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Abstract. In the case of linear operator the property P(B, k) was introduced by M.A.Kaashoek. In this
paper, we characterize the essentially semi regular linear relation in terms of the property P(B, k).After that
and as an application of this result we give some connection between essentially semi regular and semi
regular linear relations. Further, we will give some supplementary conditions on essentially semi regular
linear relation to be semi Fredholm. Then, we analyze the stability of the class of essentially semi regular
linear relations under small perturbations and Riesz operators. Finally, we study some properties of the
essentially semi regular spectrum of a linear relation and we establish a spectral mapping theorem.

1. Introduction and Preliminary

Throughout this paper, we shall denote by X and Y two Banach spaces. A linear relation T : X→ Y is a
mapping having a nonempty subspace D(T) of X called the domain of T and taking values in the collection
of nonempty subsets of Y such that T(αx + βy) = αT(x) + βT(y) for all nonzero α, β scalars and x, y ∈ D(T).
We define D(T) := {x ∈ X : Tx , ∅}. The class of all linear relations from X to Y is denoted by LR(X,Y) and
abbreviate LR(X,X) by LR(X). A linear relation T ∈ LR(X,Y) is uniquely determined by its graph G(T),
which is defined by G(T) =

{
(x, y) ∈ X × Y : x ∈ D(T), y ∈ Tx

}
. T is said a closed linear relation if G(T) is a

closed subspace of X × Y.
The inverse of T is the linear relation T−1 given by G(T−1) :=

{
(y, x)/ (x, y) ∈ G(T)

}
. If X is a normed linear

space, then X′ will denote the norm dual of X, i.e. the space of all continuous linear functionals on X, with
the norm ∥x′∥ := inf{λ : | x′x |≤ λ∥x∥, for all x ∈ X}.We shall adopt the following notation: If M ⊂ X and
N ⊂ X′, then

M⊥ := {x′ ∈ X′ : x′x = 0 for all x ∈M}

N⊤ := {x ∈ X : x′x = 0 for all x′ ∈ N}

The adjoint or the conjugate T∗ of T ∈ LR(X,Y) is defined by

G(T∗) := G(−T−1)⊥ ⊂ Y′ × X′.
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This means that (y′, x′) ∈ G(T∗) if and only if y′(y) − x′(x) = 0 for all (x, y) ∈ G(T).
Recall that if T is a linear relation in X, then T∗ is a closed linear relation in X′ such that

D(T∗) = {y′ ∈ X′ : y′T is continuous and single valued}.

The range of a linear relation T ∈ LR(X,Y) is defined by R(T) = T(D(T)) and T is called surjective (or onto)
if R(T) = Y. The null space (or the kernel) of T is defined by N(T) = {x ∈ D(T) : (x, 0) ∈ G(T)} = T−1(0) and T
is called injective if N(T) = {0}. If T is injective and has closed range, then it is bounded below. The nullity
and the defect of a linear relation T is defined respectively by α(T) = dimN(T) and β(T) = dimX/R(T).
For T,S ∈ LR(X), the product ST is given by G(ST) := {(x, y) ∈ X×X : (x, y) ∈ G(T), (y, z) ∈ G(S) for somey ∈
X}. Hence Tn, n ∈N is defined as usual with T0 = I where I is the identity operator in X and Tn = TTn−1.
Let λ ∈ K and T ∈ LR(X), then λT is the linear relation defined by G(λT) := {(x, λy) : (x, y) ∈ G(T)}. The
algebraic resolvent set of a closed linear relation T is defined by Sandovici [16] as follows

ρ(T) := {λ ∈ K : T − λ is injective and surjective}

where G(T−λ) := {(x, y−λx) : (x, y) ∈ G(T)} and the spectrum of T is the set σ(T) = K \ρ(T). The minimum
modulus of T ∈ LR(X,Y) is the quantity

γ(T) := sup{λ : λd(x,N(T)) ≤ ∥Tx∥, for all x ∈ D(T)},

where d(x,N(T)) := inf{∥x − y∥ with y ∈ N(T)}.
Recall that T ∈ LR(X) is upper semi Fredholm (resp. lower semi Fredholm), denoted by T ∈ ϕ+ (resp.
T ∈ ϕ−), if T is closed everywhere defined with closed range and α(T) < ∞ (resp. β(T) < ∞). If T is both
upper and lower semi Fredholm, then T is said to be Fredholm. If T is either upper or lower semi Fredholm,
then T is said to be semi Fredholm and its index is defined by ind(T) = α(T) − β(T). Recall that the ascent of
T ∈ LR(X) is defined by asc(T) = min{k ∈N ∪ {0} : N(Tk) = N(Tk+1)}.
The generalized kernel and the generalized range of T ∈ LR(X) are the subspaces of X defined by

N∞(T) =
∞⋃

n=1

N(Tn) and R∞(T) =
∞⋂

n=1

R(Tn), respectively. T ∈ LR(X) is called semi regular if its range is

closed and N(T) ⊂ R∞(T) (or equivalently, N∞(T) ⊂ R(T)).
For a closed subspace M of X, T|M denotes the restriction of T to M. Thus T|M := T ∩ (M × X).We denote by
TM the linear relation defined by TM := T ∩ (M×M). For T, S ∈ LR(X) the linear relation T+̂S is defined by

G(T+̂S) := {x + u, y + v) : (x, y) ∈ G(T), (u, v) ∈ G(S)},

moreover when G(T) ∩ G(S) = {(0, 0)} we write T ⊕ S. T is said to be a Kato decomposition of finite type,
abbreviated KDF, if there exists a pair of closed subspaces (M,N) of X such that X = M ⊕ N, dimN < ∞,
T = TM ⊕ TN with TM is a semi regular linear relation and TN is a bounded nilpotent operator.
T is said to be a Kato decomposition of finite type of degree d, abbreviated KDF(d), if there exists a pair of
closed subspaces (M,N) of X such that X =M⊕N, dimN < ∞, T = TM ⊕ TN with TM is a semi regular linear
relation and TN is a bounded nilpotent operator of degree d.
For two subspaces M and N of X, we write M ⊂e N if there exists a finite-dimensional subspace F of X such
that M ⊂ N + F. Obviously M ⊂e N if and only if dim[M/(M ∩N)] < ∞. Notice that we can assume that F is
a subset of M. Similarly, we write M =e N if both M ⊂e N and N ⊂e M.
This notation is used in the definition of essentially semi regular linear relation which is appeared in the
first time in [5] then in [6] as follows: Let T be an everywhere defined closed linear relation. Then T is
essentially semi regular linear relation if R(T) is closed and N∞(T) ⊂e R∞(T).
For two linear operators A and B from X to Y, M.A.Kaashoek introduced the property P(B, k) in [10] as a
generalization of the notion of semi Fredholm operators. In the present paper and in section 2, we associate
to a linear relation T two operators A and B defined from G(T) into X by A(x, y) = y and B(x, y) = x. Then
we characterize the essentially semi regular linear relation in terms of the property P(B, k).More precisely,
we prove that T is essentially semi regular if and only if A has the property P(B, k). This brings in particular
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the study of a linear relation to the study of bounded operators associated with this linear relation. This
characterization helps us to give a representation of essentially semi regular linear relations made by semi
regular and semi Fredholm linear relations.
In section 3, we analyze the stability of the class of essentially semi regular linear relations under small
perturbations and Riesz operators.
Finally in section 4, we give some properties of the product and the power of essentially semi regular linear
relations and the essentially semi regular linear relation spectrum. Then we establish a spectral mapping
theorem.

2. Representation of an essentially semi regular linear relation

In this section we recall the definition of essentially semi regular linear relation and we introduce the
notion of the property P(B, k).After that, given a relation T ∈ LR(X), we define two operators A and B from
G(T) into X by A(x, y) = y and B(x, y) = x. Our objective is to characterize an essentially semi regular linear
relation in terms of the property P(B, k).We shown that T is an essentially semi regular relation if and only
if A has the property P(B, k). As an application of this result we give an interesting connection between
essentially semi regular and semi regular linear relations. Further, we give some supplementary conditions
to essentially semi regular linear relations to be semi Fredholm.
We start this section by recalling the definition of an essentially semi regular linear relation.

Definition 2.1. [5, Definition 3.1] Let T be an everywhere defined closed linear relation. T is called essentially semi
regular linear relation if R(T) is closed and N∞(T) ⊂e R∞(T).

The class of all essentially semi regular linear relations in X will be denoted by ESR(X).

Now, we state the following theorem which is an amelioration of Theorem 3.1 in [5]. More precisely we
have the associated same conclusions of Theorem 3.1 in [5] without the hypothesis ρ(T) , ∅.

Theorem 2.2. Let T be an everywhere defined closed linear relation with closed range. The following properties are
equivalent:
(1) T is essentially semi regular linear relation,
(2) T has a Kato decomposition of finite type,
(3) N∞(T) ⊂e R(T),
(4) N(T) ⊂e R∞(T).

Proof: We consider the same proof of the Theorem 3.1 in [5]. Just we replace [4, Lemma 2.3 (ii)] by [2,
Lemma 3.5], because in [4, Lemma 2.3 (ii)] we need the hypothesis ρ(T) , ∅ to deduce (T∗)n = (Tn)∗ but in
[2, Lemma 3.5] and since T is everywhere defined we have the same conclusion without ρ(T) , ∅. □

Remark 2.3. We can see by the previous theorem that T ∈ ESR(X) if and only if R(T) is closed and dimN(T)/N(T)∩
R∞(T) < ∞.

Definition 2.4. Let T ∈ ESR(X).We call order of T the integer k such that

dimN(T)/N(T) ∩ R∞(T) = k.

Corollary 2.5. Let T be a closed linear relation everywhere defined in a Banach space X. If T is essentially semi
regular, then T(R∞(T)) = R∞(T).

Proof: Assume that T ∈ ESR(X). By Theorem 2.2, we have X =M⊕N such that dim N < ∞, TN = T∩(N×N)
is a bounded nilpotent operator and TM = T ∩ (M ×M) is a semi regular linear relation with T = TM ⊕ TN.
We can see that R∞(T) ⊂M and by [1, Lemma 20], we obtain T(R∞(T)) = TM(R∞(T)) = R∞(T). □

Corollary 2.6. Let T be a closed linear relation everywhere defined in a Banach space X with ρ(T) , ∅. If T is
essentially semi regular, then T∗ has a Kato decomposition of finite type.
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Proof: Since T ∈ ESR(X), then by Theorem 2.2, T has a Kato decomposition of finite type. Let (M,N) be
KDF associated to T. Hence by [4, Theorem 3.2] (N⊥,M⊥) ∈ KDF(T∗). □

Corollary 2.7. Let T be an everywhere defined closed linear relation in X with closed range. If there exists a subspace
X0 ⊂ X such that TX0 = X0 and dim N(T)/(X0 ∩ N(T)) = k < ∞, then T is essentially semi regular of order lower
than k.

Proof: Since TX0 = X0, then X0 ⊂ R∞(T). Thus dimN(T)/(N(T) ∩ R∞(T)) ≤ dim N(T)/(X0 ∩ N(T)) = k < ∞.
Hence by Theorem 2.2, T is essentially semi regular linear relation of order lower than k. □

We will now introduce the notion we are interested in, which is due to M.A.Kaashoek[10]. For any two
operators, we will define the notion of D(A,B) and R(A,B) as follows:
Let A and B be two linear operators with domains D(A) and D(B), linear subspaces of X satisfying D(A) ⊂
D(B) and with ranges in Y.
We introduce the following sequences of subspaces Dn(A,B) (n = 0, 1, 2...) in X and Rn(A,B) (n = 0, 1, 2...)
in Y :

D0(A,B) = X, R0(A,B) = Y,

for n = 1, 2, ...
Rn(A,B) = ADn−1(A,B) and Dn(A,B) = B−1Rn(A,B).

In other words, for n = 1, 2...

Rn(A,B) = AB−1Rn−1(A,B) and Dn(A,B) = B−1ADn−1(A,B).

We denote D(A,B) =
⋂
n≥0

Dn(A,B) and R(A,B) =
⋂
n≥0

Rn(A,B).

Definition 2.8. [10, Definition 2.1] Let A and B be two operators from X into Y. We say that A has the property
P(B, k) if there exists a non negative integer k such that

dimN(A)/(N(A) ∩D(A,B)) = k.

Now, to express the main theorem of this section which gives a characterization of essentially semi
regular linear relations of order k in terms of the property P(B, k), we need to express the technical lemma.

Lemma 2.9. Let J be a bijective linear relation in X and M and N be two closed subspaces of X. Then (M +N)/N ∼
J(M +N)/J(N).

Proof: Let ϕ : (M +N)/N→ J(M +N)/J(N)
x̄ 7→ ϕ(x̄) = {ỹ; y ∈ Jx}.

It is clear that ϕ is a linear operator.
Let x̄ ∈ N(ϕ). So ϕ(x̄) = 0̃. Thus for all y ∈ Jx, ỹ = 0̃. Hence Jx ⊂ J(N). Then there exists α ∈ N such
that Jx = Jα. So x − α ∈ N(J) = {0}. Thus x = α. Therefore x̄ = ᾱ = 0̄. Consequently N(ϕ) = {0̄}. Let
z̃ ∈ J(M+N)/J(N). So there exists y ∈ J(M+N) such that z̃ = ỹ. Thus there exists x ∈M+N such that y ∈ Jx.
Then ϕ(x̄) = ỹ = z̃. Therefore ϕ is bijective. □

Theorem 2.10. Let T be an everywhere defined closed linear relation in X with closed range. Let A and B be the two
linear operators defined from G(T) into X by A(x, y) = y and B(x, y) = x respectively. Then T is essentially semi
regular of order k if and only if A has the property P(B, k).

Proof: Observe that the linear relation J, defined on D(T) = X by

J : X→ G(T)

x 7→ {(x, y)/y ∈ Tx}
is bijective. We claim that AJ = T. Indeed, let (x, y) ∈ G(T). So (x, y) ∈ Jx. Thus A(x, y) = y ∈ AJ(x). Then
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(x, y) ∈ G(AJ).Now, let (x, y) ∈ G(AJ). So y ∈ AJx.Hence there exists (x, z) ∈ Jx such that y ∈ A(x, z) = z ∈ Tx.
Then (x, y) ∈ G(T).
We claim that BJ = I. Indeed, let x ∈ X. So BJx = B(x, z) = x,where z ∈ Tx.
We claim that, for all n ∈ N, Dn(A,B) = JR(Tn). The proof will be given by induction on n ∈ N. For
n = 0, D0(A,B) = D(A) = G(T) = J(X). Assume that the assertion is true for n ≥ 0. We have Dn+1(A,B) =
B−1ADn(A,B) = B−1AJ(R(Tn)) = B−1T(R(Tn)) = B−1(R(Tn+1)) = J(R(Tn+1)).
We claim that, for all n ∈ N, Rn(A,B) = R(Tn).We have Rn(A,B) = ADn−1(A,B) = AJR(Tn−1) = TR(Tn−1) =
R(Tn).
We claim that D(A,B) = JR∞(T). Indeed, we have D(A,B) =

⋂
n≥0

Dn(A,B) =
⋂
n≥0

J(R(Tn)). Now, we prove that⋂
n≥0

J(R(Tn)) = J(
⋂
n≥0

R(Tn)).We have for all n ∈N,
⋂
n≥0

R(Tn) ⊂ R(Tn). So,

J(
⋂
n≥0

R(Tn)) ⊂ J(R(Tn)) ∀n ∈N.

Thus J(
⋂
n≥0

R(Tn)) ⊂
⋂
n≥0

J(R(Tn)). For the reverse inclusion, let z ∈
⋂
n≥0

J(R(Tn)). So for all n ∈ N, z ∈ J(R(Tn)).

Thus for all n ∈ N, J−1z ⊂ R(Tn) ∩ D(J) + J−1(0). Since D(J) = X and N(J) = {0}, then for all n ∈ N, J−1z ∈
R(Tn). So J−1z ∈

⋂
n≥0

R(Tn).Hence z + J(0) ⊂ J(
⋂
n≥0

R(Tn)).As J(0) ⊂ J(
⋂
n≥0

R(Tn)), then z ∈ J(
⋂
n≥0

R(Tn)).Therefore⋂
n≥0

J(R(Tn)) = J(
⋂
n≥0

R(Tn)). Consequently,

D(A,B) = J(
⋂
n≥0

R(Tn)) = JR∞(T).

We claim that N(A) + J(0) = J(N(T)). Indeed, since AJ = T, so J−1A−1(0) = T−1(0). Thus JJ−1N(A) = JN(T).
Hence N(A) ∩ R(J) + J(0) = J(N(T)). Therefore N(A) + J(0) = J(N(T)).
Using Lemma 2.9, it follows that N(T)/(N(T) ∩ R∞(T)) ∼ (N(T) + R∞(T))/R∞(T)

∼ (J(N(T) + R∞(T)))/J(R∞(T))
= (N(A) + J(0) + J(R∞(T)))/J(R∞(T))
= (N(A) +D(A,B))/D(A,B)
∼ N(A)/(N(A) ∩D(A,B)).

Consequently, T ∈ ESR(X) if and only if A has the property P(B, k). □

In [10, Lemma 2.4], Kaashoek gave a sufficient condition for an operator T to have the property P(S, k).
In the particular case where D(T) = X and S is the identity operator, this gives a sufficient condition for T
to be essentially semi regular of order k. In the following corollary and using Theorem 2.10, we generalize
this result in the general setting of linear relations to give a sufficient condition for a linear relation T to be
essentially semi regular.

Corollary 2.11. Let T be an everywhere defined closed linear relation in X with closed range. If there exists a closed
subspace X0 ⊂ X such that
(i) TX0 ⊂ X0,
(ii) N(T) ⊂ X0,
(iii) dimX0/TX0 = l < ∞,
then T ∈ ESR(X) of order k ≤ l.

Proof: Let T0 = T|X0
. Then T0 is an everywhere defined closed linear relation in the Banach space X0. We

have dimX0/R(T0) = l, so there exists an l-dimensional subspace L such that X0 = L ⊕ R(T0). Let A and B be
the linear operators defined on G(T0) by A(x, y) = y and B(x, y) = x. By the proof of Theorem 2.10, we have
Rn(A,B) = R(Tn

0 ).Hence X0 = R1(A,B)⊕L. By the same procedure of proof of [10, Lemma 2.4], we obtain that
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dimN(A)/(D(A,B)∩N(A)) ≤ l. Thus A has the property P(B, k′) for some k′. Since X0/TX0 and X0 are closed,
then R(T0) is closed. It follows by Theorem 2.10 that T0 ∈ ESR(X) and dimN(T0)/(N(T0) ∩ R∞(T0)) = k′ ≤ l.
As N(T) ⊂ X0, then dimN(T)/(N(T) ∩ R∞(T) ≤ dimN(T0)/(N(T0) ∩ R∞(T0)) = k′ ≤ l. So the desired result. □

In the following corollary, we give a necessary condition of essentially semi regular linear relation. This
result relates to giving a relationship between the order of essentially semi regular linear relation and its
defect.

Corollary 2.12. If T is essentially semi regular of order k, then dimX/R(T) ≥ k.

Proof: Let l = dimX/R(T). If l = +∞, then the inequality is trivial. Assume therefore that dimX/R(T) = l < ∞.
Then by Corollary 2.11 with X0 = X, we obtain that dimN(T)/N(T) ∩ R∞(T) = k ≤ l. □

As an application of Theorem 2.2 and Theorem 2.10 we give some supplementary conditions on essen-
tially semi regular linear relations to be semi Fredholm and we give some connection between essentially
semi regular and semi regular linear relations. This showed the interesting representation of an essentially
semi regular linear relation. More precisely, in the following first theorem we prove that if T ∈ ESR(X), then
there exists a bounded linear operator C with dimR(C) < ∞ such that T+C is semi regular. We note that this
brings an extension of Theorem 3.2 and Theorem 3.3 in [10] to the case of linear relations in the particular
case where B is the identity operator and k = 0.

Theorem 2.13. Let T be an everywhere defined closed linear relation in X. If T is essentially semi regular of order k,
then there exists a bounded linear operator C in X with dimR(C) = k such that T + C is semi regular.

Proof: Since T ∈ ESR(X) of order k, then dimN(T)/(N(T) ∩ R∞(T)) = k. So there exists a k-dimensional
subspace N ⊂ N(T) such that N ∩R∞(T) = {0} and N ⊕R∞(T) = N(T)+R∞(T). The subspace R∞(T) is closed
in X. Then, as a consequence of the Hahn-Banach Theorem, there exists a closed subspace X0 ⊂ X such that
X = N ⊕ X0 and R∞(T) ⊂ X0. If x1, ..., xk form a basis of N, we have for each x ∈ X that

x =
k∑

i=1

αixi + x0

with x0 ∈ X0.We may take ∥x∥N =
i=k∑
i=1

|αi|. As dimN = k < ∞, there exists β > 0 such that for all x ∈ N we

have
1
β
∥x∥N ≤ ∥x∥ ≤ β∥x∥N.

We have by Corollary 2.12, dimX/R(T) ≥ k. Let ϵ > 0. Choose y1, ..., yk ∈ X linearly independent modulo
R(T) and denoted by P the continuous projection from X to N. Define for each x ∈ X

Cx =
k∑

i=1

αiyi.

As ∥Cx∥ = ∥
i=k∑
i=1

αiyi∥

≤

i=k∑
i=1

|αi|sup1≤i≤k∥yi∥

≤ βsup1≤i≤k∥yi∥∥P∥∥x∥.
Hence C is a bounded linear operator in X with dimR(C) = k. To prove that T + C is semi regular, we claim
in the first way that R(T +C) is closed. Indeed, since dimR(C) < ∞, so R(T +C) ⊂e R(T). Thus if we replaced
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T by T + C and C by −C, we obtain that R(T) ⊂e R(T + C). Hence R(T + C) =e R(T). Then there exits a finite
dimensional subspace H such that R(T + C) +H = R(T) +H which is closed. So, it follows from [8, Lemma
3.2] that R(T + C) is closed.
In the second way, we claim that dimN(T + C)/(N(T + C) ∩ R∞(T + C)) = 0. For that we prove that
N(T + C) = N(T) ∩ R∞(T). Since R(T) ∩ R(C) = {0}, we have x ∈ N(T + C) if and only if x ∈ N(T) ∩ N(C) =
N(T)∩X0 = N(T)∩R∞(T). Thus dimN(T+C)/(N(T+C)∩R∞(T)) = dimN(T+C)/((N(T)∩R∞(T))∩R∞(T)) =
dimN(T + C)/(N(T) ∩ R∞(T)) = dimN(T + C)/N(T + C) = 0.
As (T+C)R∞(T) = TR∞(T) = R∞(T), then by Corollary 2.7, dimN(T+C)/(N(T+C)∩R∞(T+C)) = 0. Therefore
T + C is semi regular. □

Now, in the following second theorem we prove under certain conditions that the sum of a semi regular
linear relation and a finite rank operator is essentially semi regular linear relation. Note that, in the particular
case of the operators, we find, as a consequence, the result given in [10, Theorem 3.3] with B considered as
the identity operator.

Theorem 2.14. Let T be an everywhere defined closed linear relation in X. If T is semi regular and C is a bounded
linear operator in X with dimR(C) = k and C(R∞(T)) = {0}, then T + C is essentially semi regular.

Proof: We will use Corollary 2.11 to prove that T + C is essentially semi regular. Since T is semi regular,
then N(T) ⊂ R∞(T) which is closed. Let X0 = (T + C)−1R∞(T) which is closed by [3, Proposition 2.6]. We
have N(T + C) ⊂ X0. By the same procedure of the previous theorem we prove that R(T + C) is closed.
Now, we claim that (T + C)X0 ⊂ X0. Indeed, (T + C)X0 = R∞(T) ∩ R(T + C) + T(0) = R∞(T) ∩ R(T + C). Now
we prove that R∞(T) ⊂ R(T + C). Let x ∈ R∞(T) = TR∞(T). So there exists y ∈ R∞(T) such that x ∈ Ty. As
C(R∞(T)) = {0}, it follows that x ∈ (T + C)y ⊂ R(T + C). Hence R∞(T) ⊂ R(T + C) and (T + C)X0 = R∞(T).
We claim that R∞(T) ⊂ X0. Indeed, let x0 ∈ R∞(T). Thus (T + C)x0 = Tx0 + Cx0 = Tx0 ⊂ R∞(T). Hence
x0 + (T + C)−1(0) ⊂ (T + C)−1R∞(T). Then x0 ∈ (T + C)−1R∞(T) = X0. Therefore (T + C)X0 = R∞(T) ⊂ X0.
We claim that dimX0/R∞(T) < ∞. Indeed, let x0 ∈ X0 = (T +C)−1R∞(T). So (T +C)x0 ∩R∞(T) , ∅. Thus there
exists y ∈ R∞(T) such that y ∈ (T + C)x0. Since y ∈ R∞(T) = TR∞(T), so there exists y0 ∈ R∞(T) such that
y ∈ Ty0 = (T+C)y0.Hence y ∈ (T+C)x0∩ (T+C)y0. Then (T+C)x0 = (T+C)y0. Therefore x0− y0 ∈ N(T+C).
Thus there exists α ∈ N(T + C) such that x0 = y0 + α. Since y0 ∈ R∞(T), so ȳ0 = 0̄. Hence x̄0 = ᾱ. As
α ∈ N(T + C), it follows that Tα ∩ R(C) , ∅. Then α ∈ T−1(R(C)). Since dimR(C) < ∞, so there exists a finite
dimensional subspace F such that T−1(R(C)) = F + T−1(0). Hence there exist α1 ∈ F and α2 ∈ N(T) such that
α = α1 + α2.We have α2 ∈ N(T) ⊂ R∞(T), so ᾱ2 = 0̄. Thus ᾱ = ᾱ1 ∈ (F + R∞(T))/R∞(T) = F̄ which has finite
dimensional. Therefore X0/R∞(T) ⊂ F̄. Consequently dimX0/R∞(T) = dimX0/(T + C)X0 < ∞. Now, using
Corollary 2.11, we get T + C ∈ ESR(X). □

In [5] we say that a semi Fredholm linear relation is essentially semi regular. Now, we define two classes
of linear relations which help us to study the opposite direction.

Definition 2.15. We say that a relation T ∈ LR(X) is almost bounded below if there exists δ > 0 such that for all
0 < |λ| < δ we have T − λI is bounded below.

Theorem 2.16. Let T ∈ ESR(X). If T is almost bounded below, then T is upper semi Fredholm.

Proof: Since T ∈ ESR(X), then by Theorem 2.2, T = T1 ⊕ T2 with T1 is a semi regular linear relation and
T2 is a nilpotent operator. Since T1 is semi regular, then by [1, Theorem 23], there exists ν > 0 such that
T1 − λ is a semi regular for |λ| < ν. Hence R(T1 − λ) is closed for |λ| < ν. As T2 is nilpotent, it follows that
T2 − λ is invertible for λ , 0. We say by hypothesis that there exists δ > 0 such that for all 0 < |λ| < δ,
T − λI is bounded below. On the other hand, for 0 < |λ| < δ, T − λ = T1 − λ ⊕ T2 − λ. By [15, (8.2)], we have
N(T − λ) = N(T1 − λ) +N(T2 − λ). Thus N(T1 − λ) = {0} for 0 < |λ| < δ. Hence T1 − λ is bounded below for
0 < |λ| < min(δ, ν). So T1 is almost bounded below. Thus by [9, Theorem 2.1], we conclude that T1 is bounded
below. It follows that T1 is upper semi Fredholm. By [15, Theorem 8.2], we have α(T) = α(T1) + α(T2).
Consequently, T is upper semi Fredholm. □
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Definition 2.17. We say that a relation T ∈ LR(X) is almost onto if there exists δ > 0 such that for all 0 < |λ| < δ
we have T − λI is onto.

Theorem 2.18. Let T ∈ ESR(X). If T is almost onto, then T is lower semi Fredholm.

Proof: Since T ∈ ESR(X), then by Theorem 2.2, T = T1 ⊕ T2 with T1 is a semi regular linear relation and T2
is a nilpotent operator. We say by hypothesis that there exists δ > 0 such that for all 0 < |λ| < δ, T − λI is
onto. On the other hand, for 0 < |λ| < δ, T − λ = T1 − λ ⊕ T2 − λ. As T2 is nilpotent, it follows that T2 − λ is
invertible for λ , 0. By [15, (8.3)], we have R(T−λ) = R(T1−λ)⊕R(T2−λ). Thus T1−λ is onto for 0 < |λ| < δ.
Hence T1 is almost onto. So by [9, Theorem 2.1], we conclude that T1 is onto. It follows that T1 is lower semi
Fredholm. By [15, Theorem 8.2], we have β(T) = β(T1) + β(T2). Consequently, T is lower semi Fredholm. □

3. Some perturbation results of essentially semi regular linear relations

We analyze in this section the stability of the class of essentially semi regular linear relations under small
perturbations and Riesz perturbations. After that we will show when an essentially semi regular linear
relation is semi Fredholm.

Lemma 3.1. Let T be a closed linear relation everywhere defined and d ∈ N∗. Suppose that T has a KDF(d). Then
N(T) ∩ R(Td) = N(T) ∩ R∞(T). Furthermore, we have T(D(T) ∩ R∞(T)) = R∞(T).

Proof: Since T has a KDF(d), then by [3, Proposition 2.5], for every nonnegative integer n ≥ d, we have
N(T)∩R(Tn) = N(T)∩R(Td). So N(T)∩R(Td) = N(T)∩R∞(T). It remains to show that T(D(T)∩R∞(T)) = R∞(T).
For every linear relation, we have T(D(T)∩R∞(T)) ⊂ R∞(T). So it suffices to prove the opposite inclusion. For
this, let y ∈ R∞(T). Then for each n ∈N, there exists xn ∈ D(T)∩R(Tn) such that y ∈ Txn. Thus 0 ∈ T(xn−xm),
for all n, m ∈N. This implies that xn − xm ∈ N(T).We get that, for all n, m ∈N,

xn+d − xd ∈ N(T) ∩ R(Td) = N(T) ∩ R(Td+n) ⊂ R(Td+n).

It follows that xd ∈ R(Td+n), for all n ≥ 0. Hence xd ∈ R∞(T) and since y ∈ Txd, we deduce that
y ∈ T(D(T) ∩ R∞(T)). □

Now, we analyze in the following theorem the stability of essentially semi regular linear relations under
small perturbations which is a generalization of [12, Theorem 14 of Chapter III].

Theorem 3.2. Let X be a Banach space, T be a closed linear relation everywhere defined with ρ(T) , ∅ and S be a
bounded operator satisfying TS = ST. Suppose that T ∈ ESR(X). Then, there exists ϵ > 0 such that, if ∥S∥ < ϵ, then
T + S ∈ ESR(X) and

R∞(T + S) ∩N∞(T + S) ⊂ R∞(T) ∩N∞(T). (1)

Furthermore, if asc(T) < ∞, then asc(T + S) < ∞.

Proof: Set M = R∞(T). Then M is a closed subspace of X invariant with respect to T and S. Let T1 = T|M
and S1 = S|M be the corresponding restrictions. Denote further, T̃ : X/M → X/M and S̃ : X/M → X/M the
operators induced by T and S, respectively. By Theorem [5, Theorem 3.2], T1 is surjective and T̃ is upper semi
Fredholm. If ∥S∥ < γ(T1), we have by [7, Corollary 1.4.3] T1 + S1 is surjective and if ∥S∥ < limn→∞γ((T̃n)1/n),
we have by [17] T̃ + S̃ is upper semi Fredholm. It remains to show that ρ(T + S) , ∅. Since ρ(T) , ∅, then
there exists λ0 such that T−λ0 is injective and surjective. Hence by [7, Corollary 1.4.3], T+S−λ0 is injective
and surjective for all ∥S∥ < γ(T − λ0). If we take ϵ1 = min{γ(T1), limn→∞γ((T̃n)1/n), γ(T − λ0)}, Then by [5,
Theorem 3.2], T + S ∈ ESR(X) for all S bounded operator satisfying TS = ST and ∥S∥ < ϵ1. To prove (1) we
claim first that

R∞(T∗) ⊂ R∞(T∗ + S∗). (2)
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Let T∗∞ : D(T∗)∩R∞(T∗)→ R∞(T∗) be the restriction of T∗ to R∞(T∗) and S∗∞ be the restriction of S∗ to R∞(T∗).
Since T ∈ ESR(X), then by Proposition [5, Proposition 4.1] Tk

∈ ESR(X) for all k ∈N.Hence for all k ∈N, Tk is
closed and R(Tk) is closed. By the closed range theorem R(Tk∗) is also closed. Thus R∞(T∗) is closed and so T∗∞
is a closed operator. Since T ∈ ESR(X) then T∗ has a KDF. Thus by Lemma 3.1, T∗(D(T∗)∩R∞(T∗)) = R∞(T∗).
Hence T∗∞ is surjective and thus γ(T∗∞) > 0. Now, if we take ϵ = min{ϵ1, γ(T∗∞)}, then ∥S∗∞∥ < ∥S∗∥ = ∥S∥ <
γ(T∗∞). Since T and S commute, we obtain that T∗∞ + S∗∞ : D(T∗) ∩ R∞(T∗) −→ R∞(T∗) and so by [7, Corollary
1.4.3], T∗∞+S∗∞ is surjective for all ∥S∗∞∥ < γ(T∗∞).Thus for all ∥S∗∞∥ < γ(T∗∞), (T∗∞+S∗∞)(D(T∗)∩R∞(T∗)) = R∞(T∗).
Let E = D(T∗)∩R∞(T∗). So ((T∗∞+S∗∞)(E))∩E = E. Thus (T∗∞+S∗∞)[((T∗∞+S∗∞)(E))∩E] = (T∗∞+S∗∞)(E) = R∞(T∗).
Hence R∞(T∗) ⊂ ((T∗∞ + S∗∞)2(E)) ∩ R∞(T∗) ⊂ R((T∗∞ + S∗∞)2). Repeat the same procedure, we obtain that for
all ∥S∗∞∥ < γ(T∗∞), R∞(T∗) ⊂ R∞(T∗ + S∗).
Now, we will prove that

N∞(T + S) ⊂ N∞(T). (3)

In fact, since ρ(T) , ∅, then by [4, Lemma 2.3], we have for all k ∈N, Tk∗ = T∗k. It follows that

N∞(T) = (N∞(T))⊥⊤ = (
∞⋂

k=0

N(Tk)⊥)⊤ = (
∞⋂

k=0

R(Tk∗))⊤ = (
∞⋂

k=0

R(T∗k))⊤ = R∞(T∗)⊤.

The above equality remains true for T + S instead of T. Hence, we get by (2) that,

N∞(T + S) = R∞(T∗ + S∗)⊤ ⊂ R∞(T∗)⊤ = N∞(T).

We claim now, that

R∞(T + S) ∩N∞(T + S) ⊂ R∞(T). (4)

Since T + S ∈ ESR(X), then by [6, Lemma 5.5], it is sufficient to show that R∞(T + S) ∩N((T + S)k) ⊂ R∞(T),
for all k ∈ N.We will do this by induction on k. For k = 0, the statement is obvious. Let k ≥ 1 and assume
that the inclusion holds for k− 1. Let x0 ∈ R∞(T+ S)∩N((T+ S)k). Since (T+ S)(R∞(T+ S)) = R∞(T+ S), then
we can find an infinite sequence x0, x1, . . . ∈ R∞(T+S) such that x j−1 ∈ (T+S)x j for j = 1, 2, . . . .We claim that
for all j = 1, 2, . . ., x j ∈ N∞(T). Indeed, we have x0 ∈ N((T + S)k) ⊂ N∞(T + S) ⊂ N∞(T). Since x0 ∈ (T + S)x1

and x0 ∈ N((T+S)k), then 0 ∈ (T+S)k(T+S)x1 = (T+S)k+1x1.Hence x1 ∈ N((T+S)k+1) ⊂ N∞(T + S) ⊂ N∞(T).
By induction, we get that x j ∈ N((T + S)k+ j) ⊂ N∞(T + S) ⊂ N∞(T) for all j = 1, 2, . . . .
On the other hand, since T ∈ ESR(X), then dim N∞(T)/(R∞(T) ∩ N∞(T)) = m < ∞. Thus, x0, x1, . . . , xm are

linearly dependent, i.e. there exists a non trivial linear combination x =
m∑

i=0

µixi ∈ R∞(T). Let l be such that

µl , 0 and µ j = 0 for j = l + 1, . . . ,m.We obtain

(T + S)lx =(T + S)l(
l∑

i=0

µixi)

=

l∑
i=0

µi(T + S)lxi

=

l−1∑
i=0

µi(T + S)lxi + µl(T + S)lxl.

However, x0 ∈ (T + S)x1 ⊂ (T + S)2x2 ⊂ . . . ⊂ (T + S)lxl. This implies that (T + S)lxl = x0 + (T + S)l(0). So

(T + S)lx = µlx0 +

l−1∑
i=0

µi(T + S)lxi.
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Since (T + S)l(R∞(T)) ⊂
l∑

j=0

C j
l T

jSl− j(R∞(T)) ⊂ R∞(T) and x ∈ R∞(T)), then (T + S)lx ∈ R∞(T). Thus, to prove

that x0 ∈ R∞(T) it remains only to show that
l−1∑
i=0

µi(T + S)lxi ⊂ R∞(T). To do this, we first claim that

l−1∑
i=0

µi(T + S)lxi ⊂ N((T + S)k−1) + (T + S)l(0).

Indeed, since x0 ∈ N((T + S)k), then 0 ∈ (T + S)kx0. It follows that 0 ∈ (T + S)l−( j+1)(T + S)kx0 for all
j = 0, 1, 2, . . . , l − 1. Thus,

0 ∈ (T + S)k−1(T + S)l− jx0 ⊂ (T + S)k−1(T + S)lx j,

which implies that (T + S)lx j ⊂ N((T + S)k−1) + (T + S)l(0) and this gives the desired inclusion. Now by the
use of the induction assumption and the fact that (T + S)l(0) ⊂ R∞(T + S),we get

l−1∑
i=0

µi(T + S)lxi ⊂ R∞(T + S) ∩ (N((T + S)k−1) + (T + S)l(0))

⊂ (R∞(T + S) ∩N((T + S)k−1)) + (T + S)l(0)

⊂ R∞(T) + Tl(0) = R∞(T).

Therefore x0 ∈ R∞(T) and so R∞(T + S) ∩N∞(T + S) ⊂ R∞(T).
To finish the proof of (1), we have by (3) that

R∞(T + S) ∩N∞(T + S) ⊂ N∞(T + S) ⊂ N∞(T).

Consequently,

R∞(T + S) ∩N∞(T + S) ⊂ R∞(T) ∩N∞(T).

Now, we assume that asc(T) < ∞. Since ρ(T) , ∅, then by [16, Lemma 6.1] Rc(T) = {0}. Since asc(T) < ∞, then
by [15, Lemma 5.5 (ii)] and [6, Lemma 5.5], R∞(T) ∩N∞(T) = {0}. This last equality together with (1) ensure
that R∞(T+S)∩N∞(T + S) = {0}. By [2, Lemma 2.4], we have Rc(T+S) = {0}. Since N(T+S)∩R∞(T+S) = {0},
then by Lemma 3.1 there exists p ∈N such that N(T + S) ∩ R(T + S)p = N(T + S) ∩ R∞(T + S) = {0}. Then by
[15, Lemma 5.5 (i)] , asc(T + S) < ∞. □

In the following theorem we study the stability of essentially semi regular linear relations under pertur-
bation with Riesz operators.
Recall first that a bounded operator R in a Banach space X is called Riesz operator if R− λI is Fredholm for
all nonzero scalar λ.

Theorem 3.3. Let X be a Banach space, T be a closed linear relation everywhere defined with ρ(T) , ∅ and R be a
Riesz operator satisfying TR = RT, ρ(T + R) , ∅ and (T + R)(R∞(T)) = R∞(T). Suppose that T ∈ ESR(X), then
T + R ∈ ESR(X).

Proof: Set M = R∞(T). Since T ∈ ESR(X), then by [5, Theorem 3.2], T1 = T|M is surjective and T̃ : X/M→ X/M
is upper semi Fredholm. Since TR = RT, then R(M) ⊂ M. So we can define the operators R1 = R|M and
R̃ : X/M → X/M. Clearly, T1R1 = R1T1 and T̃R̃ = R̃T̃. Now, we have by [11, Lemma 15] that R̃ is a Riesz
operator. So, from [13, Proof of Theorem 1], we deduce that T̃ + R̃ is upper semi Fredholm. Since T1 + R1 is
surjective and ρ(T + R) , ∅, then T + R ∈ ESR(X). □
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4. Some properties of essentially semi regular spectrum

The goal of this section is to establish the spectral mapping theorem of essentially semi regular linear
relation and we give some properties of the essentially semi regular spectrum of a linear relation. We start
by giving some properties of the product and the power of essentially semi regular linear relations.

Proposition 4.1. Let T,S be two closed linear relations everywhere defined in a Banach space X satisfying TS = ST.
If TS is essentially semi regular, then T and S are essentially semi regular.

Proof: Since ST ∈ ESR(X), then by Theorem 2.2 N(ST) ⊂e R∞(ST). So

N(T) ⊂ N(ST) ⊂e R∞(ST) ⊂ R∞(T).

It remains only to prove that R(T) is closed. By assumption we know that there exists a finite-dimensional
subspace F such that N(ST) ⊂ R(ST) + F.We claim that R(T) + F is closed. Indeed, let u ∈ R(T) + F. So,

Su ⊂ S(R(T) + F) ⊂ S(R(T) + F) = R(ST) + S(F).

Since dimF < ∞, then there exists a finite dimensional subspace G such that

R(ST) + S(F) = R(ST) + G + S(0) = R(ST) + G.

Since dimG < ∞ and R(ST) is closed, then R(ST)+G is closed. Thus Su ⊂ R(ST)+G = R(ST)+S(F) = S(R(T)+F).
Let y ∈ Su. So Su = y + S(0) and there exists v ∈ R(T) + F such that y ∈ Sv. Thus Sv = y + S(0). Hence
S(v − u) = S(0). So v − u ∈ N(S) ⊂ N(ST) ⊂ R(ST) + F ⊂ R(T) + F. Then u ∈ R(T) + F. Therefore R(T) + F is
closed. Thus R(T) is closed. Consequently T is essentially semi regular. By a similar proof we show that S
is essentially semi regular. □

Proposition 4.2. Let T,S be two closed linear relations everywhere defined in a Banach space X with TS = ST and
0 ∈ ρ(S). If T is essentially semi regular, then TS is essentially semi regular.

Proof: We claim that R(TS) is closed. Indeed, since 0 ∈ ρ(S) then S(X) = X. Hence R(TS) = TS(X) = T(X) =
R(T) which is closed. We claim that N∞(T) ⊂e R∞(T). Indeed, since 0 ∈ ρ(S), then S−1(0) = {0}. Thus,

N(ST) = (ST)−1(0) = T−1S−1(0) = N(T).

Since TS = ST, then we can see that for all n ∈ N, N((TS)n) = N(Tn). Hence N∞(TS) = N∞(T). In the same
way, we can see that R∞(TS) = R∞(T). Therefore N∞(TS) = N∞(T) ⊂e R∞(T) = R∞(TS). Consequently, TS is
essentially semi regular. □

For a closed linear relation T let us define the Fredholm spectrum, the regular spectrum and the essen-
tially semi regular spectrum respectively,
σϕ(T) := {λ ∈ C : λ − T is not Fredholm},
σre1(T) := {λ ∈ C : λ − T is not semi regular},
σesr(T) := {λ ∈ C : λ − T is not essentially semi regular}.

In the following theorem we will establish the relationship between the semi regular spectrum and the
essentially semi regular spectrum of a linear relation.

Theorem 4.3. Let X be a Banach space and let T be a closed linear relation everywhere defined with ρ(T) , ∅. Then

(i) σre1(T) \ σesr(T) is at most countable.

(ii) σre1(T) \ (σϕ(T) ∩ σre1(T)) is at most countable.
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Proof: (i) Let λ0 ∈ σre1(T) \ σesr(T). Then λ0 − T is essentially semi regular and not semi regular. So
by [5, Theorem 5.3], there exists r > 0 such that if 0 <| λ − λ0 |< r we have λ − T is semi regular.
Thus there exists r > 0 such that B(λ0, r) ∩ σre1(T) = {λ0}. Therefore, λ0 is an isolated point of σre1(T). So
σre1(T) \ σes(T) ⊂ A := {λ ∈ C : λ is an isolated point of σre1(T)}. A classical result of topology ensures that
if A is a subset of C such that all its points are isolated and as K is a separable metric space, then A is
countable. This leads to σre1(T) \ σesr(T) is at most countable.
(ii) We say that σesr(T) ⊂ (σϕ(T)∩ σre1(T)). So σre1(T) \ (σϕ(T)∩ σre1(T)) ⊂ σre1(T) \ σesr(T).Using (i), we get the
desired result. □

Our next aim is to establish the spectral mapping theorem for essentially semi regular linear relations.
To this end we need to recall the following definition and theorem.

Definition 4.4. [14, (1.1)] Let T be a linear relation in a linear space E. Let n and mi, 1 ≤ i ≤ n be some positive
integers and let λi ∈ K, 1 ≤ i ≤ n be some distinct constants. The polynomial P(T) in T is the linear relation

P(T) :=
n∏

i=1

(T − λi)mi .

Theorem 4.5. [5, Theorem 4.1] Let T be an everywhere defined closed linear relation in a Banach space X with
ρ(T) , ∅. Then

P(T) ∈ ESR(X) if and only if T − λi ∈ ESR(X), 1 ≤ i ≤ n.

We are in the position to give the spectral mapping theorem for linear relations.

Theorem 4.6. Let X be a Banach space and T be a closed linear relation everywhere defined in X with ρ(T) , ∅. Then
for any complex polynomial P, we have

σesr(P(T)) = P(σesr(T)).

Proof: Fix λ ∈ C and let P(λ) − α =
k∏

i=1

(λ − βi)mi , for k ∈N. Then

P(T) − αI =
k∏

i=1

(T − βiI)mi .

Let α ∈ σesr(P(T)). Then P(T) − αI is not essentially semi regular. According to Theorem 4.5, there exists
i ≤ 1 ≤ n, such that (T − βiI) is not essentially semi regular. Therefore βi ∈ σesr(T). However α = P(βi), so
α ∈ P(σesr(T)).
For the reverse inclusion, let α ∈ P(σesr(T)). So there exists λ ∈ σesr(T), such that α = P(λ). Since P(λ) − α =

k∏
i=1

(λ − βi)mi , then there exists i ≤ 1 ≤ k, such that λ = βi. It follows that T−βiI is not essentially semi regular.

Theorem 4.5 leads to P(T) − αI is not essentially semi regular, which means that α ∈ σesr(P(T)). □

References
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