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and Huygens results

Chao-Ping Chena, Branko Maleševićb
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Abstract. In this paper, we establish sharp inequalities for trigonometric functions. For example, we
consider the Wilker inequality and prove that for 0 < x < π/2 and n ≥ 1,

2 +

 n−1∑
j=2

d j+1x2 j+ δnx2n

 x3 tan x <
( sin x

x

)2
+

tan x
x
< 2 +

 n−1∑
j=3

d j+1x2 j+Dnx2n

 x3 tan x

with the best possible constants

δn = dn and Dn =
2π6
− 168π4 + 15120

945π4

( 2
π

)2n

−

n−1∑
j=2

d j+1

(
2
π

)2n−2 j
,

where dk = 22k+2
(
(4k + 6) |B2k+2| + (−1)k+1

)
/(2k + 3)! and Bk are the Bernoulli numbers (k ∈N0 :=N ∪ {0}).

This improves and generalizes the results given by Mortici, Nenezić and Malešević.

1. Introduction

It is known in the literature that

(cos x)1/3 <
sin x

x
<

2 + cos x
3

(1)

for 0 < |x| < π/2. The left-hand side inequality was obtained by Adamović and Mitrinović (see [22, p.
238]), while the right-hand side inequality was first mentioned by the German philosopher and theologian
Nicolaus de Cusa (1401-1464), by a geometrical method. Huygens [14] gave a rigorous proof of the right-
hand side inequality, and then used it to estimate the number π. The right-hand side inequality is now
known as Cusa’s inequality (see [23, 32, 37, 54]). Further interesting historical facts about the right-hand
side inequality can be found in [37].
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The inequalities (1) have attracted much interest of many mathematicians and have motivated a large
number of research papers; see, for example, [5–7, 12, 15, 23, 28, 29, 32, 33, 41, 48–51, 54] and the references
cited therein.

By using inequalities involving Schwab-Borchardt mean, Neuman [29] presented the following in-
equality chain:

(cos x)1/3 <
(
cos x sin x

x

)1/4
<

(
sin x

arctanh(sin x)

)1/2
<

(
cos x + (sin x)/x

2

)1/2
<

<
(

1 + 2 cos x
3

)1/2
<

(
1 + cos x

2

)2/3
<

sin x
x
, 0 < x < π

2
,

(2)

which improves the first inequality in (1). Yang [49] proved that for 0 < x < π/2,

sin x
x
<

(
2
3

cos x
2
+

1
3

)2
< cos3 x

3
<

2 + cos x
3

, (3)

which improves the second inequality in (1).
Motivated by (1), in Section 3 we establish sharp inequalities for trigonometric functions. By using the

obtained results, we present inequality chain and improve the double inequality (1).
Wilker [39] proposed the following two open problems:
(a) Prove that if 0 < x < π/2, then(

sin x
x

)2
+

tan x
x
> 2. (4)

(b) Find the largest constant c such that(
sin x

x

)2
+

tan x
x
> 2 + cx3 tan x (5)

for 0 < x < π/2. In [38], the inequality (4) was proved, and the following inequality

2 +
(

2
π

)4
x3 tan x <

(
sin x

x

)2
+

tan x
x
< 2 + 8

45
x3 tan x, 0 < x < π

2
(6)

was also established, where the constants (2/π)4 and 8/45 are the best possible.
The Wilker-type inequalities (4) and (6) have attracted much interest of many mathematicians and

have motivated a large number of research papers involving different proofs, various generalizations and
improvements (cf. [4, 8, 9, 12, 13, 23–25, 27, 30–32, 34, 40, 41, 44, 45, 52–56] and the references cited therein).

A related inequality that is of interest to us is Huygens’ inequality [14], which asserts that

2
(

sin x
x

)
+

tan x
x
> 3, 0 < |x| < π

2
. (7)

Remark 1.1. The first inequality in (1) can be re-written as

(sin x
x

)2 tan x
x
> 1

 or
3

√(sin x
x

)2 tan x
x
> 1

 for all 0 < |x| <
π
2
. (8)

Baricz and Sándor [4] have pointed out that inequality (8) implies (4) and (7), by using the arithmetic-geometric
mean inequality.

Wu and Srivastava [44, Lemma 3] established Wilker-type inequality as follows:(
x

sin x

)2
+

x
tan x

> 2, 0 < |x| < π
2
. (9)
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Neuman and Sándor [32, Theorem 2.3] proved that for 0 < |x| < π/2,

sin x
x
<

2 + cos x
3

<
1
2

(
x

sin x
+ cos x

)
. (10)

By multiplying both sides of inequality (10) by x/ sin x, we obtain that for 0 < |x| < π/2,

1
2

( (
x

sin x

)2
+

x
tan x

)
>

2(x/ sin x) + x/ tan x
3

> 1. (11)

Chen and Sándor [12] proved the following inequality chain:

(sin x/x)2 + tan x/x
2

>
(

sin x
x

)2 (
tan x

x

)
>

2 (sin x/x) + tan x/x
3

>

>
(

sin x
x

)2/3 (
tan x

x

)1/3
>

1
2

( (
x

sin x

)2
+

x
tan x

)
>

2(x/ sin x) + x/ tan x
3

> 1
(12)

for 0 < |x| < π/2.
In analogy with (6), Chen and Cheung [9] established sharp Wilker and Huygens-type inequalities. For

example, these authors proved that for 0 < x < π/2,

2 + 8
45

x4 +
16
315

x5 tan x <
(

sin x
x

)2
+

tan x
x
< 2 + 8

45
x4 +

(
2
π

)6
x5 tan x, (13)

where the constants 16
315 and (2/π)6 are best possible,

(
x

sin x

)2
+

x
tan x

< 2 + 2
45

x3 tan x, (14)

where the constant 2
45 is best possible, and

3 + 3
20

x3 tan x < 2
(

sin x
x

)
+

tan x
x
< 3 +

(
2
π

)4
x3 tan x, (15)

where the constants 3/20 and (2/π)4 are best possible.
In view of (13), (14) and (15), Chen and Cheung [9] posed three conjectures. These conjectures have

been proved by Chen and Paris [10, 11].
Mortici [24, Theorem 1] presented in 2014 the following double inequality:

2 +
(

8
45
−

8
945

x2
)

x3 tan x <
(

sin x
x

)2
+

tan x
x
<

< 2 +
(

8
45
−

8
945

x2 +
16

14175
x4

)
x3 tan x, 0 < x < 1.

(16)

Nenezić et al. [25, Theorem 2.1] proved in 2016 that for 0 < x < π/2,

2 +
(

8
45
−

8
945

x2
)

x3 tan x <
(

sin x
x

)2
+

tan x
x
<

< 2 +
(

8
45
−

8
945

x2 +
241920 − 2688π4 + 32π6

945π8 x4
)

x3 tan x.
(17)
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By using power series expansions for sin x and cot x, we find that( sin x
x

)2

+
tan x

x
− 2

x3 tan x
=

sin 2x
2x5 +

1
x4 −

2
x3 cot x

=

∞∑
n=0

(−1)n22n

(2n + 1)!
x2n−4 +

1
x4 −

2
x3

1
x
−

∞∑
n=1

22n
|B2n|

(2n)!
x2n−1


=

∞∑
n=2

4n
(
(−1)n + 2(2n + 1)|B2n|

)
(2n + 1)!

x2n−4

=
8

45
−

8
945

x2 +
16

14175
x4 +

8
467775

x6 +
3184

638512875
x8

+
272

638512875
x10 +

7264
162820783125

x12 + · · · , (18)

where Bn (n ∈N0 :=N ∪ {0}) are the Bernoulli numbers defined by the following generating function:

z
ez − 1

=

∞∑
n=0

Bn
zn

n!
, |z| < 2π.

The formula (18) led us to claim that the upper bound in (16) should be the lower bound. Chen and
Paris [11] proved that for 0 < x < π/2,

2 +
(

8
45
−

8
945

x2 +
16

14175
x4

)
x3 tan x <

(
sin x

x

)2
+

tan x
x
<

< 2 +
(

8
45
−

8
945

x2 +
241920 − 2688π4 + 32π6

945π8 x4
)

x3 tan x,
(19)

where the constants 16
14175

and 241920 − 2688π4 + 32π6

945π8 are the best possible.
In Section 4, we improve and generalize the double inequalities (19) and (15).

2. Taylor’s approximations

Let us consider a real function f : (a, b) −→ R in case when exist finite limits

f (k)(a+) = lim
x→a+

f (k)(x) (for k = 0, 1, . . . ,n) and f (b−) = lim
x→b−

f (x). (20)

Then we consider first Taylor’s polynomial

T f , a+
n (x) =

n∑
k=0

f (k)(a+)
k!

(x − a)k, n∈N0, (21)

and the remainder

R f ,a+
n (x) = f (x) − T f ,a+

n−1 (x). (22)

Also, we consider the second Taylor’s polynomial

T
f ; a+, b−
n (x) =


T f , a+

n−1 (x) +
1

(b − a)n R f , a+
n (b−)(x − a)n , n ≥ 1

f (b−) , n = 0.
(23)
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The first Taylor’s polynomial and the second Taylor’s polynomial we are called the first Taylor’s approxi-
mation for the function f in the right neighborhood of a, and the second Taylor’s approximation for the function f
in the right neighborhood of a, respectively.

The next Theorem on double-sided Taylor’s approximations from [43] is applied in the papers [42], [45],
[46], [47] and considered in the papers [16], [18], [19], [20], [21], [26], [35] and [36].

Theorem 2.1. ([43], Theorem 2) Suppose that f (x) is a real function on (a, b), and that n is a positive integer such
that f (k)(a+), for k∈{0, 1, 2, . . . ,n}, exist.

Supposing that f (n)(x) is increasing on (a, b), then for all x∈ (a, b) the following inequality also holds :

T f , a+
n (x) < f (x) < T f ; a+, b−

n (x). (24)

Furthermore, if f (n)(x) is decreasing on (a, b), then the reversed inequality of (24) holds.

The condition for the application of this theorem refers to the n-th derivative of the function and it is
also close to the recent papers which refer to the n-th derivative [57], [58], [59] and [60].

Remark 2.2. In the previous inequality

T f , a+
n−1 (x) +

f (n)(a+)
n!

(x − a)n < f (x) < T f , a+
n−1 (x) + 1

(b − a)n

(
f (b−) − T f , a+

n−1 (b−)
)

(x − a)n, (25)

the coefficients

f (n)(a+)
n!

and 1
(b − a)n

(
f (b−) − T f , a+

n−1 (b−)
)

(26)

are the best possible constants.

In this paper we use

Theorem 2.3. ([20], Theorem 4) Consider the real analytic functions f : (a, b) −→ R:

f (x) =
∞∑

k=0

ck(x − a)k, (27)

where ck∈R and ck ≥ 0 for all k∈N0. Then,

T f , a+
0 (x) ≤ ... ≤ T f , a+

n (x) ≤ T f , a+
n+1 (x) ≤ ... ≤ f (x) ≤ ... ≤ T f ; a+, b−

m+1 (x) ≤ T f ; a+, b−
m (x) ≤ ... ≤ T f ; a+, b−

0 (x), (28)

for all x∈ (a, b).

Elementary power series expansions. The following elementary power series expansions are useful in
our investigation.

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
, |x| < ∞, (29)

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
, |x| < ∞, (30)

tan x =
∞∑

n=1

22n(22n
− 1)|B2n|

(2n)!
x2n−1, |x| <

π
2
, (31)

cot x =
1
x
−

∞∑
n=1

22n
|B2n|

(2n)!
x2n−1, 0 < |x| < π, (32)
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csc x =
1
x
+

∞∑
n=1

2(22n−1
− 1)|B2n|

(2n)!
x2n−1, |x| < π, (33)

where Bn (n = 0, 1, 2, . . .) are Bernoulli numbers.

3. Sharp inequalities inspired by (1)

The first inequality in (1) is equivalent to

x
tan x

<
(

sin x
x

)2
, 0 < x < π

2
. (34)

Let us consider the following function with power series

f1(x) =
(

sin x
x

)2
−

x
tan x

=
1 − cos 2x

2x2 − x cot x

=

∞∑
n=2

(
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!

)
x2n

=
1
15

x4
−

1
945

x6 +
1

2835
x8 +

8
467775

x10 + · · · (35)

over interval
(
0, π

2

)
. Let us denote

an =
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!
, n = 2, 3, 4, . . .. (36)

We use the next auxiliary statement.

Lemma 3.1. The following are true:

a2 =
1

15
> 0, a3 = −

1
945
< 0 (37)

and

an =
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!
> 0, (38)

for integers n ≥ 4.

Proof. By direct computation we obtained:

a2 =
1
15
= lim

x→0

f1(x)
x4 > 0,

a3 = −
1

945
= lim

x→0

f1(x) − 1
15 x4

x6 < 0.
(39)

Next, we consider the following inequalities [1, p. 805]

2(2n)!
(2π)2n < |B2n| <

2(2n)!
(2π)2n

( 1
1 − 21−2n

)
, n ≥ 1. (40)
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Using the first inequality in (40), we obtain that for n ≥ 4,

22n
|B2n|

(2n)!
−

22n+1

(2n + 2)!
>

22n

(2n)!
2(2n)!
(2π)2n −

22n+1

(2n + 2)!
=

22n+1
(
(2n + 2)! − (2π)2n

)
(2π)2n · (2n + 2)!

.

By induction on n, it is easy to see that

(2n + 2)! > (2π)2n, n ≥ 4.

Hence, we have

an =
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!
> 0, n ≥ 4. □

Let’s specify a list of Taylor’s approximations

k T f1,0+
k (x) T

f1;0+,π/2−
k (x)

0 0 4
π2

1 0 8
π3 x

2 0 16
π4

x2

3 0 32
π5 x3

4 1
15

x4 64
π6 x4

5 1
15

x4 T f1,0+
4 (x)+ −2π6+1920

15π7 x5

6 1
15

x4
−

1
945

x6 T f1,0+
5 (x)+ −4π6+384

15π8 x6

7 1
15

x4
−

1
945

x6 T f1,0+
6 (x)+ 2π8

−504π6+483840
945π9 x7

8 1
15

x4
−

1
945

x6+
1

2835
x8 T f1,0+

7 (x)+ 4π8
−1008π6+967680

945π10
x8

9 1
15

x4
−

1
945

x6+
1

2835
x8 T f1,0+

8 (x)+ −2π10+24π8
−6048π6+5806080
945π11

x9

10 1
15

x4
−

1
945

x6+
1

2835
x8+

8
467775

x10 T f1,0+
9 (x)+ −4π10+48π8

−12096π6+11612160
2835π12

x10

Based on a method from [3] and [17] we have

Theorem 3.2. For the function

f1(x) =
(

sin x
x

)2
−

x
tan x

=

∞∑
n=2

(
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!

)
x2n :

(
0, π

2

)
−→ R

we have

T f1,0+
0 (x) = T f1,0+

1 (x) = T f1,0+
2 (x) = T f1,0+

3 (x) = 0 <

< T f1,0+
6 (x) = T f1,0+

7 (x) < T f1,0+
8 (x) = T f1,0+

9 (x) <

< T f1,0+
10 (x) < f1(x) < T f1,0+

4 (x) = T f1,0+
5 (x)

and

f1(x) < T f1;0+,π/2−
10 (x) < T f1;0+,π/2−

9 (x) < T f1;0+,π/2−
8 (x) < T f1;0+,π/2−

7 (x) <

< T f1;0+,π/2−
4 (x) < T f1;0+,π/2−

5 (x) < T f1;0+,π/2−
6 (x) <

< T f1;0+,π/2−
3 (x) < T f1;0+,π/2−

2 (x) < T f1;0+,π/2−
1 (x) < T f1;0+,π/2−

0 (x),

for all x∈
(
0, π

2

)
.
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Let us emphasize that some Taylor’s approximatins T f1,0+
i (x) and T f1;0+, π/2−

j (x) have intersections over
interval (0, π/2) = (0, 1.570796326...) in exactly one point ci, j∈ (0, π/2) for i, j∈{0, 1, . . . , 10}. All that cases are
given by the following two tables:

i, j fi(x)<T f1,0+
i (x)<T f1;0+,π/2−

j (x), x∈
(
0, ci, j

)
fi(x)<T f1;0+,π/2−

j (x)<T f1,0+
i (x), x∈

(
ci, j, π2

)
ci, j

0, 4 f1(x)<T f1,0+
0 (x)<T f1;0+,π/2−

4 (x), x∈
(
0, c0,4

)
f1(x)<T f1;0+,π/2−

4 (x)<T f1,0+
0 (x), x∈

(
c0,4, π2

)
1.570228574...

0, 5 f1(x)<T f1,0+
0 (x)<T f1;0+,π/2−

5 (x), x∈
(
0, c0,5

)
f1(x)<T f1;0+,π/2−

5 (x)<T f1,0+
0 (x), x∈

(
c0,5, π2

)
1.570228574...

1, 4 f1(x)<T f1,0+
1 (x)<T f1;0+,π/2−

4 (x), x∈
(
0, c1,4

)
f1(x)<T f1;0+,π/2−

4 (x)<T f1,0+
1 (x), x∈

(
c1,4, π2

)
1.570039369...

1, 5 f1(x)<T f1,0+
1 (x)<T f1;0+,π/2−

5 (x), x∈
(
0, c1,5

)
f1(x)<T f1;0+,π/2−

5 (x)<T f1,0+
1 (x), x∈

(
c1,5, π2

)
1.570039369...

2, 4 f1(x)<T f1,0+
2 (x)<T f1;0+,π/2−

4 (x), x∈
(
0, c2,4

)
f1(x)<T f1;0+,π/2−

4 (x)<T f1,0+
2 (x), x∈

(
c2,4, π2

)
1.569661027...

2, 5 f1(x)<T f1,0+
2 (x)<T f1;0+,π/2−

5 (x), x∈
(
0, c2,5

)
f1(x)<T f1;0+,π/2−

5 (x)<T f1,0+
2 (x), x∈

(
c2,5, π2

)
1.569661027...

3, 4 f1(x)<T f1,0+
3 (x)<T f1;0+,π/2−

4 (x), x∈
(
0, c3,4

)
f1(x)<T f1;0+,π/2−

4 (x)<T f1,0+
3 (x), x∈

(
c3,4, π2

)
1.568526547...

3, 5 f1(x)<T f1,0+
3 (x)<T f1;0+,π/2−

5 (x), x∈
(
0, c3,5

)
f1(x)<T f1;0+,π/2−

5 (x)<T f1,0+
3 (x), x∈

(
c3,5, π2

)
1.568526547...

and

i, j T
f1;0+,π/2−
j (x)<T f1,0+

i (x)< f1(x), x∈
(
0, ci, j

)
T f1,0+

i (x)<T f1;0+,π/2−
j (x)< f1(x), x∈

(
ci, j, π2

)
ci, j

4, 6 T
f1;0+,π/2−
6 (x)<T f1,0+

4 (x)< f1(x), x∈
(
0, c4,6

)
T f1,0+

4 (x)<T f1;0+,π/2−
6 (x)< f1(x), x∈

(
c4,6, π2

)
0.3017187013...

4, 7 T
f1;0+,π/2−
7 (x)<T f1,0+

4 (x)< f1(x), x∈
(
0, c4,7

)
T f1,0+

4 (x)<T f1;0+,π/2−
7 (x)< f1(x), x∈

(
c4,7, π2

)
0.3017187013...

4, 8 T
f1;0+,π/2−
8 (x)<T f1,0+

4 (x)< f1(x), x∈
(
0, c4,8

)
T f1,0+

4 (x)<T f1;0+,π/2−
8 (x)< f1(x), x∈

(
c4,8, π2

)
0.3065585396...

4, 9 T
f1;0+,π/2−
9 (x)<T f1,0+

4 (x)< f1(x), x∈
(
0, c4,9

)
T f1,0+

4 (x)<T f1;0+,π/2−
9 (x)< f1(x), x∈

(
c4,9, π2

)
0.3065585396...

4, 10 T f1;0+,π/2−
10 (x)<T f1,0+

4 (x)< f1(x), x∈
(
0, c4,10

)
T f1,0+

4 (x)<T f1;0+,π/2−
10 (x)< f1(x), x∈

(
c4,10, π2

)
0.3065818906...

5, 6 T
f1;0+,π/2−
6 (x)<T f1,0+

5 (x)< f1(x), x∈
(
0, c5,6

)
T f1,0+

5 (x)<T f1;0+,π/2−
6 (x)< f1(x), x∈

(
c5,6, π2

)
0.05795414341...

5, 7 T
f1;0+,π/2−
7 (x)<T f1,0+

5 (x)< f1(x), x∈
(
0, c5,7

)
T f1,0+

5 (x)<T f1;0+,π/2−
7 (x)< f1(x), x∈

(
c5,7, π2

)
0.05795414341...

5, 8 T
f1;0+,π/2−
8 (x)<T f1,0+

5 (x)< f1(x), x∈
(
0, c5,8

)
T f1,0+

5 (x)<T f1;0+,π/2−
8 (x)< f1(x), x∈

(
c5,8, π2

)
0.05801924550...

5, 9 T
f1;0+,π/2−
9 (x)<T f1,0+

5 (x)< f1(x), x∈
(
0, c5,9

)
T f1,0+

5 (x)<T f1;0+,π/2−
9 (x)< f1(x), x∈

(
c5,9, π2

)
0.05801924550...

5, 10 T f1;0+,π/2−
10 (x)<T f1,0+

5 (x)< f1(x), x∈
(
0, c5,10

)
T f1,0+

5 (x)<T f1;0+,π/2−
10 (x)< f1(x), x∈

(
c5,10, π2

)
0.05801925617...

All other Taylor’s approximatins have no intersections.
Based on Theorem 2.3 we have

Theorem 3.3. For the function

f1(x) =
(

sin x
x

)2
−

x
tan x

=

∞∑
n=2

(
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!

)
x2n :

(
0, π

2

)
−→ R

we have

T f1,0+
6 (x) ≤ ... ≤ T f1,0+

n (x) ≤ T f1,0+
n+1 (x) ≤ ... ≤ f1(x) ≤ ... ≤ T f1;0+,π/2−

m+1 (x) ≤ T f1;0+,π/2−
m (x) ≤ ... ≤ T f1;0+,π/2−

7 (x),

for all x∈
(
0, π

2

)
and n≥6, m≥7.

Let us consider an empty sum as zero (elsewhere throughout this paper).
We propose the following conjecture.
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Conjecture 3.4. For 0 < x < π/2 and n ≥ 2, we have

n−1∑
j=2

(
22 j
|B2 j|

(2 j)!
+

(−1) j22 j+1

(2 j + 2)!

)
x2 j+anx2n−1 sin x <

(
sin x

x

)2
−

x
tan x

<
n−1∑
j=2

(
22 j
|B2 j|

(2 j)!
+

(−1) j22 j+1

(2 j + 2)!

)
x2 j+Θnx2n−1 sin x, (41)

with the best possible constants

an =
22n
|B2n|

(2n)!
+

(−1)n22n+1

(2n + 2)!
(42)

and

Θn =
( 2
π

)2n+1

−

n−1∑
j=2

a j

( 2
π

)2n−2 j−1

. (43)

Remark 3.5. In fact, we can prove the first inequality in (41). We then obtain for 0 < x < π/2 and n ≥ 2,

(
sin x

x

)2
−

x
tan x

>
n∑

j=2

(
22 j
|B2 j|

(2 j)!
+

(−1) j22 j+1

(2 j + 2)!

)
x2 j

=

n−1∑
j=2

(
22 j
|B2 j|

(2 j)!
+

(−1) j22 j+1

(2 j + 2)!

)
x2 j + anx2n

>
n−1∑
j=2

(
22 j
|B2 j|

(2 j)!
+

(−1) j22 j+1

(2 j + 2)!

)
x2 j + anx2n−1 sin x.

(44)

Hence, the first inequality in (41) holds for all n ≥ 2.

Let us remark that the function 11(x) = f1(x) − 1
15

x4 +
1

945
x6 has power series with positive coefficients.

Then, based on the previous Theorem we have:

Statement 3.6. For 0 < x < π/2 and n ≥ 2,

n−1∑
j=2

a jx2 j + αnx2n <
(

sin x
x

)2
−

x
tan x

<
n−1∑
j=2

a jx2 j + Anx2n (45)

with the best possible constants

αn=an and An =
( 2
π

)2n+2

−

n−1∑
j=2

a j

( 2
π

)2n−2 j

. (46)
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Next, we consider the following function

f2(x) =

( sin x
x

)2
−

x
tan x

x3 sin x

=
1
x5 sin x + 1

x2

(
−

cos x
sin2x

)
=

1
x5 sin x + 1

x2
(csc x)′

=

∞∑
n=2

2(2n − 1)(2n + 1)(22n−1
− 1)|B2n| + (−1)n

(2n + 1)!
x2n−4 (see (29), (33))

=
1

15
+

19
1890

x2 +
167

113400
x4 +

479
2494800

x6 + . . . (47)

over interval
(
0, π

2

)
. Let us denote

bn =
2(4n2

− 1)(22n−1
− 1)|B2n| + (−1)n

(2n + 1)!
, n = 2, 3, 4, . . . . (48)

We use the next auxiliary statement.

Lemma 3.7. The following are true:

bn =
2(2n − 1)(2n + 1)(22n−1

− 1)|B2n| + (−1)n

(2n + 1)!
> 0, (49)

for integers n ≥ 2.

Proof. Using the first inequality in (40), we obtain that for n ≥ 2,

2(2n − 1)(2n + 1)(22n−1
− 1)|B2n| >

4(2n − 1)(22n−1
− 1) · (2n + 1)!

(2π)2n > 1 (50)

(The second inequality in (50) can be shown by induction on n, we omit it), which implies

bn > 0, n ≥ 2.

□

Let’s specify a list of Taylor’s approximations for the function f2(x) over interval (0, π/2) :

k T f2, 0+
k (x) T

f2; 0+, π/2−
k (x)

0 1
15

32
π5

1 1
15

1
15
+
−2π5+960

15π6 x

2 1
15
+

19
1890

x2 1
15
+
−4π5+1920

15π7 x2

3 1
15
+

19
1890

x2 1
15
+

19
1890

x2 +
−19π7

−504π5+241920
945π8 x3

4 1
15
+

19
1890

x2 +
167

113400
x4 1

15
+

19
1890

x2 +
−38π7

−1008π5+483840
945π9 x4

Based on Theorem 2.3 we have
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Theorem 3.8. For the function

f2(x) =

( sin x
x

)2

−
x

tan x
x3 sin x

=

∞∑
n=2

(
2(2n − 1)(2n + 1)(22n−1

− 1)|B2n| + (−1)n

(2n + 1)!

)
x2n−4 :

(
0, π

2

)
−→ R

we have

T f2,0+
0 (x) ≤ ... ≤ T f2,0+

k (x) ≤ T f2,0+
k+1 (x) ≤ ... ≤ f2(x) ≤ ... ≤ T f2;0+,π/2−

k+1 (x) ≤ T f2;0+,π/2−
k (x) ≤ ... ≤ T f2;0+,π/2−

0 (x),

for all x∈
(
0, π

2

)
.

Then, based on the previous Theorem we have

Statement 3.9. For 0 < x < π/2 and n ≥ 0,n−1∑
j=0

b j+2x2 j+ βnx2n

 x3 sin x <
(sin x

x

)2
−

x
tan x

<

n−1∑
j=0

b j+2x2 j+ Bnx2n

 x3 sin x (51)

with the best possible constants

βn = bn+2 and Bn =
(

2
π

)2n+5
−

n−1∑
j=2

b j+2

(
2
π

)2n−2 j
. (52)

Finaly, we consider the following function

f3(x) =
2+cos x

3 −
sin x

x

x3 sin x

=
2

3x3 csc x + 1
3x3 cot x 1

x4

=

∞∑
n=2

(
22n
− 4

3·(2n)!
|B2n|

)
x2n−4 (see (30), (33))

=
1

180
+

1
1512

x2 +
1

14400
x4 +

17
2395008

x6 + . . . (53)

over interval
(
0, π

2

)
. Let us denote

cn =
22n
− 4

3·(2n)!
|B2n|, n = 0, 1, 2, . . . . (54)

The next auxiliary statement is obvious.

Lemma 3.10. The following are true:

cn =
22n
− 4

3·(2n)!
|B2n| > 0, (55)

for integers n ≥ 0.
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Let’s specify a list of Taylor’s approximations for the function f3(x) over interval (0, π/2) :

k T f3, 0+
k (x) T

f3; 0+, π/2−
k (x)

0 1
180

−48 + 16π
3π4

1 1
180

1
180
+
−π4 + 960π − 2880

90π5 x

2 1
180
+

1
1512

x2 1
180
+
−π4 + 960π − 2880

45π6 x2

3 1
180
+

1
1512

x2 1
180
+

1
1512

x2 +
−5π6

− 168π4 + 161280π − 483840
3870π7 x3

4 1
180
+

1
1512

x2 +
1

14400
x4 1

180
+

1
1512

x2 +
−5π6

− 168π4 + 161280π − 483840
1890π8 x4

Based on Theorem 2.3 we have

Theorem 3.11. For the function

f3(x) =
2+cos x

3 −
sin x

x

x3 sin x

=

∞∑
n=2

(
22n
− 4

3·(2n)!
|B2n|

)
x2n−4 :

(
0, π

2

)
−→ R

we have

T f3,0+
0 (x) ≤ ... ≤ T f3,0+

k (x) ≤ T f3,0+
k+1 (x) ≤ ... ≤ f3(x) ≤ ... ≤ T f3;0+,π/2−

k+1 (x) ≤ T f3;0+,π/2−
k (x) ≤ ... ≤ T f3;0+,π/2−

0 (x),

for all x∈
(
0, π

2

)
.

Then, based on the previous Theorem we have

Statement 3.12. For 0 < x < π/2 and n ≥ 0,n−1∑
j=0

c j+2x2 j+γnx2n

 x3 sin x<
2 + cos x

3
−

sin x
x
<

n−1∑
j=0

c j+2x2 j+Cnx2n

 x3 sin x (56)

with the best possible constants

γn = cn and Cn =
π − 3

3

(
2
π

)2n+4
−

n−1∑
j=2

c j+2

(
2
π

)2n−2 j
. (57)

4. Sharp Wilker and Huygens inequalities

In purpose to generalize of the double inequality (19) we consider the following function

f4(x) =

(
sin x

x

)2
+ tan x

x − 2

x3 tan x
−

8
45
+

8
945

x2

=
1
x4 +

sin 2x
2x5 −

2 cot x
x3 −

8
45
+

8
945

x2

=
f (x)
x3 :

(
0, π

2

)
−→ R, (58)
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where the function

f (x) = 1
x
+

sin 2x
2x2 − 2 cot x − 8

45
x3 +

8
945

x5 :
(
0, π

2

)
−→ R (59)

is considered in the paper [35]. Therefore

f4(x) =
∞∑

n=3

22n+2
(
(4n + 6)|B2n+2| + (−1)n+1

)
(2n + 3)!

x2n−2

=
16

14175
x4 +

8
467775

x6 +
3184

638512875
x8 +

272
638512875

x10 + . . . (60)

over interval
(
0, π

2

)
. Let us denote

dn =
22n+2

(
(4n + 6)|B2n+2| + (−1)n+1

)
(2n + 3)!

, n = 3, 4, 5, . . . . (61)

The next auxiliary statement is obvious.

Lemma 4.1. The following are true:

dn =
22n+2

(
(4n + 6)|B2n+2| + (−1)n+1

)
(2n + 3)!

> 0, (62)

for integers n ≥ 3.

Let’s specify a list of Taylor’s approximations for the function f4(x) over interval (0, π/2) :

k T f4, 0+
k (x) T

f4; 0+, π/2−
k (x)

0 0 2π6
− 168π4 + 15120

945π4

1 0 4π6
− 336π4 + 30240

945π5 x

2 0 8π6
− 672π4 + 60480

945π6 x2

3 0 16π6
− 1344π4 + 120960

945π7 x3

4 16
14175

x4 32π6
− 2688π4 + 241920

945π8 x4

Based on Theorem 2.3 we have

Theorem 4.2. For the function

f4(x) =

(
sin x

x

)2
+ tan x

x − 2

x3 tan x
−

8
45
+

8
945

x2

=

∞∑
n=3

22n+2
(
(4n + 6)|B2n+2| + (−1)n+1

)
(2n + 3)!

 x2n−2 :
(
0, π

2

)
−→ R

we have

T f4,0+
0 (x) ≤ ... ≤ T f4,0+

k (x) ≤ T f4,0+
k+1 (x) ≤ ... ≤ f4(x) ≤ ... ≤ T f4;0+,π/2−

k+1 (x) ≤ T f4;0+,π/2−
k (x) ≤ ... ≤ T f4;0+,π/2−

0 (x),

for all x∈
(
0, π

2

)
.
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Let us remark that the function 14(x) = f4(x) − 8
45
+

8
945

x2 has power series with positive coefficients.
Then, based on the previous Theorem we have:

Statement 4.3. For 0 < x < π/2 and n ≥ 4,

2 +

n−1∑
j=2

d j+1x2 j + δnx2n

 x3 tan x <
(

sin x
x

)2
+

tan x
x
< 2 +

n−1∑
j=2

d j+1x2 j +Dnx2n

 x3 tan x (63)

with the best possible constants

δn = dn and Dn =
2π6
− 168π4 + 15120

945π4

(
2
π

)2n
−

n−1∑
j=2

d j+1

(
2
π

)2n−2 j
. (64)

Finaly, we consider the following function

f5(x) =
2
(

sin x
x

)
+ tan x

x − 3

x3 tan x

=
2
x4 cos x + 1

x4 −
3
x3 cot x

=

∞∑
n=2

2
(−1)n + 3 · 22n+3

|B2n+4|

(2n + 4)!
x2n (see (30), (32))

=
3

20
+

1
280

x2 +
23

33600
x4 +

47
739200

x6 + . . . (65)

over interval
(
0, π

2

)
. Let us denote

en = 2
3 · 22n+3

|B2n+4| + (−1)n

(2n + 4)!
n = 0, 1, 2, . . . . (66)

The next auxiliary statement is obvious.

Lemma 4.4. The following are true:

en = 2
3 · 22n+3

|B2n+4| + (−1)n

(2n + 4)!
> 0, n = 0, 1, 2, . . . , (67)

for integers n ≥ 0.

Let’s specify a list of Taylor’s approximations for the function f3(x) over interval (0, π/2) :

k T f5, 0+
k (x) T

f5; 0+, π/2−
k (x)

0 3
20

16
π4

1 3
20

3
20
+
−3π4 + 320

10π5 x

2 3
20
+

1
280

x2 3
20
+
−3π4 + 320

5π6 x2

3 3
20
+

1
280

x2 3
20
+

1
280

x2 +
−π6
− 168π4 + 17920

140π7 x3

4 3
20
+

1
280

x2 +
23

33600
x4 3

20
+

1
280

x2 +
−π6
− 168π4 + 17920

70π8 x4

Based on Theorem 2.3 we have
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Theorem 4.5. For the function

f5(x) =
2
(

sin x
x

)
+ tan x

x − 3

x3 tan x

=

∞∑
n=2

2
(−1)n + 3 · 22n+3

|B2n+4|

(2n + 4)!
x2n :

(
0, π

2

)
−→ R

we have

T f5,0+
0 (x) ≤ ... ≤ T f5,0+

k (x) ≤ T f5,0+
k+1 (x) ≤ ... ≤ f5(x) ≤ ... ≤ T f5;0+,π/2−

k+1 (x) ≤ T f5;0+,π/2−
k (x) ≤ ... ≤ T f5;0+,π/2−

0 (x),

for all x∈
(
0, π

2

)
.

Then, based on the previous Theorem we have

Statement 4.6. For 0 < x < π/2 and n ≥ 0,

3 +

n−1∑
j=2

e jx2 j + ηnx2n

 x3 tan x < 2
(sin x

x

)
+

tan x
x
< 3 +

n−1∑
j=2

e jx2 j + Enx2n

 x3 tan x (68)

with the best possible constants

ηn = en and En =
( 2
π

)2n+4

−

n−1∑
j=2

e j

( 2
π

)2n−2 j

. (69)
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[17] B. Malešević, M. Makragić: A Method for Proving Some Inequalities on Mixed Trigonometric Polynomial Functions, J. Math. Inequal.

10:3 (2016), 849–876.
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