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Abstract. The Ulam-Hyers stability for non-instantaneous impulsive fractional integro-differential equa-
tions in a Banach space with Caputo-Katugampola fractional derivative is the main focus of this paper.
The Krasnoselskii fixed point theorem and the contraction principle play a role in establishing sufficient
conditions for existence and uniqueness results. An application is also shown.

1. Introduction

Fractional differential equations are suitable to model the process with hereditary property. It is used
in a variety of areas, including biology, physics, economics, and control theory. We suggest the following
papers [1, 6, 19, 23] and their references for more information on the theory and implementations. This
theory has received a lot of attention from scientists and mathematicians because of these applications.

In dynamical structures such as pharmacotherapy, physical, social sciences, medicine, and mechanical
engineering, impulsive fractional differential equations are used to make abrupt changes [2, 7, 11]. It is
categorized into two kinds: one is instantaneous impulses, which are short-term perturbations with a
negligible duration in comparison to the interval of the entire processes. Noninstantaneous impulses are
the other form of change that occurs unexpectedly and lasts for a short period of time. In this way, the
study of impulsive fractional differential equations in various aspects for several researchers [3, 4, 9, 25, 26]
and references therein.

The investigation of stability is one of the tool of research. The study of this area has become one
of the central themes of mathematical analysis. In [24] Yu, discussed the existence and β- Ulam-Hyers
stability of fractional differential equations with involving of noninstantaneous impulses. The new class
types of Ulam-Heyrs stability of fractional integral boundary conditions was studied in [27]. Selvam et.al.
in [21] discussed the Ulam Hyers stability of fractional Duffing equation. In [29] Zada et.al, established
the Ulam Stability on Caputo sense of multipoint boundary conditions with noninstantaneous impulsive.
In [28] Zada et.al, discussed the Stability sense of fractional differential equations with noninstantaneous
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boundary conditions:

CDqy(t) = f (t, y(t)), t ∈ (t j, s j], q ∈ (0, 1],
y(t) = Gi(t, y(t)), t ∈ (s j−1, t j], i = 1, ...,n,
y(0) = Iqy(t)|t=0 = 0
y(T) = Iqy(t)|t=T.

Where CDq and Iq-is Caputo derivative and Riemann-Liouville fractional integral.
Recently, In [3] Agarwal et.al, established the Caputo fractional differential equations with non-instantaneous

impulsive and boundary conditions. Non instantaneous impulses with the fractional boundary value
problems was referred in [25]. In [10] Gupta et.al discussed nonlinear fractional boundary value with non-
instantaneous using Caputo fractional derivative. In [17] Long et.al, discussed the new boundary value
problem for non instantaneous impulses with fractional differential equations:

CDp
0,tw(t) = f (t,w(t)), t ∈ (si, ti+1] ⊂ [0,T], p ∈ (0, 1),

w(t) = Hi(t,w(t)), t ∈ (ti, si], i = 1, ...,m,

w(T) = w(0) + χ
∫ T

0
w(s)ds.

where f ,Hi- is continuous and χ-is constant.
In [22], Thaiprayoon et.al, studied the Langevin equation of Katugampola multipoint integral boundary

conditions:

Dp1 (Dp2 + ω)w(t) = f (t,w(t)), 0 < t < T,

w(0) = 0, w(T) =
n∑

i=1

αi
ρ1−qi

i

Γ(qi)

∫ ϵi

0

spi−1w(s)
(tρi − sρi )1−qi

ds :=
n∑

i=1

αi
ρi Iqi w(ϵi),

where Dpi -Riemann-Liouville fractional derivative, ρi Iqi be the Katugampola fractional integral operator,and
the function f is continuous.

In [18], Mahmudov et.al discussed the following Caputo sense with Katugampola integral conditions:

CDα1 w(t) = f (t,w(t)), t ∈ [0,T], 2 < α1 ≤ 3
w(T) = ϑϱIqw(τ), 0 < τ < T,

w′(T) = χϱIqw′(𭟋), 0 < 𭟋 < T,
w′′(T) = ιϱIqw′′(ζ), 0 < ζ < T,

where Dα1− Caputo fractional derivative, ϱIq
− Katugampola integral and f is a continuous.

Inspired by above literature, we consider a Caputo fractional integro- differential equations with non
instantaneous impulsive involving Katugampola multi-point integral boundary conditions:

CDpw(t) = f (t,w(t),Ψw(t)), t ∈ (si, ti+1] ⊂ [0,T], 1 < p ≤ 2, (1)
w(t) = Hi(t,w(t)), t ∈ (ti, si], i = 1, ...,m, (2)

w(0) = 0, w(T) =
n∑

i=1

αi
ρ1−qi

i

Γ(qi)

∫ ϵi

0

sρi−1w(s)
(tρi − sρi )1−qi

ds :=
n∑

i=1

αi
ρi Iqi w(ϵi), (3)

where CDp is the Caputo fractional derivatives of order p, ρi Iqi - Katugampola integral of order ρi > 0, qi > 0,
and ϵi ∈ (0,T),αi ∈ R, and 0 = s0 < t1 ≤ t2 < ... < tm ≤ sm ≤ sm+1 = T,- pre-fixed, f : [0,T] × R × R −→ R
and Hi : [ti, si] ×R −→ R is continuous. Moreover, Ψw(t) =

∫ t

0 k(t, s)w(s)ds and k ∈ C(D,R+) with domain
D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T}.
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Let the space PC([0,T],R) = {w : [0,T]→ R : w ∈ C(tk, tk+1],R} be continuous and there exist w(t−k ) and
w(t+k ) with w(t−k ) = w(t+k ) with the norm ∥w∥PC = sup {|w(t)| : 0 ≤ t ≤ T} . Now define

PC1([0,T],R) := {w ∈ PC([0,T],R) : w′ ∈ PC([0,T],R)}

with the norm ∥w∥PC1 := max
{
∥w∥PC , ∥w′∥PC

}
. Clearly, PC1([0,T],R) induced with the norm ∥.∥PC1 is a Banach

space.
The structure of this article is organised as follows: Section 2 is devoted to the basic definitions and

lemmas which will be used in proving results. In Section 3, we establish the system’s existence and
uniqueness of solution (1.1)- (1.3) under suitable conditions. In Section 4, we examine at the stability of
Ulam under various circumstances. Application is also presented in section 5.

2. Supporting Notes

The definitions mentioned below are from [18].

Definition 2.1. The Riemann-Liouville fractional derivative of order q > 0 for a continuous function f is given by

Dp
0+ f (t) =

1
Γ(n − p)

(
d
dt

)n ∫ t

0
(t − s)n−p−1 f (s)ds, n − 1 < p < n.

Definition 2.2. The Riemann-Liouville fractional integral of order p > 0 for a continuous function f is given by

Jp f (t) =
1
Γ(p)

∫ t

0
(t − s)p−1 f (s)ds.

where Γ is defined by Γ(p) =
∫
∞

0 e−ssp−1ds.

Definition 2.3. For the function f : [0,∞)→ R, the Caputo derivative of order p is defined as

CDp f (t) =
1

Γ(n − p)

∫ t

0

f (n)(s)
(t − s)p+1−n ds = In−p f (n)(t), t > 0,n − 1 < p < n.

Definition 2.4. Katugampola fractional integral of order p > 0 and ϱ > 0, of a given function F is defined by

ϱIp f (t) =
ϱ1−p

Γ(p)

∫ t

0

sϱ−1 f (s)
(tϱ − sϱ)1−p ds.

Lemma 2.5. [10] Let p > 0, then CDpK(t) = 0 has solutions K(t) = c0 + c1t + c2t2 + ... + cq−1tq−1, and IpCDpK(t) =
K(t) + c0 + c1t + c2t2 + ... + cq−1tq−1, where ci ∈ R, i = 0, 1, 2, ..., q − 1, q = [p] + 1.

Lemma 2.6. A function w ∈ PC([0,T],R) is given by,

w(t) =



Hi(sm) + 1
Γ(p)

∫ t

0 (t − s)p−1ω(s)ds

+ 1
Ω

[∑n
i=1 αi

ρi Ip+qiω(ϵi)dϵi −ρ Ipω(s)ds
]
, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, ...,m,
Hi(si) + 1

Γ(p)

∫ t

0 (t − s)p−1ω(s)ds
−

1
Γ(p)

∫ si

0 (si − s)p−1ω(s)ds, t ∈ (si, ti+1], i = 1, 2, ...,m.

(4)

is a solution of following system
CDpw(t) = ω(t) t ∈ (si, ti+1] ⊂ [0,T], 1 < p ≤ 2,

w(t) = Hi(t), t ∈ (ti, si], i = 1, ...,m, (5)

w(0) = 0, w(T) =
n∑

i=1

αi
ρ1−qi

i

Γ(qi)

∫ ϵi

0

sρi−1w(s)
(tρi − sρi )1−qi

ds :=
n∑

i=1

αi
ρi Iqi w(ϵi).
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Proof. :Assume that w(t) is satisfies for equation (2.2). If t ∈ [0, t1], (2.2)-integrating of first equation, then

w(t) = w(T) +
1
Γ(p)

∫ t

0
(t − s)p−1ω(s)ds. (6)

On otherhand, if t ∈ (si, ti+1], i = 1, 2, ...,m and again integrate of 1st equation, we have

w(t) = w(si) +
1
Γ(p)

∫ t

si

(t − s)p−1ω(s)ds. (7)

Now, we applying impulsive condition, w(t) = Hi(t), t ∈ (ti, si], we get,

w(si) = Hi(si). (8)

Consequently, from (2.4) and (2.5), we get

w(t) = Hi(si) +
1
Γ(p)

∫ t

0
(t − s)p−1ω(s)ds. (9)

and

w(t) = Hi(si) +
1
Γ(p)

∫ t

0
(t − s)p−1ω(s)ds −

1
Γ(p)

∫ si

0
(si − s)p−1ω(s)ds. (10)

Now, By using the boundary conditions:

w(T) =
n∑

i=1

αi
ρi Iqi w(ϵi) := −

1
|Ω|

[ n∑
i=1

αi
ρi Ip+qiω(ϵi)dϵi −ρ Ipω(s)ds

]
. (11)

where

|Ω| =

1 − n∑
i=1

σi
ϵρqi

ρqiΓ(qi + 1)

 ,Ω , 0,

ρi Ip+qi =

 n∑
i=1

|αi|
ϵρ(p+qi)

ρp+qiΓ(p + qi + 1)

 ,
ρIp =

Tρp

ρpΓ(α + 1)
.

Hence, by using the fractional derivatives, integral definitions and Lemmas. Now it’s clear that (2.3),(2.7)
and (2.8)⇒ (2.1).

3. Main Results

We list the assumptions which are required to show the major results of this paper.
(Al1): There is a positive constant L,G,Lhi such that∣∣∣ f (t,w1, ω1) − f (t,w2, ω2)

∣∣∣ ≤ L |w1 − w2| + G |ω1 − ω2| , for t ∈ [0,T], w1,w2, ω1, ω2 ∈ R,

|k(t, s, ϑ) − k(t, s, ν)| ≤M |ϑ − ν| , for t ∈ [ti, si] ϑ, ν ∈ R,
|Hi(t, v1) −Hi(t, v2)| ≤ Lhi |v1 − v2| , for v1, v2 ∈ R.
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Theorem 3.1. Under the assumption (Al1) and if

Z : max

 max
i=1,2,...,m

Lhi +
(L + GM)
Γ(p + 1)

(tp
i+1 + sp

i ),Lhi +
(L + GM)
Γ(p + 1)

+
(L + GM)
|Ω|

[ n∑
i=1

αi
ρi Ip+qi +ρ Ip

] < 1,

then the problems (1.1) − (1.3) has a unique solution on [0,T].

Proof. : Let us define an operator N : PC([0,T],R) −→ PC([0,T],R) by

(Nw)(t) =



Hm(sm,w(sm)) + 1
Γ(p)

∫ t

0 (t − s)p−1 f (s,w(s),Ψw(s))ds

+ 1
Ω

[∑n
i=1 αi

ρi Ip+qi f (ϵi,w(ϵi),Ψw(ϵi))dϵi −ρ Ip f (s,w(s),Ψw(s))ds
]
, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, ...,m,
Hi(si) + 1

Γ(p)

∫ t

0 (t − s)p−1 f (s,w(s),Ψw(s))ds
−

1
Γ(p)

∫ si

0 (si − s)p−1 f (s,w(s),Ψw(s))ds, t ∈ (si, ti+1], i = 1, 2, ...,m.

One can observe that N is well defined and (Nw) ∈ PC([0,T],R). Now, we prove that N is a contraction
mapping.
Case:1 For w, ℘ ∈ PC([0,T],R) and t ∈ [0, t1], we get

|(Nw)(t) − (N℘)(t)|

= Lhi |w(sm) − ℘(sm)| ds +
(L + GM)
Γ(p + 1)

|w − ℘| ds

+
1
Ω

[ n∑
i=1

αi
ρi Ip+qi (L + GM) |w − ℘| dϵi −ρ Ip(L + GM) |w − ℘| ds

]
≤

Lhi +
(L + GM)
Γ(p + 1)

+
(L + GM)
Ω

[ n∑
i=1

αi
ρi Ip+qi −

ρ Ip
] ∥w − ℘∥PC .

Case:2 For t ∈ (ti, si], we obtain

|(Nw)(t) − (N℘)(t)| ≤ |Hi(t,w(t)) −Hi(t, ℘(t))| ,
≤ Lhi ∥w − ℘∥PC .

Case:3 For t ∈ (si, ti+1], we get

|(Nw)(t) − (N℘)(t)|

≤ |Hi(si,w(si) −Hi(si, ℘(si)| +
1
Γ(p)

∫ t

0
(t − s)p−1

∣∣∣ f (s,w(s),Ψw(s)) − f (s,w(s),Ψw(s))
∣∣∣ ds

+
1
Γ(p)

∫ si

0
(si − s)p−1

∣∣∣ f (s,w(s),Ψw(s)) − f (s,w(s),Ψw(s))
∣∣∣ ds,

≤

[
Lhi +

(L + GM)
Γ(p + 1)

(tp
i+1 + sp

i )
]
∥w − ℘∥PC .

The above equation |(Nw)(t) − (N℘)(t)|PC ≤ Z ∥w − ℘∥PC ,where Z is less than one, therefore N is a contraction.
Hence the problem stated in (1.1) − (1.3) has a unique on w ∈ PC([0,T],R).

Theorem 3.2. Suppose that the condition (Al1) is satisfied and the following assumptions hold
(Al2):There is a constant L1i > 0, such that∣∣∣ f (t,W1, ω1)

∣∣∣ ≤ L1i (1 + |W1| + |ω1|), t ∈ [si, ti+1],∀ W1, ω1 ∈ R.
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(Al3):There is a function κi(t), i = 1, 2, ...,m, such that

|Hi(t,W1, ω1)| ≤ κi(t), t ∈ [ti, si],∀ W1, ω1 ∈ R.

Also assume that Mi : supt∈[ti,si] κi(t) < ∞, and K := max{Lhi } < 1, for all i = 1, 2, ..,m. Then the problems
(1.1) − (1.3) has at least one solution on [0,T].

Proof. Consider Bp,r = {w ∈ PC([0,T],R) : ∥w∥PC ≤ r}. Let Q and R be the two operators explained on Bp,r by

Qw(t) =


Hm(sm,w(sm)), t ∈ [0, t1],
Hi(t,w(t)), t ∈ (ti, si], i = 1, 2, ...,m,
Hi(si,w(si)), t ∈ (si, ti+1], i = 1, 2, ...,m.

and

Rw(t) =



1
Γ(p)

∫ t

0 (t − s)p−1 f (s,w(s),Ψw(s))ds

+ 1
Ω

[∑n
i=1 αi

ρi Ip+qi f (ϵi,w(ϵi),Ψw(ϵi))dϵi −ρ Ip f (s,w(s),Ψw(t))ds
]
, t ∈ [0, t1],

0, t ∈ (ti, si], i = 1, 2, ...,m,
1
Γ(p)

∫ t

0 (t − s)p−1 f (s,w(s),Ψw(s))ds
−

1
Γ(p)

∫ si

0 (si − s)p−1 f (s,w(s),Ψw(s))ds, t ∈ (si, ti+1], i = 1, 2, ...,m.

Step:1 For w ∈ Bp,r then Qw + Rw ∈ Bp,r.
Case:1 For t ∈ [0, t1], we get

∥Qw + R℘∥ ≤ |Hm(sm,w(sm))| +
1
Γ(p)

∫ t

0
(t − s)p−1

∣∣∣ f (s,w(s),Ψw(s))
∣∣∣ ds

+
1
Ω

[ n∑
i=1

αi
ρi Ip+qi

∣∣∣ f (ϵi,w(ϵi),Ψw(ϵi))
∣∣∣ dϵi −ρ Ip

∣∣∣ f (s,w(s),Ψw(t))
∣∣∣ ds

]
,

≤

Mm +
L1i

Γ(p + 1)
+

L1i

Ω

[ n∑
i=1

αi
ρi Ip+qi −

ρ Ip
] (1 + r) ≤ r.

Case:2 For each t ∈ (ti, si], we have

∥Qw + R℘∥ ≤ |Hi(t,W1(t))| ≤Mi.

Case:3 For each t ∈ (si, ti+1], we obtain

∥Qw(t) + R℘(t)∥ ≤ |Hi(si,w(si))| +
1
Γ(p)

∫ t

0
(t − s)p−1

∣∣∣ f (s,w(s),Ψw(s))
∣∣∣ ds

+
1
Γ(p)

∫ si

0
(si − s)p−1

∣∣∣ f (s,w(s),Ψw(s))
∣∣∣ ds,

≤Mi +

L1i (s
p
i + tp

i+1)

Γ(p + 1)

 (1 + r) ≤ r.

Thus

Qw + Rw ∈ Bp,r.

Step:2 Q is contraction on Bp,r.
Case:1 w1,w2 ∈ Bp,r and t ∈ [0, t1], we have

|Qw1(t) −Qw2(t)| ≤ L1m |w1(sm) − w2(sm)| ≤ L1m |w1 − w2|PC .



P. Karthikeyan et al. / Filomat 37:19 (2023), 6603–6615 6609

Case:2. For each t ∈ (ti, si], i = 1, 2, ...,m, we occur

|Qw1(t) −Qw2(t)| ≤ L1i |w1 − w2|PC .

Case:3 For t ∈ (si, ti+1],we get

|Qw1(t) −Qw2(t)| ≤ L1i |w1 − w2|PC .

From the above inequalities, we obtain

|Qw1(t) −Qw2(t)| ≤ K |w1 − w2|PC .

Hence, Q is a contraction.Now we move to the next step.
Step:3 We prove that R is continuous.
Let wn be sequence ∋ wn → ℘ in PC([0,T],R).
Case:1 For each t ∈ [0, t1], we have

∥Qwn(t) −Qw(t)∥ ≤

 1
Γ(p + 1)

+
1
Ω

 n∑
i=1

αi
ρi Ip+qi −

ρ Ip


 ∥∥∥ f (.,wn(.), ., ) − f (.,w(.), ., )

∥∥∥
PC .

Case:2 For each t ∈ (ti, si], we obtain

∥Qwn(t) −Qw(t)∥ = 0.

Case:3 For each t ∈ (si, ti+1], i = 1, 2, ...,m, we get

∥Qwn(t) −Qw(t)∥ ≤
(ti+1 − si)
Γ(p + 1)

∥∥∥ f (.,wn(.), ., ) − f (.,w(.), ., )
∥∥∥

PC .

Thus, we conclude that the above cases ∥Qwn(t) −Qw(t)∥PC −→ 0 as n −→ ∞.
Step:4 We prove that Q is compact.
Firstly observe that Q is uniformly bounded on Bp,r. Since ∥Qw∥ ≤

L1i (T)
Γ(1+p) < r.

Next, prove that Q maps bounded set into equicontinuous set of Bp,r.
Case:1 For interval t ∈ [0, t1], 0 ≤ E1 ≤ E2 ≤ t1,w ∈ Br, we obtain

|QE2 −QE1| ≤
L1i (1 + r)
Γ(p + 1)

(E2 − E1).

Case:2 For each t ∈ (ti, si], ti < E1 < E2 ≤ si,w ∈ Bp,r, we obtain

|QE2 −QE1| = 0.

Case:3 For each t ∈ (si, ti+1], si < E1 < E2 ≤ ti+1,w ∈ Bp,r, we establish

|QE2 −QE1| ≤
L1i (1 + r)
Γ(p + 1)

(E2 − E1).

From the above, we get |QE2 −QE1| −→ 0 as E2 −→ E1 and Q is equicontinuous. Thus Q(Bp,r)- relatively
compact, so by using Ascoli-Arzela theorem, Q is compact. Hence the considered problem (1.1)− (1.3) have
at least one fixed point on [0,T].
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4. Hyers-Ulam stability

The definitions of generalized Ulam-Hyers stable for the problem (1.1) − (1.2) and inequalities
∣∣∣CDpw(t) − f (t,w(t),Ψw(t))

∣∣∣ ≤ ιr,
|w(t) −Hi(t,w(t))| ≤ ιr, t ∈ (ti, si], i = 1, ...,m.

(12)


∣∣∣CDpw(t) − f (t,w(t),Ψw(t))

∣∣∣ ≤ ϖ(t),
|w(t) −Hi(t,w(t))| ≤ ν, t ∈ (ti, si], i = 1, ...,m.

(13)

and 
∣∣∣CDpw(t) − f (t,w(t),Ψw(t))

∣∣∣ ≤ ιrϖ(t),
|w(t) −Hi(t,w(t))| ≤ ιrν, t ∈ (ti, si], i = 1, ...,m.

(14)

Definition 4.1 The equation (1.1 − 1.2) is Ulam-Hyers-stable if a real number C f ,φ > 0 exists such that for
each solution ℘ ∈ PC of (4.1) there exists a mild solution w ∈ PC of Equation (1.1 − 1.2) with

|w(t) − ℘(t)| ≤ C f ,φιr t ∈ J, ιr > 0.

Definition 4.2 The equation (1.1 − 1.2) has been generalised Ulam-Hyers-stable if ϑ f ,φ ∈ PC(R+,R+) with
ϑ f ,φ(0) = 0 exists such that for each solution ℘ ∈ PC of (4.1) there exists a mild solution w ∈ PC of Equation
(1.1 − 1.2) with

|w(t) − ℘(t)| ≤ ϑ f ,φ(ιr) t ∈ J.

Remark: 4.3 If there is a function ℘ ∈ PC and a sequence 1i, i = 1, 2, ..., k,(which depend on ℘ )∋, the function
℘ ∈ PC is a solution of inequality (4.1).

(i) |H| ≤ ιrand |Hi| ≤ ιr, for all i = 1, 2, ..., k,
(ii) CDpw(t) = f (t,w(t),Ψw(t)) + 1(t), t ∈ (si, ti+1] ⊂ [0,T],
(iii) w(t) = Hi(t,w(t)) +Hi(t), t ∈ (ti, si], i = 1, ...,m,

Lemma: 4.4 If w ∈ PC is an inequality solution (4.1), then the inequalities below satisfy:

∣∣∣∣w(t) −Hi(sm) − 1
Γ(p)

∫ t

0 (t − s)p−1 f (s)ds
∣∣∣∣ ≤ ιr

Γ(p+1) t
p, t ∈ [0, t1],

|w(t) −Hi(t)| ≤ ιr, t ∈ (ti, si], i = 1, 2, ...,m,∣∣∣∣w(t) −Hi(si) + 1
Γ(p)

∫ t

0 (t − s)p−1 f (s)ds

−
1
Γ(p)

∫ si

0 (si − s)p−1 f (s)ds
∣∣∣∣ ≤ ιr + ιr

Γ(p+1) t
p, t ∈ (si, ti+1], i = 1, 2, ...,m.

(15)

Proof: For any i = 1, 2, ...,m and t ∈ (si, ti+1], applying the Remark (4.4) and (2.1), the solution is given by

w(t) −Hi(si) +
1
Γ(p)

∫ t

0
(t − s)p−1 f (s)ds −

1
Γ(p)

∫ si

0
(si − s)p−1 f (s)ds

= Hi +
1
Γ(p)

∫ t

0
(t − s)p−1 f (s)ds.

This proves the claim of Lemma 4.5.

Theorem 4.1. Let the assumption (Al1) holds. Then the problems (1.1) − (1.3) is Ulam-Hyers stable.
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Proof: Let us denote by w, the unique solution of

CDpw(t) = f (t,w(t),Ψw(t)), t ∈ (si, ti+1] ⊂ [0,T], 1 < p ≤ 2, (16)
w(t) = Hi(t,w(t)), t ∈ (ti, si], i = 1, ...,m,

w(0) = 0, w(T) =
n∑

i=1

αi
ρ1−qi

i

Γ(qi)

∫ ϵi

0

sρi−1w(s)
(tρi − sρi )1−qi

ds :=
n∑

i=1

αi
ρi Iqi w(ϵi).

Then, we get

w(t) =



Hi(sm) + 1
Γ(p)

∫ t

0 (t − s)p−1ω(s)ds

+ 1
Ω

[∑n
i=1 αi

ρi Ip+qiω(ϵi)dϵi −ρ Ipω(s)ds
]
, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, ...,m,
Hi(si) + 1

Γ(p)

∫ t

0 (t − s)p−1ω(s)ds
−

1
Γ(p)

∫ si

0 (si − s)p−1ω(s)ds, t ∈ (si, ti+1], i = 1, 2, ...,m.

Let ℘ ∈ PC(J,R) be a solution of (4.1). According to (4.7), for each t ∈ (si, ti+1],we have

∣∣∣∣℘(t) −Hi(si, ℘(si)) −
1
Γ(p)

∫ t

0
(t − s)p−1 f (s, ℘(s),Ψ℘(s))ds

+
1
Γ(p)

∫ si

0
(si − s)p−1 f (s, ℘(s),Ψ℘(s))ds

∣∣∣∣
≤ ιr +

(ti+1 − si)p

Γ(p + 1)
ϵ,

and for (ti, si], i = 1, 2, ...,m, we obtain

|w(t) −Hi(t,w(t))| ≤ ιr.

Now for each t ∈ [0, t1], we have

∣∣∣∣℘(t) −Hi(sm, ℘(sm)) −
1
Γ(p)

∫ t

0
(t − s)p−1 f (s, ℘(s),Ψ℘(s))ds

+
1
|Ω|

[ n∑
i=1

αi
ρi Ip+qi f (ϵi, ℘(ϵi),Ψ℘(ϵi))dϵi −ρ Ip f (s, ℘(s),Ψ℘(s))ds

]∣∣∣∣,
≤

tp
1

Γ(p + 1)
ιr.

Now we discuss several cases.
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Case:1 For each t ∈ [0, t1],we get

|℘(t) − w(t)| ≤
∣∣∣∣℘(t) −Hi(sm, ℘(sm)) −

1
Γ(p)

∫ t

0
(t − s)p−1 f (s, ℘(s),Ψ℘(s))ds

−
1
|Ω|

[ n∑
i=1

αi
ρi Ip+qi f (ϵi, ℘(ϵi),Ψ℘(ϵi))dϵi −ρ Ip f (s, ℘(s),Ψ℘(s))ds

]∣∣∣∣,
+

∣∣∣∣ 1
Γ(p)

∫ t

0
(t − s)p−1 f (s, ℘(s),Ψ℘(s))ds

−
1
Γ(p)

∫ t

0
(t − s)p−1 f (s, ℘(s),Ψ℘(s))ds

∣∣∣∣,
≤

tp
1

Γ(p + 1)
ιr + Lhi +

(Lhi + GM)
Γ(p)

∫ t

0
(t − s)p−1

|℘(s) − w(s)| ds

≤
tp
1

Γ(p + 1)
ιr + Lhi +

(Lhi + GM)tp
1

Γ(p + 1)
|℘ − w|PC .

This implies1 − (Lhi + GM)tp
1

Γ(p + 1)

 |℘ − w|PC ≤
Tp

Γ(p + 1)
+ Lhi .

|℘(t) − w(t)| ≤ C f ,φιr, t ∈ [0, t1], (17)

where

C f ,φ :=
Tp

Γ(p+1) + Lhi

1 −
(L+GM)tp

1
Γ(p+1)

.

Case 2: For t ∈ (ti, si], i = 1, 2, ...,m, we have

|℘(t) − w(t)| ≤ |℘(t) −Hi(t, ℘(t))|
+ |Hi(t, ℘(t)) −Hi(t,w(t))| ,

ιr +
Lhi s

p
i

Γ(p + 1)
|℘ − w|PC ,

which further implies1 − Lhi s
p
i

Γ(p + 1)

 |℘ − w|PC ≤ ιr.

Thus, we obtain

|℘(t) − w(t)| ≤ C f ,φιr, t ∈ (ti, si], i = 1, 2, ...,m, (18)

where

C f ,φ =
1(

1 −
Lhi s

p
i

Γ(p+1)

) .
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Case 3: For t ∈ (si, ti+1], i = 1, 2, ...,m,we have

|℘(t) − w(t)| ≤
∣∣∣∣Hi(si) −

1
Γ(p)

∫ t

0
(t − s)p−1 f (s, ℘(s),Ψ℘(s))ds

+
1
Γ(p)

∫ si

0
(si − s)p−1 f (s, ℘(s),Ψ℘(s))ds

∣∣∣∣
+

1
Γ(p)

∫ t

0
(t − s)p−1

∣∣∣ f (s, ℘(s),Ψ℘(s)) − f (s,w(s),Ψw(s))
∣∣∣ ds

+
1
Γ(p)

∫ si

0
(si − s)p−1

∣∣∣ f (s, ℘(s),Ψ℘(s)) − f (s,w(s),Ψw(s))
∣∣∣ ds,

≤

ιr + (tp
i+1 − sp

i ιr

Γp + 1

 + (Lhi + GM)tp
i+1 − sp

i

Γ(p + 1)
|℘ − w|PC .

Hence, we get1 − (Lhi + GM)tp
i+1 − sp

i

Γ(p + 1)

 |℘ − w|PC ≤

1 +
tp
i+1 − sp

i

Γ(p + 1)

 ιr |℘ − w|PC .

Further computation shows that

|℘(t) − w(t)| ≤ C f ,φιr, (19)

where,

C f ,φ :=
1 +

tp
i+1−sp

i
Γp+1

1 −
(Lhi+GM)tp

i+1−sp
i

Γ(p+1)

.

Summarizing (4.8), (4.9) and (4.9), we conclude that (1) is Ulam-Hyers stable with respect to ιr.

5. Application

Let us consider the Caputo-Katugampola multipoint boundary value problem,

Dpw(t) =
e−t
|w|

12 + et(1 + |w|)
+

1
3

∫ t

0
e−(s−t)w(s)ds, t ∈ (0, 1] ∪ (2, 3], (20)

w(t) =
|w(t)|

2(1 + |w(t)|)
, t ∈ (1, 2], (21)

w(0) = 0 w(1) = 2 1/3I2/3w(3/5) + 11/3I2/7w(2/5), (22)

where

|Ω| =

1 − n∑
i=1

σi
ϵ
ρqi

i

ρqiΓ(qi + 1)

 ,Ω , 0,

and L = G = 1
12 , M = 1

3 , p = 5
7 n = 2, α1 =

1
2 , α2 =

1
3 , ϵ1 =

5
12 , ϵ2 =

6
13 , q1 =

2
3 , q2 =

2
7 ρ =

1
3 , Lh1 =

1
3 .

Using the given data, |Ω| = 3.81, by using theorem (3.1), we determine that

Lhi +
(L + GM)
Γ(p + 1)

(tp
i+1 + sp

i ) ≈ 0.41 < 1.

andLhi +
(L + GM)
Γ(p + 1)

+
(L + GM)
|Ω|

[ n∑
i=1

αi
ρi Ip+qi +ρ Ip

] ≈ 0.54 < 1.
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Hence, all assumptions of Theorem 3.1 is satisfied, so that the problem (4.1) − (4.3) has a unique solution
[0,T].
Further, we take the solution w of the problem, (5.1) − (5.3) given by

w(t) =
|w(t)|

2(1 + |w(t)|)
+

1
Γ 5

7

∫ t

0
(t − s)

−2
7 +

e−t
|w|

12 + et(1 + |w|)

+
1
3

∫ t

0
e−(s−t)w(s)ds + 21/3I2/3

[
e−t
|w|

12 + et(1 + |w|

]
+ 11/3I2/7

[ e−t
|w|

12 + et(1 + |w|)

+
1
3

∫ t

0
e−(s−t)w(s)ds

]
, t ∈ (0, 1],

w(t) =
|w(t)|

2(1 + |w(t)|)
, t ∈ (1, 2],

w(t) =
|w(t)|

2(1 + |w(t)|)
+

1
Γ 5

7

∫ t

0
(t − s)

−2
7 +

e−t
|w|

12 + et(1 + |w|)

+
1
3

∫ t

0
e−(s−t)w(s)ds −

1
Γ 5

7

∫ 2

0
(2 − s)

−2
7 +

e−t
|w|

12 + et(1 + |w|

+
1
3

∫ t

0
e−(s−t)w(s)ds, t ∈ (1, 2].

For t ∈ (0, 1], we obtain

|℘(t) − w(t)| ≤
tp
1

Γ(p + 1)
ϵ + Lhi +

(L + GM)tp
1

Γ(p + 1)
≤ 1.23.

For t ∈ (1, 2], we get

|℘(t) − w(t)| ≤

ιr + (tp
i+1 − sp

i ιr

Γp + 1

 + (Lhi + GM)tp
i+1 − sp

i

Γ(p + 1)
≤ 1.778,

which shows that (5.1) − (5.3) is Ulam-Hyers stable with respect to ιr = 1.
Acknowledgement: The authors would like to thank the anonymous reviewers for their comments and
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