+2 Cn+3 · · · C2n+1
...

...
...

. . .
...

C2n−1 C2n C2n+1 · · · C3n−1


.

Under the authors’ knowledge, it looks difficult to estimate the exact value δ̂n−1 > 0 such that det Gn−1(δ̂n−1) =
0 with respect to the general number n ∈ N. (Nevertheless we can find the value δ̂n−1 > 0 in some low
numbers n ∈ N by using the computer software; for examples, n = 3, 4, ..., 20, and more, etc.) Since
det[Ci+ j+n−1]n

i, j=0 > 0, there exists a unique value δ̂n−1 > 0 such that det Gn−1(δ̂n−1) = 0. Hence the hypothesis
of Proposition 4.2 below is valid.
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Proposition 4.2. Let α(x) be given in (4.2) and let Wα(x) be the associated weighted shift. Suppose

ψn(x, t) := det



1
4x C1 C2 · · · Cn

√
t

C1 C2 + κnt C3 · · · Cn+1
√

t
C2 C3 C4 · · · Cn+2

√
t

...
...

...
. . .

...
Cn
√

t Cn+1
√

t Cn+2
√

t · · · C2nt + νn


≥ 0 for all t ≥ 0,

with κn := ϵ̂1
4x =

3Cn
22n+1(n+1)(n+2) and νn := 42n−1

x δ̂n−1, where δ̂n−1 is some positive real number such that det Gn−1(δ̂n−1) =
0. Then Wα(x) is weakly n-hyponormal.

Proof. In Lemma 2.2, if we put t := |ϕn|
2 and ϕ1 = 1, then ϵ = ϵ̂1t and δ = δ̂n−1. By some determinant

properties, we get

detΦn(ϵ, δ) = detΦn(̂ϵ1t, δ̂n−1) =
xn+1

4n2−1
ψn(x, t).

Similarly to the proof of Theorem 3.6, the submatrix obtained by deleting the first row and column from
Φn(ϵ, δ) has positive determinant and its all upper-left corner submatrices have positive determinants.
Hence, by Lemma 3.3, we haveΦn(ϵ, δ) ≥ 0 if and only if detΦn(ϵ, δ) ≥ 0 if and only if ψn(x, t) ≥ 0. Applying
to Lemma 2.4, we obtain this proposition.

In Proposition 4.2, if δ̂n−1 vanishes, then we obtain thatψn(x, t) ≥ 0 for all t ≥ 0 if and only if x ≤ n+1
4n , which

is the sufficient and necessary condition for the n-hyponormality. In this situation we can not distinguish
between the n-hyponormality and the weak n-hyponormality. To avoid such undesirable situation, we
have to find δ̂n−1 > 0 such that det Gn−1(δ̂n−1) = 0.

Recall an element fact that if a Hankel matrix
[
si+ j

]n

i, j=0
has rank r (1 ≤ r ≤ n), it holds that

det
[
si+ j

]r−1

i, j=0
det

[
si+ j+m

]r−1

i, j=0
= det

[
si+ j+1

]r−1

i, j=0
det

[
si+ j+m−1

]r−1

i, j=0
, (4.4)

for all 1 ≤ m ≤ 2n − 2r + 2; see [19, p.60]. By using this recurrence formula, we see the gap between the
n-hyponormality and weak n-hyponormality as following lemma.

Lemma 4.3. Let α(x) be given in (4.1) and let Wα(x) be the associated weighted shift. ThenWH ⟨n⟩
α(x, 1

2 )
\SH

⟨n⟩
α(x, 1

2 )
, ∅

for n ≥ 3.

Proof. Let γ =
{
γi

}∞
i=0 be the associated moment sequence of α(x) as in (4.2). For our convenience, we let

Mn(x) := Hn,0(γ) and M′
n(x) be the submatrix obtained by deleting the second row and column from Mn(x).

By a direct computation, we have

ψn(x, t) = κn det M′

n(x)t2 +
(
det Mn(x) + κnνn det M′

n−1(x)
)

t + νn det Mn−1(x). (4.5)

Since the range of x for the weak n-hyponormality contains the interval
(
0, n+1

4n

]
, we may assume that

ψn(x, t) ≥ 0 for all t ≥ 0 and 0 < x ≤ n+1
4n . If x = n+1

4n in (4.5), it follows from the proof of Proposition 4.1 that

ψn

(n + 1
4n

, t
)
= κn det M′

n

(n + 1
4n

)
t2 + κnνn det M′

n−1

(n + 1
4n

)
t + νn det Mn−1

(n + 1
4n

)
,

and det Mn−1

(
n+1
4n

)
> 0. Since Mn−1

(
n+1
4n

)
≥ 0, its all submatrices have positive determinants. i.e.,

det M′

n−1

(
n+1
4n

)
> 0. To showψn

(
n+1
4n , t

)
> 0 for all t ≥ 0, we claim that det M′

n

(
n+1
4n

)
> 0. Let r = rankMn

(
n+1
4n

)
.

Since det Mn

(
n+1
4n

)
= 0, we have 1 ≤ r ≤ n. Then

det Mr−1

(n + 1
4n

)
=

( n
n + 1

− C0

)
det

[
Ci+ j+2

]r−2

i, j=0
+ det

[
Ci+ j

]r−1

i, j=0
=

n − r + 1
n + 1

,
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det Hr−1,1(γ) = det
[
Ci+ j+1

]r−1

i, j=0
= 1,

and

det Hr−1,2(γ) = det
[
Ci+ j+2

]r−1

i, j=0
= r + 1.

By (4.4) with m = 2, we obtain that n−r+1
n+1 (r + 1) = 1, i.e., r = n. Thus the rank of Mn

(
n+1
4n

)
becomes n, which

implies det M′
n

(
n+1
4n

)
> 0. Since there is δ > 0 such that det M′

n (x) > 0 on
(
0, n+1

4n + δ
]
, we have that for each

x ∈
(
0, n+1

4n + δ
]
, ψn(x, t) has the minimum on [0,∞). We consider a continuous function mn(x) on

(
0, n+1

4n + δ
)

defined by

mn(x) = min{ψn(x, t) : t ≥ 0}.

Since mn( n+1
4n ) is strictly positive, there exists ε ∈ (0, δ) such that mn(x) ≥ 0 on

(
0, n+1

4n + ε
]
, i.e., for each

x ∈
(
0, n+1

4n + ε
]
, ψn(x, t) ≥ 0 for all t ≥ 0. Therefore we have this Lemma.

We now obtain a nonempty subregion ofWH ⟨n⟩α(x,y)\SH
⟨n⟩
α(x,y) for n ≥ 3.

Theorem 4.4. Let α(x, y) be a sequence defined by

α0 :=
√

x, α1 =
√

y, αk :=

√
2k + 1
2k + 4

, k ≥ 2,

and let Wα(x,y) be the associated weighted shift. Then for each n ≥ 3, there exist εn > 0 and a continuous positive real
function σn(x) such that{

(x, y) :
n + 1

4n
< x <

n + 1
4n
+ εn and

1
2
− σn(x) < y <

1
2
+ σn(x)

}
⊂WH

⟨n⟩
α(x,y)\SH

⟨n⟩
α(x,y).

Proof. The existence of εn > 0 follows from Lemma 4.3, and so it is sufficient to find σn(x) > 0 for n ≥ 3.
Suppose n ≥ 3. Let s ∈

(
n+1
4n ,

n+1
4n + εn

)
be fixed. We apply a weight sequence α(s, y) to Algorithm 2.3. Firstly,

we check for the positivity of G1(0) in (2.7). Set f (y) := det G1(0) = det[γi+ j+1]n
i, j=0, where γk are moments of

α(s, y). Then

f
(1

2

)
=

(1
4

)n(n+1)

s det[Ci+ j+1]n
i, j=0 = s

(1
4

)n(n+1)

> 0.

By the continuity of f , there exists σ(1)
n (s) > 0 such that f (y) > 0 for

1
2
− σ(1)

n (s) < y <
1
2
+ σ(1)

n (s).

Secondly, we check for positivity of ∆n(
√

s,
√

y) in (2.9) with ϵ̂i = 0 = δ̂i (i = 2, . . . ,n − 2). Set 1(y) :=
det∆n(

√
s,
√

y). Then 1 is a rational function in y and it is continuous obviously. According to the proof
of Lemma 4.3, we see that 1( 1

2 ) > 0. Similarly to the first case, there exists σ(2)
n (s) > 0 such that 1(y) > 0 for

1
2 − σ

(2)
n (s) < y < 1

2 + σ
(2)
n (s). Taking σn(s) := min{σ(1)

n (s), σ(2)
n (s)}, we can see that{(

x, y
)

:
n + 1

4n
< x <

n + 1
4n
+ εn,

1
2
− σn(x) < y <

1
2
+ σn(x)

}
⊂WH

⟨n⟩
α(x,y)\SH

⟨n⟩
α(x,y),

which proves the theorem.
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Remark 4.5. As seeing in this section, we can find several weighted shifts Wα(x,y) such thatWH ⟨n⟩α(x,y)\SH
⟨n⟩
α(x,y)

has a nonempty subregion for any n ≥ 3. We leave such an attempt to the interesting readers.

We close this paper with a concluding open problem.

Problem 4.6. Let α
(
x, y

)
be given in (3.1) and let Wα(x,y) be the associated weighted shift.

Find the full range ofWH ⟨n⟩α(x,y)\SH
⟨n⟩
α(x,y) for n ≥ 2.

This problem is closely related to the long-standing open problems; “find a concrete weighted shift that is
polynomially hyponormal but not subnormal” and “whether a polynomially hyponormal weighted shift but not
2-hyponormal exists?”.
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