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Abstract. In the article “Special affine multiresolution analysis and the construction of orthonormal
wavelets in L2(R)”, [Appl Anal. 2022; D.O.I: 10.1080/00036811.2022.2030723], we introduced the notion
of multiresolution analysis (MRA) in the realm of the special affine Fourier transform. In continuation to
the study, our aim is to present the construction of special affine biorthogonal wavelets in L2(R). Besides,
we provide a complete characterization for the biorthogonality of the translates of the scaling functions of
two special affine MRA’s and the associated special affine biorthogonal wavelet families. We show that
the wavelets associated with the biorthogonal special affine MRA’s are also biorthogonal in nature. To
extend the scope of the present study, we present the biorthogonal special affine MRA and its biorthogonal
properties on a logarithmic regression curve C .

1. Introduction

The premiere development in the theory of wavelet analysis was reported in 1986, when Stéphans Mallat
and Yves Meyer came up with the remarkable discovery of a new formalism, known as the multiresolution
analysis, for the construction of orthogonal wavelet bases [1]. Mallat’s brilliant work served as the pedestal
for many subsequent developments, including the construction of orthogonal spline wavelets [2]. Using
MRA, wavelet spaces are constructed by splitting the frequency domain dyadically and their bases are
obtained with the help of translated and dialated form of a single function. Some of the prominent
wavelets obtained via the multiresolution analysis include Shannon wavelet, Meyer wavelet, Franklin
wavelet, spline wavelets, nonuniform wavelets, harmonic wavelets, and Daubechies wavelets [3, 4]. Despite
the remarkable success over the past few decades, compactly supported orthonormal wavelets suffer
from certain apparent limitations. For instance, they lack symmetry, that is, the processing filters are
non-symmetric and do not possess a linear phase property. The lack of these properties puts a strong
limitation on the construction of symmetric, orthogonal and compactly supported wavelets and also results
in severe undesirable phase distortion in signal processing. To overcome such limitations, Cohen et al.
[5] developed another elegant approach in the form of biorthogonal multiresolution analysis. Unlike the
classical multiresolution analysis, the biorthogonal MRA has the prime feature of efficiently resolving
linear phased finite impulse response filters adapted to the fast wavelet transform. As of now, the theory of
biorthogonal wavelets has fascinated the scientific, engineering and research communities both with their
versatile applicability and lucid mathematical framework [6, 7].
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On the other hand, the special affine Fourier transform (SAFT) is a recent addition in the context
of phase-space transforms which embodies a wider class of integral transforms ranging from the classical
Fourier to the much recent linear canonical transforms [8]. The SAFT is an integral transformation associated
with a general inhomogeneous lossless linear mapping in phase-space that depends on six parameters
independent of the phase-space coordinates. The six-parameters constitute an augmented matrix M =
(A,B,C,D : p, q) = [Λ |λ] consisting of a 2×2 unimodular matrixΛ = (A,B,C,D) and a real 2×1 augmentation
vector λ = (p , q). Due to the offset by the vector λ, the transformation is also referred as the offset linear
canonical transform [9–12]. As of now, the special affine Fourier transforms has received immense attention
from researchers working in different branches of science and engineering, including harmonic analysis,
sampling, signal and image processing, and so on. For instance, Srivastava et al. [13] investigated the
convolution operations associated with the Bessel wavelet transform and obtained the bounds of the
normalized Bessel wavelet transform on the generalized Sobolev space Bµp,k(I) via the theory of Hankel
transformation. Moreover, the authors dig deep into the localization operators associated with the integral
representation of locally compact groups and study their Schatten-von Neumann properties [14]. Shah et al.
[15] proposed the notion of the linear canonical wavelet transform in the framework of quantum mechanics
and derived the inner product relation and inversion formula for the linear canonical wavelet transform in
the realm of quantum mechanics. Mishra et al. [16] presented a systematic study of various characteristics
and properties of the continuous and discrete fractional Bessel wavelet transform. Srivastava et al. [17]
formulated a novel and efficient collocation method based on Fibonacci wavelets for the numerical solution
of the non-linear Hunter–Saxton equation, where the operational matrices of integration associated with
the Fibonacci wavelets are constructed by following the strategy of Chen and Hsiao. Srivastava and Shah
extended a unified treatment for the continuum and digital realm of multivariate data by establishing several
sufficient conditions under which the AB-wavelet system constitutes a frame for L2(Rn) [18]. Panday et al.
[19] defined a continuous wavelet transform of a Schwartz-tempered distribution f ∈ S′(Rn) with wavelet
kernel ψ ∈ S(Rn) and then derived the corresponding wavelet inversion formula interpreting convergence
in the weak topology of S′(Rn).

Much recently, we introduced the notion of multiresolution analysis in the framework of special
affine Fourier transform [20]. This article focuses on the introduction and study of the continuous special
affine wavelet transform. It covers the orthogonality relation and inversion formula, the construction of
orthonormal special affine wavelets in L2(R), and a fast wavelet transform associated with the special affine
MRA. In particular, it allows a smoother construction of orthonormal discrete special affine wavelets in a
simple and insightful way. However, much to dismay, the theoretical manifestation of the special affine
MRA is still in its infancy and needs to be explored exclusively. Taking this opportunity, we are deeply
motivated to initiate an exclusive study of the biorthogonal wavelets associated with the special affine
MRA. To facilitate the narrative, we shall briefly recall the prerequisite and then introduce the notion of
the biorthogonal wavelets associated with the special affine MRA in L2(R). We show that, if the translates
of the scaling functions of the special affine multiresolution analyses are biorthogonal, then the associated
special affine wavelet families are also biorthogonal. Moreover, we extend the scope of biorthogonal
special affine MRA on the logarithmic regression curves. The special affine biorthogonal wavelets are
expected to provide better compression and representation capabilities as they can represent a wider range
of functions. Additionally, special affine biorthogonal wavelets also offer more freedom in design and
construction, which can lead to special affine wavelets better suited for specific applications.

The highlights of the article are given below:

• To introduce the special affine biorthogonal multiresolution analysis in L2(R).

• To investigate the characterization for the biorthogonality of the translates of the scaling functions of
a pair of special affine MRA’s.

• To study the biorthogonal properties of a dual special affine wavelets.

• To study the biorthogonal properties of a dual special affine wavelets on a logarithmic curve C .
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The layout of the article is as follows: Section 2 is completely devoted for the exposition of the prelim-
inaries including the notion of multiresolution analysis associated with the SAFT. Section 3 is exclusively
concerned for the establishment of necessary and sufficient conditions for the translates of a function to
form a Riesz basis for its closed linear span. In Section 4, we show that the wavelets associated with
the biorthogonal special affine MRA’s are also biorthogonal in nature. Section 5 is solely concerned with
the notion of biorthogonal special affine MRA on a logarithmic regression curve. Finally, a conclusion is
extracted in Section 6.

2. Special Affine Fourier Transform and the Associated MRA

In this section, we shall formally recall the fundamentals of special affine Fourier transform and the
associated multiresolution analysis, which serves as a corner stone for the development of the subsequent
sections.

2.1. Special Affine Fourier Transform

Here, we shall briefly present the notion of the special affine Fourier transform and some of its fundamental
properties.

Definition 2.1. For any f ∈ L2(R), the special affine Fourier transform with respect to a real, augmented matrix
M =

(
A,B,C,D : p, q

)
is defined by

LM

[
f
]
(ω) =

∫
R

f (t)KM(t, ω) dt, (1)

whereKM(t, ω) denotes the kernel of the SAFT given by
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Throughout the article, we shall only consider the case B , 0, since for the case B = 0, the SAFT (1) is just
a chirp multiplication operation. We also note that phase-space transform defined in (1) is lossless if and
only if the matrix M = (A,B,C,D) is unimodular, that is, AD − BC = 1.

From (1), we observe that the special affine Fourier transform LM

[
f
]
(ω) of any function f ∈ L2(R) can

be recast as:
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where F [F] represents the Fourier transform of F and F(t) = eiAt2/2B f (t).

The Plancheral and inversion formulae corresponding to (1) are given by〈
f (t), 1(t)

〉
2
=

〈
LM

[
f
]
(ω),LM
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1
]
(ω)

〉
2
, ∀ f , 1 ∈ L2(R) and (3)
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f (t) = IM

∫
R

OM

[
f
]
(ω)KM−1 (t, ω) dω, (4)

where

IM = exp

 i
(
CDp2 + ABq2

− 2ADPq
)

2

 , (5)

M−1 =
[
Λ−1
|λ−1

]
with Λ−1 = (D,−B,−C,A) and λ−1 = (Dp − Bq; Aq − Cp)T. Besides, the kernel KM(t, ω)

satisfies the following properties:

(i). KM−1 (t, ω) = IMKM(t, ω),

(ii).
∫
R

KM(t, ω)KM−1 (t, µ) dt = IM δ(ω − µ),

(iii).
∫
R

KM(t, ω)KM−1 (z, ω) dω = IM δ(t − z).

2.2. Special Affine Multiresolution Analysis in L2(R)

Much recently, we introduced the notion of multiresolution analysis in the framework of special affine
Fourier transform and then studied the construction of more flexible orthogonal wavelets coined as special
affine wavelets [20]. Here, our main aim is to recall the definition of multiresolution analysis associated
with the SAFT and some of its results, which serve as a building block for the construction of biorthogonal
special affine wavelets in L2(R).

Definition 2.2. Given a real parametric matrix M = (A,B,C,D : p, q), B , 0, an associated special affine multires-
olution is a collection {VM

j : j ∈ Z} of closed subspaces of L2(R) satisfying the following properties:

(i). VM
j ⊂ VM

j+1, for all j ∈ Z;

(ii).
⋃

j∈Z VM
j is dense in L2(R);

(iii).
⋂

j∈Z VM
j =

{
0
}
;

(iv). f (t) ∈ VM
j if and only if ei3At2/2B f (2t) ∈ VM

j+1, for all j ∈ Z;

(v). There exists a function ϕ(t) ∈ L2(R) in VM
0 such that

ϕM
0,k(t) = ϕ(t − k) exp

−i
(
At2 +Dp2

− Ak2
)

2B

 , k ∈ Z (6)

is an orthonormal basis of subspace VM
0 .

The function ϕ whose existence is guaranteed in (v) is called a scaling function corresponding to the
given special affine MRA. Now, if we assume that set of functions

{
ϕM

0,k(t) : k ∈ Z
}
, then

ϕM
j,k(t) = 2 j/2ϕ

(
2 jt − k

)
exp

−i
(
At2 +Dp2

− Ak2
)

2B

 (7)

forms a complete orthonormal basis for VM
j , j ∈ Z. Given a special affine multiresolution analysis

{
VM

j :

j ∈ Z
}
, we define another sequence

{
WM

j : j ∈ Z
}

of closed subspaces of L2(R) by VM
j+1 = VM

j ⊕WM
j , j ∈ Z.

Followed by Definition (2.2), these subspaces inherit the scaling property of
{
VM

j : j ∈ Z
}
, namely

f (t) ∈ VM
j if and only if e3iAt2/2B f (2t) ∈WM

j+1, j ∈ Z. (8)
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Moreover the subspaces WM
j are mutually orthogonal with the following decomposition formula:

L2(R) =
⊕
j∈Z

WM
j . (9)

Note that condition (9) means that any orthonormal basis for L2(R) can be constructed by finding out an
orthonormal basis for the subspace WM

j .

Undoubtedly, orthogonal wavelets enjoy many desirous properties, including compact support, good
frequency localization, and vanishing moments. However, they suffer from certain apparent limitations due
to the lack of continuous symmetry. For example, in medical imaging, noise reduction, image compression
and signal processing. The biorthogonal special affine wavelets achieve symmetry where the orthogonality
is replaced by the biorthogonality. As such, we define the biorthogonal special affine scaling functions and
the associated biorthogonal wavelets as follows:

Definition 2.3. A pair of special affine MRA’s
{
VM

j : j ∈ Z
}

and {ṼM
j : j ∈ Z} with scaling functions ϕ and

ϕ̃, respectively are said to be biorthogonal to each other if
{
ϕM

0,k(t) = ϕ(t − k) e−i(At2+Dp2
−Ak2)/2B : k ∈ Z

}
and{

ϕ̃M
0,k(t) = ϕ̃(t−k) e−i(At2+Dp2

−Ak2)/2B : k ∈ Z
}

are biorthogonal. The functions ϕ and ϕ̃ are called a pair of biorthogonal
special affine scaling functions.

Assume that {VM
j : j ∈ Z} and {ṼM

j : j ∈ Z} are the biorthogonal special affine MRA’s in L2(R). Then,
for any fixed matrix M = (A,B,C,D : p, q), B , 0, the associated scaling functions satisfy the following pair
of equations:

ϕM
0,0(t) =

√

2
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√

2
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−Ak2)/2B (11)

On taking the special affine Fourier transform on both sides of (10), we obtain
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B
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where
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B

)
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1
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hM
k e−ik(ω−p)/B, hM

k = hk eiAk2/B (14)

Λ̃0

(ω − p
B

)
=

1
√

2

∑
k∈Z

h̃M
k e−ik(ω−p)/B, h̃M

k = hk eiAk2/B. (15)

Equation (14) is a 2πB−periodic function and is called the biorthogonal special affine low-pass filter.

Similar to the special affine refinement equation (10), we have the biorthogonal special affine wavelet
equations of the form

ψM
0,0(t) =

√

2
∑
k∈Z

dk ψ(2t − k) e−i(At2+Dp2
−Ak2)/2B (16)

ψ̃M
0,0(t) =

√

2
∑
k∈Z

dk ψ̃(2t − k) e−i(At2+Dp2
−Ak2)/2B. (17)
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Implementing SAFT on both sides of (16), we obtain
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where
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Equation (20) is a 2πB−periodic function and is called the biorthogonal special affine high-pass filter.

3. Riesz Basis of Translates

The orthogonality property puts a strong limitation on the construction of wavelets. For instance, orthogonal
MRA cannot produce symmetric scaling filter coefficients. The generalization to biorthogonal structure has
been considered to gain more flexibility. Here, a biorthogonal scaling function ϕ̃M

0,0 and a biorthogonal

wavelet ψ̃M
0,0 exist that generate a biorthogonal special affine MRA with subspaces ṼM

j and W̃M
j such that

ṼM
j ⊥WM

j and VM
j ⊥ W̃M

j .

Theorem 3.1. Assume that ϕ and ϕ̃ are square integrable functions. Then, the collections
{
ϕM

0,k(t) = ϕ(t −

k) e−i(At2+Dp2
−Ak2)/2B : k ∈ Z

}
and
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ϕ̂
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+ 2nπ

)
= 1, a.e. (22)

Proof. We have
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1
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−2k(ω−p)−2ω(Dp−Bq)+Dω2)/2B
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By invoking the orthonormality of ϕ, we have〈
ϕM

0,k(t), ϕ̃M
0,ℓ(t)

〉
= δk,ℓ. (23)

Therefore, by virtue of (23) and the Parsevals formula (3), we obtain

δk,ℓ =
〈
ϕM

0,k(t), ϕ̃M
0,ℓ(t)

〉
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=
〈
LM
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〉
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∑
n∈Z
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B
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ϕ
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B
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Hence, we deduce that

∑
n∈Z

ϕ̂
(ω − p

B
+ 2nπ

) ̂̃
ϕ

(ω − p
B
+ 2nπ

)
= 1, a.e.

This completes the proof of Theorem 3.1.

Remark 3.2. For the suitable choices of the parametric matrix M = (A,B,C,D : p, q),B , 0, Theorem 3.1 boils down
to their counterparts for the respective integral transforms.

Lemma 3.3. Assume that for any square integrable function ϕ, there exist positive constants η1 and η2 such that

η1 ≤

∑
n∈Z

∣∣∣∣∣ϕ̂ (ω − p
B
+ 2nπ

)∣∣∣∣∣2 ≤ η2, ∀ ω ∈ R. (24)

Then, the collection
{
ϕM

0,k(t) = ϕ(t − k) e−i(At2+Dp2
−Ak2) : k ∈ Z

}
is linearly independent.

Proof. In order to prove the result, it is sufficient to find another function ϕ̃whose translates are biorthogonal
to the translates of ϕ. We define ϕ̃ by

̂̃
ϕ

(ω − p
B

)
=

ϕ̂
(ω − p

B

)
∑
m∈Z

∣∣∣∣∣ϕ̂ (ω − p
B
+ 2mπ

)∣∣∣∣∣2 .

Then, relation (24) implies that ϕ̃ is well defined and

∑
n∈Z

ϕ̂
(ω − p

B
+ 2nπ

)
ϕ̃

(ω − p
B

)
=

∑
n∈Z

ϕ̂
(ω − p

B
+ 2nπ

) ϕ̂
(ω − p

B
+ 2nπ

)
∑
m∈Z

∣∣∣∣∣ϕ̂ (ω − p
B
+ 2(m + n)π

)∣∣∣∣∣2

=

∑
n∈Z

∣∣∣∣∣ϕ̂ (ω − p
B
+ 2nπ

)∣∣∣∣∣2∑
ℓ∈Z

∣∣∣∣∣ϕ̂ (ω − p
B
+ 2ℓπ

)∣∣∣∣∣2
= 1.

Therefore, it follows from Lemma 3.1 that the collection
{
ϕM

0,k(t) : k ∈ Z
}

is linearly independent.

This completes the proof of the Lemma 3.3.
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Proposition 3.4. Assume that the scaling function ϕ satisfies the relation (24). Further, assume that f =∑
k∈Z hk ϕM

0,k(t), where f ∈ span
{
ϕM

0,k(t) : k ∈ Z
}

and hk ∈ ℓ2(Z) is a finite sequence. Then, we have

η1

∫ 2πB

0

∣∣∣∣̂hM(ω)
∣∣∣∣2 dω ≤

∥∥∥∥ f
∥∥∥∥2

2
≤ η2

∫ 2πB

0

∣∣∣∣̂hM(ω)
∣∣∣∣2 dω, (25)

where ĥM(ω) =
∑

k∈Z hk ei(At2
−2t(ω−p)−2ω(Dp−Bq)+D(ω2+p2))/2B is the discrete-time SAFT of the sequence hk.

Proof. Invoking the Plancherel theorem for SAFT, we have∫
R

∣∣∣ f (t)
∣∣∣2dt =

∫
R

∣∣∣∣LM

[
f
]
(ω)

∣∣∣∣2 dω

=

∫
R

∣∣∣∣∣∣∣
∫
R

∑
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hk ϕ
M
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2

dω

=

∫
R

∣∣∣∣∣∣∣ 1
√
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∑
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R

ϕ(t − k) e−it(ω−p)/B dt

∣∣∣∣∣∣∣
2

dω

=

∫
R

∣∣∣∣∣∣∣ 1
√

2πiB

∑
k∈Z
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−2k(ω−p)−2ω(Dp−Bq)+Dω2)/2B ϕ̂

(ω − p
B

)∣∣∣∣∣∣∣
2

dω

=

∫
R

∣∣∣∣∣∣∣∑k∈Z ĥM(ω) ϕ̂
(ω − p

B

)∣∣∣∣∣∣∣
2

dω

=

∫
R

∣∣∣∣̂hM(ω)
∣∣∣∣2 ∣∣∣∣∣ϕ̂ (ω − p

B
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=

∫ 2πB

0

∣∣∣∣̂hM(ω)
∣∣∣∣2 ∑

n∈Z

∣∣∣∣∣ϕ̂ (ω − p
B
+ 2nπ

)∣∣∣∣∣2 dω. (26)

By implementing Lemma 3.3 in (26), the desired result follows.

Theorem 3.5. Let
{
ϕM

0,k(t) : k ∈ Z
}

be a Reisz basis for its closed linear span. Assume that there exists a function

ϕ̃ such that
{
ϕ̃M

0,k(t) : k ∈ Z
}

is biorthogonal to
{
ϕM

0,k(t) : k ∈ Z
}
. Then for every M = (A,B,C,D : p, q), B , 0 and

f ∈ span
{
ϕM

0,k(t) : k ∈ Z
}
, we have

f (t) =
∑
n∈Z

〈
f , ϕ̃M

0,k

〉
ϕM

0,k (27)

and there exist positive constants η1 and η2 such that for every f ∈ span
{
ϕM

0,k(t) : k ∈ Z
}
, we have

η1

∥∥∥∥ f
∥∥∥∥2

2
≤

∞∑
n=1

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2 ≤ η2

∥∥∥∥ f
∥∥∥∥2

2
. (28)

Proof. Since
{
ϕM

0,k(t) : k ∈ Z
}
, forms a Riesz basis for its closed linear span, then there exist positive constants

η1 and η2 such that (24) holds true. We first prove the results for f ∈ span
{
ϕM

0,k(t) : k ∈ Z
}

and then generalize

the established results to span
{
ϕM

0,k(t) : k ∈ Z
}
. Suppose that f ∈ span

{
ϕM

0,k(t) : k ∈ Z
}
, then there exists a

finite sequence hk such that

f (t) =
∑
k∈Z

hk ϕ
M
0,k(t).
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Invoking the condition of biorthogonality, we have〈
f , ϕ̃M

0,k

〉
=

〈∑
k∈Z

hk ϕ
M
0,k, ϕ̃

M
0,k

〉
=

∑
k∈Z

hk

〈
ϕM

0,k, ϕ̃
M
0,k

〉
= hk,

which evidently proves (27).

Since equation (24) holds. Therefore by virtue of Proposition 3.4, we have

1
η2

∥∥∥∥ f
∥∥∥∥2

2
≤

∫ 2πB

0

∣∣∣∣̂hM(ω)
∣∣∣∣2 dω ≤

1
η1

∥∥∥∥ f
∥∥∥∥2

2
.

By using Plancherel formula of the SAFT and the fact that hk =
〈

f (t), ϕ̃M
0,k(t)

〉
, we have∫ 2πB

0

∣∣∣∣̂hM(ω)
∣∣∣∣2 dω =

∑
k∈Z

∣∣∣hk

∣∣∣2 =∑
k∈Z

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2 ,
which establishes (28).

Finally, we proceed to generalize the results to span
{
ϕM

0,k(t) : k ∈ Z
}
. For f ∈ span

{
ϕ̃M

0,k(t) : k ∈ Z
}
, there

exists a sequence fm ∈ ℓ2(Z) in span
{
ϕ̃M

0,k(t) : k ∈ Z
}

such that limm→∞ fm = f . Thus for each k ∈ Z, we have〈
fm, ϕ̃M

0,k

〉
→

〈
f , ϕ̃M

0,k

〉
as m→∞.

Hence, the result holds for each fm. Thus, we have

N∑
k=−N

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2 = N∑
k=−N

lim
m→∞

∣∣∣∣〈 fm, ϕ̃M
0,k

〉∣∣∣∣2
= lim

m→∞

N∑
k=−N

∣∣∣∣〈 fm, ϕ̃M
0,k

〉∣∣∣∣2
≤ η2 lim

m→∞

∥∥∥∥ fm
∥∥∥∥2

2

= η2

∥∥∥∥ f
∥∥∥∥2

2
. (29)

Letting N→∞ in (29), we obtain∑
k∈Z

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2 ≤ η2

∥∥∥∥ f
∥∥∥∥2

2
.

Thus, the upper bound appearing in (28) holds. Moreover, by the Cauchy Schwarz inequality for sequences,
we have∑

k∈Z

∣∣∣∣〈 fm, ϕ̃M
0,k

〉∣∣∣∣2
1/2

≤

∑
k∈Z

∣∣∣∣〈 fm − f , ϕ̃M
0,k

〉∣∣∣∣2
1/2

+

∑
k∈Z

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2
1/2

.

Since the upper bound appearing in (28) holds for each fm − f and the lower bound holds for each fm, we
have

η1/2
1

∥∥∥∥ fm
∥∥∥∥

2
≤ η1/2

2

∥∥∥∥ fm − f
∥∥∥∥

2
+

∑
k∈Z

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2
1/2

. (30)
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Therefore, from (30) we conclude that

A
∥∥∥∥ f

∥∥∥∥2

2
≤

∑
k∈Z

∣∣∣∣〈 f , ϕ̃M
0,k

〉∣∣∣∣2 ,
which establishes (28) completely. On the similar lines, we can prove (27) for span

{
ϕM

0,k(t) : k ∈ Z
}
.

This completes the proof of Theorem 3.5.

4. Biorthogonal Properties of Special Affine Wavelets

Biorthogonal properties performs a key role in virtually all standard approaches when analyzing or syn-
thesizing higher-level signal proceedings. In this section, we shall investigate biorthogonal properties of
the special affine wavelets.

Let ϕ and ϕ̃ be scaling functions associated with the biorthogonal special affine MRA’s
{
VM

j : j ∈ Z
}

and
{
ṼM

j : j ∈ Z
}
, respectively. For each j ∈ Z, we define a pair of operators

{
P

M
j , P̃

M
j

}
and

{
Q

M
j , Q̃

M
j

}
on

L2(R) by

P
M
j f =

∑
k∈Z

〈
f , ϕ̃M

j,k

〉
ϕM

j,k (31)

P̃
M
j f =

∑
k∈Z

〈
f , ϕM

j,k

〉
ϕ̃M

j,k (32)

and

Q
M
j f =

∑
k∈Z

〈
f , ψ̃M

j,k

〉
ψM

j,k (33)

Q̃
M
j f =

∑
k∈Z

〈
f , ψM

j,k

〉
ψ̃M

j,k, (34)

respectively. It is easy to verify that both these operators are uniformly bounded on L2(R) and both the
series are convergent in L2(R).

Remark 4.1. The operators PM
j and P̃M

j satisfy the following properties:

(i) PM
j f = f if and only if f ∈ VM

j and P̃M
j = f if only if f ∈ ṼM

j ;

(ii) lim
j→∞

∥∥∥∥PM
j f − f

∥∥∥∥
2
= 0 and lim

j→−∞

∥∥∥∥PM
j f

∥∥∥∥
2
= 0 for every f ∈ L2(R).

Theorem 4.2. Letϕ and ϕ̃ be the scaling functions associated with the biorthogonal special affine MRA’s
{
VM

j : j ∈ Z
}

and
{
ṼM

j : j ∈ Z
}
, respectively. If ψ and ψ̃ are the associated special affine wavelets satisfying the matrix condition

M(ω) M̃(ω) = I2×2, (35)

where

M(ω) =


Λ0

(ω − p
2B

)
Λ0

(ω − p
2B

+ π
)

Λ1

(ω − p
2B

)
Λ1

(ω − p
2B

+ π
)
 .
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Then, we have

(i)
{
ψ̃M

0,k : k ∈ Z
}

is biorthogonal to
{
ψM

0,ℓ : ℓ ∈ Z
}
;

(ii)
〈
ψM

0,k, ϕ̃
M
0,ℓ

〉
=

〈
ψ̃M

0,k, ϕ
M
0,ℓ

〉
, ∀ k, ℓ ∈ Z.

Proof. We have,

∑
n∈Z

ψ̂
(ω − p

B
+ 2nπ

) ̂̃
ψ

(ω − p
B
+ 2nπ

)
=

∑
n∈Z

[
Λ1

(ω − p
2B

+ nπ
)
Λ̃1

(ω − p
2B

+ nπ
)
ϕ̂

(ω − p
2B

+ nπ
) ̂̃
ϕ

(ω − p
2B

+ nπ
)]

= Λ1

(ω − p
2B

)
Λ̃1

(ω − p
2B

) ∑
k∈Z

ϕ̂
(ω − p

2B
+ 2kπ

) ̂̃
ϕ

(ω − p
2B

+ 2kπ
)

+ Λ1

(ω − p
2B

+ π
)
Λ̃1

(ω − p
2B

+ π
) ∑

k∈Z

ϕ̂
(ω − p

2B
+ (2k + 1)π

) ̂̃
ϕ

(ω − p
2B

+ (2k + 1)π
)

=

[
Λ1

(ω − p
2B

)
Λ̃1

(ω − p
2B

)
+ Λ1

(ω − p
2B

+ π
)
Λ̃1

(ω − p
2B

+ π
)]

= 1.

Hence by virtue of Theorem 3.1,
{
ψM

0,k : k ∈ Z
}

is biorthogonal to
{
ψ̃M

0,k : k ∈ Z
}
.

We shall now proceed prove (ii). For any fixed constants k, ℓ ∈ Z, an application of Plancherel formula
for SAFT yields

〈
ψM

0,k, ϕ̃
M
0,ℓ

〉
=

〈
LM

[
ψM

0,k

]
(ω),LM

[
ϕ̃M

0,ℓ

]
(ω)

〉
=

∫
R

ψ̂
(ω − p

B

) ̂̃
ϕ

(ω − p
B

)
K (k, ω)K (ℓ, ω) dω

=
1

2πB
ei(A(k2

−ℓ2)+2p(k−ℓ))/2B
∫
R

ψ̂
(ω − p

B

) ̂̃
ϕ

(ω − p
B

)
e−i(k−ℓ)ω/B dω

=
1

2πB
ei(A(k2

−ℓ2)+2p(k−ℓ))/2B
∫
R

Λ1

(ω − p
2B

)
Λ̃0

(ω − p
2B

)
ϕ̂

(ω − p
2B

) ̂̃
ϕ

(ω − p
2B

)
e−i(k−ℓ)ω/B dω

=
1

2πB
ei(A(k2

−ℓ2)+2p(k−ℓ))/2B
∫ 2πB

0

∑
n∈Z

Λ1

(ω − p
2B

+ nπ
)
Λ̃0

(ω − p
2B

+ nπ
)

× ϕ̂
(ω − p

2B
+ nπ

) ̂̃
ϕ

(ω − p
2B

+ nπ
) ]

e−i(k−ℓ)ω/B dω

=
1

2πB
ei(A(k2

−ℓ2)+2p(k−ℓ))/2B
∫ 2πB

0

[
Λ1

(ω − p
2B

)
Λ̃0

(ω − p
2B

)
×

∑
k∈Z

ϕ̂
(ω − p

2B
+ 2kπ

) ̂̃
ϕ

(ω − p
2B

+ 2kπ
)

+ Λ1

(ω − p
2B

+ π
)
Λ̃0

(ω − p
2B

+ π
) ∑

k∈Z

ϕ̂
(ω − p

2B
+ π

) ̂̃
ϕ

(ω − p
2B

+ π
) 

 e−i(k−ℓ)ω/B dω
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=
1

2πB
ei(A(k2

−ℓ2)+2p(k−ℓ))/2B
∫ 2πB

0

[
Λ1

(ω − p
2B

)
Λ̃0

(ω − p
2B

)
+Λ1

(ω − p
2B

+ π
)
Λ̃0

(ω − p
2B

+ π
) ]

e−i(k−ℓ)ω/B dω

= 0.

On the similar lines, we can show that〈
ψ̃M

0,k, ϕ
M
0,ℓ

〉
= 0, ∀ k, ℓ ∈ Z.

This completes the proof of Theorem 4.2.

Theorem 4.3. Letϕ, ϕ̃, ψ and ψ̃ be as in Theorem 4.2 such thatψ0 = ϕ and ψ̃0 = ϕ̃. Then for every M = (A,B,C,D :
p, q), B , 0 and f ∈ L2(R), we have

(i).

Q
M
1 f = PM

0 f +
∑
k∈Z

〈
f , ψ̃M

0,k

〉
ψM

0,k (36)

Q̃
M
1 f = P̃M

0 f +
∑
k∈Z

〈
f , ψM

0,k

〉
ψ̃M

0,k, (37)

where the series (36) and (37) converges in L2(R).

(ii). The collection
{
ψM

j,k : j, k ∈ Z
}

is biorthogonal to
{
ψ̃M

j,k : j, k ∈ Z
}
.

Proof. We shall only prove (36) as the proof of (37) follows in the similar manner. Moreover, It is sufficient
to prove (36) in the weak sense, that is, for all f , 1 ∈ L2(R)〈

Q
M
1 f , 1

〉
=

〈
P

M
0 f , 1

〉
+

∑
k∈Z

〈
f , ψ̃M

0,k

〉 〈
1, ψM

0,k

〉
=

∑
k∈Z

〈
f , ψ̃M

0,k

〉 〈
1, ψM

0,k

〉
.

Therefore, we have∑
k∈Z

〈
f , ψ̃M

0,k

〉 〈
1, ψM

0,k

〉
=

1
|B|

∑
k∈Z

{∫
R

LM

[
f
]
(ω) e−i(Ak2

−2k(ω−p)−2ω(Dp−Bq)+Dω2)/2B ̂̃
ψ

(ω − p
B

)
dω

}
×

{∫
R

LM

[
1
]
(ω) ei(Ak2

−2k(ω−p)−2ω(Dp−Bq)+Dω2)/2B ψ̂
(ω − p

B

)
dω

}
=

1
|B|

∑
k∈Z


∫ 2πB

0

∑
m∈Z

LM

[
f
]
(ω + 2mπB) ̂̃ψ (ω − p

B
+ 2mπ

)
dω


×


∫ 2πB

0

∑
n∈Z

LM

[
1
]
(ω + 2nπB) ψ̂

(ω − p
B
+ 2nπ

)
dω


=

1
|B|

∫ 2πB

0

∑
m∈Z

LM

[
f
]
(ω + 2mπB) Λ̃1

(ω − p
2B

+mπ
) ̂̃
ϕ

(ω − p
2B

+mπ
)

×

∑
n∈Z

LM

[
f
]
(ω + 2mπB)Λ1

(ω − p
2B

+ nπ
)
ϕ̂

(ω − p
2B

+ nπ
)

dω
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=
1
|B|

∫ 2πB

0

∑
m∈Z

∑
n∈Z

LM

[
f
]
(ω + 2mπB) LM

[
f
]
(ω + 2mπB)̂̃ϕ (ω − p

2B
+mπ

)
ϕ̂

(ω − p
2B

+ nπ
)

dω. (38)

Similarly, we can show that

∑
k∈Z

〈
f , ϕ̃M

1,k

〉 〈
1, ϕM

1,k

〉
=

1
|B|

∫ 2πB

0

∑
m∈Z

∑
n∈Z

LM

[
f
]
(ω + 2mπB) LM

[
f
]
(ω + 2mπB)

×
̂̃
ϕ

(ω − p
2B

+mπ
)
ϕ̂

(ω − p
2B

+ nπ
)

dω. (39)

From equations (38) and (39), the desired result follows.

In order to prove that the collections
{
ψM

j,k : j, k ∈ Z
}

and
{
ψ̃M

j,k : j, k ∈ Z
}

are biorthogonal to each other,

we shall show that for each j ∈ Z〈
ψM

j,k , ψ̃
M
j,k′

〉
= δk,k′ . (40)

The case j = 0 is ascertained by Theorem 4.2. Further for j , 0, we have〈
ψM

j,k , ψ̃
M
j,k′

〉
=

〈
δ− j ψ

M
0,k , δ− j ψ̃

M
0,k′

〉
=

〈
ψM

0,k , ψ̃
M
0,k′

〉
= δk,k′ .

Let k, k′ ∈ Z be fixed and j, j′ ∈ Zwith j < j′. We show that〈
ψM

j,k , ψ̃
M
j′,k′

〉
= 0.

Since ψM
0,k ∈ VM

1 , hence ψM
j,k = δ− j ψM

0,k ∈ VM
j+1 ⊆ VM

j′ . Therefore, it is sufficient to show that ψ̃M
j′,k′ is orthogonal

to every element of VM
j′ . Let f ∈ VM

j′ . Since
{
ϕM

j′,k′ : k ∈ Z
}

is a Riesz basis for VM
j′ . Hence, there exists a

sequence dk ∈ ℓ2(Z) such that f =
∑

k∈Z dk ϕM
j′,k′ in L2(R). By virtue of Theorem 4.2 (ii), we have〈

ψ̃M
j′,k′ , ϕ

M
j′,k

〉
=

〈
δ− j′ ψ̃

M
0,k′ , δ− j′ ϕ

M
0,k

〉
=

〈
ψ̃M

0,k′ , ϕ
M
0,k

〉
= 0. (41)

Hence,〈
ψ̃M

j′,k′ , f
〉
=

〈
ψ̃M

j′,k′ ,
∑
k∈Z

dk ϕ
M
j′,k′

〉
=

∑
k∈Z

d̄k

〈
ψ̃M

j′,k′ , ϕ
M
j′,k

〉
= 0, (42)

which evidently proves that the collections
{
ψM

j,k : j, k ∈ Z
}

and
{
ψ̃M

j,k : j, k ∈ Z
}

are biorthogonal to each other.

This completes the proof of Theorem 4.4.

Theorem 4.4. Let ϕ, ϕ̃, ψ and ψ̃ be defined as in Theorem 4.5. Then, for every f ∈ L2(R), we have

f =
∑
j∈Z

∑
k∈Z

〈
f , ψ̃M

j,k

〉
ψM

j,k =
∑
j∈Z

∑
k∈Z

〈
f , ψM

j,k

〉
ψ̃M

j,k, (4.8)

where the series converges in L2(R).

Proof. The result asserted by Theorem 3.1 follows immediately by using Remark 4.1 and Theorem 4.3.
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5. Special Affine Biorthogonal Wavelets on a Logarithmic Regression Curve

In this section, we first recall the fundamentals of logarithmic regression curve C and then introduce the
notion of special affine biorthogonal wavelets on a logarithmic regression curve. Moreover, we provide a
complete characterization of the biorthogonal functions corresponding to two special affine MRA’s.

5.1. Logarithmic Regression Curve and the Associated Special Affine MRA

Undoubtedly logarithmic regression trend curve has witnessed a great deal of development in the economic
and financial models, such as Cobb-Douglas production function given by y = AKαxβeµ [21]. On taking log
on both sides of this function yields

ln y = ln A + α ln K + β ln x + µ, (43)

where µ is the white noise and x is a trend variable. For A = 1,K = e, relation (43) reduces to

ln y = α + β ln x + µ. (44)

The formula given by (44) is called a one-dimensional logarithmic model. Moreover, if the dependent
variable y and the trend variable x satisfy the relation

y = α + β ln x + µ, (45)

then the equation (45) is known as one-dimensional semi-logarithmic regression model and ỹ = α̃ + β̃ ln x
is known as logarithmic regression curve, where α̃ and β̃ are the estimators of α and β, respectively.

Assume that a logarithmic regression trend curve

C :

x = x

y = a ln x
, a ∈ R, x ∈ R+ (46)

satisfies the parametric equation

ξ = ξ(x, y) =
(
x(t), y(t)

)
, t ∈ R (47)

where x and y are the functions of parameter t. Moreover, we consider the length preserving projection
P : (x, y) → (ℓ, 0) = (L(x), 0) = (X, 0), so that the length element dL(ξ) of C is equal to the length element
dX of R. For all arbitrary functions f̃ , 1̃ ∈ L2(C ), we have [22]〈

f̃ , 1̃
〉

L2(C )
=

〈
f̃ ◦P−1, 1̃ ◦P−1

〉
2

and
〈

f , 1
〉

2
=

〈
f ◦P , 1 ◦P

〉
L2(C )

. (48)

The Fourier transform on the space L2(C ) is given by [23]:

̂̃f (ω̃) =
1
√

2π

∫
C

f̃ (η) e−iP(ω̃)·P(η) dL(η) =
1
√

2π

∫
R

f̃
(
P−1(X)

)
eiωX dX. (49)

By virtue of the relations (2) and (49), we have the following definition of SAFT on the smooth curve C .

Definition 5.1. The special affine Fourier transform of any function f̃ ∈ L2(C ) is defined by

LM

[
f̃
]

(ω̃) =
1

√
2πiB

ei(D(P(ω̃)2+p2)−2P(ω̃)(Dp−Bq))/2B
∫

C

eiAP(η)2
f̃ (η) e−i(P(ω̃)−p)P(η) dη

=
1

√
2πiB

ei(D(ω2+p2)−2ω(Dp−Bq))/2B
∫
R

eiAX2/2B f̃
(
P−1(X)

)
e−iωX dX. (50)
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For every f ∈ L2(R), the induced function f C
∈ L2(C ) can be defined as

f C = f ◦P . (51)

Therefore, by invoking (48), we conclude that if the collection
{

f M
j,k : j, k ∈ Z

}
are orthogonal, so are

f M,C
j,k = f M

j,k ◦P , ∀ j, k ∈ Z. (52)

For the cases f M
j,k = ϕ

M
j,k and f M

j,k = ψ
M
j,k, we have the following pair of functions on the smooth curve C .

ϕM,C
j,k = ϕM

j,k ◦P (53)

ψM,C
j,k = ψM

j,k ◦P . (54)

Therefore, the special affine MRA of L2(C ) can be defined by virtue of the special affine MRA of L2(R) and
the induced function as defined by (51). For every j ∈ Z, we define the space vM

j as

vM
j =

{
f M,C
j = f M

j ◦P : f j ∈ VM
j

}
. (55)

It is immediate that the sequence
{
vM

j

}
is a closed subspace of L2(C ). Thus, we have the following definition

of MRA of L2(C ) associated with the SAFT. Prior to that, we define a translation operator Tk and a dilation
operatorDa by Tk f̃ (η) =

(
f̃ ◦P−1

) (
P(η) − k

)
, k ∈ R andDa f̃ (η) =

(
f̃ ◦P−1

) (
aP(η)

)
, a ∈ R+, respectively.

Definition 5.2. Given a real parametric matrix M = (A,B,C,D : p, q), B , 0, an associated special affine multires-
olution is a collection {vM

j } of closed subspaces of L2(C ) satisfying the following properties:

(i). vM
j ⊂ vM

j+1, for all j ∈ Z;

(ii).
⋃

j∈Z vM
j is dense in L2(C );

(iii).
⋂

j∈Z vM
j =

{
0
}
;

(iv). f C
∈ vM

j if and only if ei3AP(η)2/2B
D2 f C

∈ vM
j+1, for all j ∈ Z;

(v). There exists a function ϕC
∈ L2(C ) in vM

0 such that
{
e−i(AP(η)2+Dp2

−Ak2)/2B
Tk ϕC : k ∈ Z

}
is a Riesz basis of

subspace vM
0 .

For every j ∈ Z, we define another sequence wM
j of closed subspaces of L2(C ) by vM

j+1 = vM
j ⊕ wM

j .

Moreover, for every j ∈ Z, wM
j are mutually orthogonal and

{
ψM,C

j,k : j, k ∈ Z
}

forms an orthogonal basis of

⊕ j∈ZwM
j = L2(C ). Further, we can define ψM,C

j,k as ψM,C
j,k = ψM

j,k ◦P , then ϕC is called the scaling function on

the logarithmic regression trend curve C , and ψC is called the corresponding wavelets on the logarithmic
regression trend curve C .

By invoking the length preserving projection operator P , translation operator Tk and the dilation
operatorDa, the scaling function ϕC in L2(C ) can be written as

ϕM,C
0,0 (η) =

√

2
∑
k∈Z

hC
k

(
ϕC
◦P−1

) (
2P(η) − k

)
e−i(AP(η)2+Dp2

−Ak2)/2B, (56)

where hC
k is called the special affine refinement equation in L2(C ) and it is quite easy to prove that hC

k = hk.
Implementing SAFT as given by (50) on both sides of (56), we have

ϕ̂C

(
ω̃ − p

B

)
= ΛC

0

(
ω̃ − p

2B

)
̂ϕC ◦P−1

(
ω̃ − p

2B

)
, (57)
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where P(ω̃) = ω, ω̃ ∈ C andΛC
0

(
ω̃ − p

2B

)
=

1
√

2

∑
k∈Z

hM,C
k e−i(P(ω̃)−p)k/2B, hM,C

k = hC
k eiAk2/2B is called the special

affine low-pass filter in L2(C ). By invoking (57) continuously, we can obtain

ϕ̂C

(
ω̃ − p

B

)
=

∞∏
j=1

ΛC
0

(
ω̃ − p
2 jB

)
̂ϕC ◦P−1

(
ω̃ − p
2 jB

)
, (58)

It is immediate that we should must be able to let n→∞.

ϕ̂C

(
ω̃ − p

B

)
=

∞∏
j=1

ΛC
0

(
ω̃ − p
2 jB

)
̂ϕC ◦P−1(0),

since 2− j
→ 0 as j → ∞. Moreover, it follows that a non-trivial solution must satisfy ̂ϕC ◦P−1(0) , 0.

Assume that ̂ϕC ◦P−1(0) = 1, then (58) becomes

ϕ̂C

(
ω̃ − p

B

)
=

∞∏
j=1

ΛC
0

(
ω̃ − p
2 jB

)
. (59)

Since ̂ϕC ◦P−1(0) = 1, it follows immediately from (20) that ΛC
0 (0) = 1, which is essential for convergence

of the infinite product
∞∏
j=1

ΛC
0

(
ω̃ − p
2 jB

)
.

5.2. Special Affine Biorthogonal Wavelets on a Logarithmic Regression Trend Curve

Let {vM
j : j ∈ Z} and {ṽM

j : j ∈ Z} be biorthogonal special affine MRA of L2(C ) with scaling functions ϕC and

ϕ̃C , respectively. Then, the scaling functions ϕC and ϕ̃C satisfy the following pair of equations:

ϕ̂C

(
ω̃ − p

B

)
= ΛC

0

(
ω̃ − p

2B

)
̂ϕC ◦P−1

(
ω̃ − p

2B

)
(60)

ϕ̂C

(
ω̃ − p

B

)
= ΛC

0

(
ω̃ − p

2B

)
̂ϕC ◦P−1

(
ω̃ − p

2B

)
, (61)

where

ΛC
0

(
ω̃ − p

2B

)
=

1
√

2

∑
k∈Z

hM,C
k e−i(P(ω̃)−p)k/2B, hM,C

k = hC
k eiAk2/2B

Λ̃C
0

(
ω̃ − p

2B

)
=

1
√

2

∑
k∈Z

h̃M,C
k e−i(P(ω̃)−p)k/2B, h̃M,C

k = h̃C
k eiAk2/2B.

Assume that there exists a pair of two-scale functions
{
ΛM,C

0 , Λ̃M,C
0

}
and

{
ΛM,C

1 , Λ̃M,C
1

}
such that

MC (ω̃) M̃
C

(ω̃) = I2×2, (62)

where

M(ω̃) =


ΛC

0

(
P(ω̃) − p

2B

)
ΛC

0

(
P(ω̃) − p

2B
+ π

)

ΛC
1

(
P(ω̃) − p

2B

)
ΛC

1

(
P(ω̃) − p

2B
+ π

)
 .
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Moreover, we define the associated special affine biorthgonal wavelets as ψC and ψ̃C by

ψ̂C

(
ω̃ − p

B

)
= ΛC

1

(
ω̃ − p

2B

)
̂ϕC ◦P−1

(
ω̃ − p

2B

)
(63)

ψ̂C

(
ω̃ − p

B

)
= ΛC

1

(
ω̃ − p

2B

)
̂ϕC ◦P−1

(
ω̃ − p

2B

)
, (64)

where

ΛC
1

(
ω̃ − p

2B

)
=

1
√

2

∑
k∈Z

1
M,C
k e−i(P(ω̃)−p)k/2B, 1M,C

k = 1Ck eiAk2/2B

Λ̃C
1

(
ω̃ − p

2B

)
=

1
√

2

∑
k∈Z

1̃
M,C
k e−i(P(ω̃)−p)k/2B, 1̃M,C

k = 1̃Ck eiAk2/2B.

Definition 5.3. A pair of special affine MRA’s {vM
j : j ∈ Z} and {ṽM

j : j ∈ Z} with scaling functions ϕC and ϕ̃C ,
respectively, are said to be biorthogonal to each other with respect to an augmented matrix M = (A,B,C,D : p, q), B , 0
if {

ϕM,C
0,k (η) =

(
ϕC
◦P−1

) (
P(η) − k

)
e−i(AP(η)2+Dp2

−Ak2)/2B : k ∈ Z
}

and {
ϕ̃M,C

0,k (η) =
(
ϕ̃C
◦P−1

) (
P(η) − k

)
e−i(AP(η)2+Dp2

−Ak2)/2B : k ∈ Z
}

are biorthogonal.

Theorem 5.4. Let ϕC and ϕ̃C be a pair of biorthogonal scaling functions associated with the special MRA’s {vM
j :

j ∈ Z} and {ṽM
j : j ∈ Z}, respectively. If ψC and ψ̃C are the associated special affine wavelets satisfying (62). Then,

we have

(i)
{
ψ̃M,C

0,k : k ∈ Z
}

is biorthogonal to
{
ψM,C

0,ℓ : ℓ ∈ Z
}
;

(ii)
〈
ψM,C

0,k , ϕ̃M,C
0,ℓ

〉
=

〈
ψ̃M,C

0,k , ϕM,C
0,ℓ

〉
, ∀ k, ℓ ∈ Z.

Proof. By virtue of induced function (51) and Theorem 4.2, the result follows.

6. Conclusion

In the present study, we have accomplished two objectives. Firstly, we introduced the notion of special affine
biorthogonal MRA and then studied the biorthogonal properties of the associated special affine wavelets
in L2(R). Secondly, we accomplished the concept of special affine biorthogonal wavelets on a logarithmic
regression curve C by formulating the notion of special affine Fourier transform in L2(C ).
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