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Abstract. In this paper, an isomorphism between unit dual sphere, DS2, and the subset of tangent bundle
of unit 2-sphere, TM̄, is represented. According to E. Study mapping, a ruled surface in IR3 corresponds to
each curve on DS2. Through this isomorphism, new forms of ruled surfaces called slant ruled surfaces in
IR3 were introduced. Moreover, conditions for these surfaces to be slant ruled surfaces were given. Finally,
a unique q̄−, h̄− and ā− slant ruled surfaces in IR3 were corresponded to each striction curve of natural lift
curve on TM̄.

1. Introduction

The theory of surfaces and curves has been applied to many research fields in geometry, physics, surface
design, etc. Especially, the characterizations of curves and surfaces in Riemannian geometry are given in
[5]. The definition of natural lift curve was first encountered in J. A. Thorpe’s book, see [8]. The natural lift
curve is defined as the curve generated by the endpoints of tangent vectors of main curve. There are some
studies about the geometric interpretations and dual spherical curves of natural lift curve, see [4],[6], [7].

The curves which satisfy special conditions for the curvatures have significiant role in differential
geometry. The most commonly known of such curves are helices. In IR3, a general helix is the curve whose
tangent vector makes a constant angle with a fixed straight line. Helices have been studied in different
spaces by some mathematicians in literature. The definition of slant helix is defined as the curve whose
normal vector makes a constant angle with a fixed direction. Characterizations of slant helices have been
studied by some authors, see [17-21].

Ruled surface is defined as a surface formed by a one-parameter set of straight lines. Ruled surfaces
have been studied in physics, differential geometry, geometric design problems and manufacturing, see
[1-3]. In literature, the characterizations and concepts of ruled surfaces have been studied by many authors
e.g., [3, 9-15]. Characteristic properties of ruled surfaces, which are associated with the geodesic curvature,
the normal curvature and the geodesic torsion, are investigated, see [13]. Some results and the distribution
parameters of the ruled surface are presented with special cases, see [14]. Frenet frames and invariants of
timelike ruled surfaces are given, see [12]. The kinematic interpretations between timelike ruled surfaces
and associated surfaces are introduced, see [15]. Some new types of ruled surfaces called slant ruled
surfaces are defined, see [16]. In the same study, conditions for being a slant ruled surface are given in IR3.

Dual numbers were first introduced by Clifford, see [23]. Then the correspondence between the geometry
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E. Karaca, M. Çalışkan / Filomat 37:2 (2023), 491–503 492

of lines and unit dual sphere, DS2 is given by E. Study, see [22]. The relation among DS2, the tangent bundle
of unit 2-sphere, TS2, and ruled surfaces in IR3 is presented, see [10]. Then through this relation, a unique
ruled surface in IR3 has been corresponded to each curve on TS2, see [9]. The correspondence between
ruled surfaces in IR3

1 and the curves on tangent bundle of pseudo-sphere is given by same authors, see [11].
Moreover, it is well known that a ruled surface has an orthonormal base along its striction curve. This

frame is defined as Frenet frame of ruled surface. In this paper, a one-to-one correspondence is given
between DS2 and TS2. By using E. Study mapping, a ruled surface in IR3 corresponds to each curve on
DS2. In this study, we define a new ruled surface called slant ruled surface. That is, a unique q̄−, h̄− and ā−
slant ruled surface in IR3 has been corresponded to each striction curve of natural lift curve. Furthermore,
considering the striction curve of natural lift curve and the Frenet frame of a ruled surface, the definitions
of some special ruled surfaces whose Frenet vectors make a constant angle with some fixed directions in
IR3 are given.

2. Preliminaries

In this section, tangent bundle of unit 2-sphere, concepts of natural lift curve of a given curve and
properties of slant ruled surfaces are considered.

Assume that S2 is the unit 2-sphere in IR3. The tangent bundle of S2 is

TS2 = {(q, ϑ) ∈ IR3
× IR3 : |q| = 1, ⟨q, ϑ⟩ = 0}, (1)

where ”⟨, ⟩” is the inner product and ”|, |” is the norm in IR3, respectively, see [9].
Assume that TM̄ is a subset of TS2, defined by

TM̄ = {(q̄, ϑ̄) ∈ IR3
× IR3 : |q̄| = 1, ⟨q̄, ϑ̄⟩ = 0}, (2)

where q̄ and ϑ̄ are the derivatives of q and ϑ, respectively, see [4].

Definition 2.1. Let Γ : I −→ M̄ be a smooth curve. Here M̄ represents a surface in IR3. Γ is called an integral curve
of X

d(Γ(u))
du

= X(Γ(u)), (3)

where X is smooth tangent vector field on M̄, see [6].

Definition 2.2. For the curve Γ, Γ̄ is called the natural lift of Γ on TM̄, which produces in the following equation:

Γ̄(u) = (q̄(u), ϑ̄(u)) = (q
′

(u)|γ(u), ϑ
′

(u)|ϑ(u)). (4)

Accordingly, we can write
dΓ̄(u)

du
=

d
du

(Γ
′

(u)|Γ(u)) = DΓ′ (u)Γ
′

(u).

Here D refers the Levi-Civita connection in IR3.We have

TM̄ =
⋃

TpM̄, p ∈ M̄,

where TpM̄ is taken as the tangent space of M̄ at p. χ(M̄) is the space of vector fields on M̄, see [6].
Given a one-parameter family lines {⃗k(u), ⃗̄q(u)}, the parametric represantation of ruled surfaceϕ obtained

by the family {⃗k(u), ⃗̄q(u)} is

h⃗(u, v) = k⃗(u) + v⃗̄q(u), u ∈ I, v ∈ IR (5)
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where k = k⃗(u) presents a point and q̄ = ⃗̄q(u) denotes a non-null vector in IR3.Also k⃗(u) and ⃗̄q(u) are the base
curve and various of the generating lines for the ruled surface ϕ, respectively, see [5].

For the unit normal vector m⃗ of the ruled surface, we get

m =
⃗̄hu ×

⃗̄hv

|⃗h̄u ×
⃗̄hv|

=
(⃗k′ + v⃗̄q′ ) × ⃗̄q√

|⟨⃗k′ , ⃗̄q⟩2 − ⟨⃗̄q, ⃗̄q⟩⟨⃗k′ + v⃗̄q, k⃗′ + v⃗̄q⟩|
. (6)

Figure 1: Asymptotic plane and central plane

Along a rulling u = u1,we define

⃗̄a = lim
v→∞

m⃗(u1, v) =
⃗̄q′ × ⃗̄q

|⃗̄q′ |
. (7)

The plane of ruled surface ϕ which goes through its rulling u1. It makes a right angle with the vector
⃗̄a, which is defined as asymptotic plane α. The tangent plane γ goes through the rulling u1 and makes a
right angle with the asymptotic plane, which is defined as central plane. The point, where m⃗ makes a right
angle with ⃗̄a is defined as the striction point (or central point) β on the rulling u1(Fig. 1). The set of central
points of all rullings is defined as striction curve of the ruled surface. The straight lines go through point
β. They make a right angle with to the planes α and γ are defined as central tangent and central normal,
respectively.

Taking the orthogonality of the vectors ⃗̄q, ⃗̄q′ and correspondence (7), the unit vector ⃗̄h of the central
normal is represented as:

⃗̄h =
⃗̄q′

|⃗̄q′ |
. (8)

Substituting the parameter v of central point β into (6) we have ⃗̄h× m⃗ = 0. Therefore, the following equation
is presented as:

⃗̄q
′

× [(⃗k
′

+ v⃗̄q
′

) × ⃗̄q] = ⟨⃗̄q
′

, k⃗
′

⟩(⃗k
′

+ v⃗̄q
′

) + v⟨⃗̄q
′

, ⃗̄q
′

⟩⃗̄q = 0. (9)

From (9), we acquire

v = −
⟨⃗̄q′ , k⃗′⟩

⟨⃗̄q′ , ⃗̄q′⟩
. (10)
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According to the arc length parameter u, the parametrization of the striction curve of the ruled surface is
defined as:

c⃗(u) = k⃗(u) −
⟨⃗̄q′ (u), k⃗′ (u)⟩

⟨⃗̄q′ (u), ⃗̄q′ (u)⟩
⃗̄q(u). (11)

If the striction curve c⃗(u) coincides the base curve k⃗(u), the ruled surface is called a developable ruled
surface, see [12].

The orthonormal system {β, ⃗̄q, ⃗̄h, ⃗̄a} is defined as Frenet frame of the ruled surface ϕ along the striction
curve. For the Frenet formula of the ruled surface ϕ with respect to the arc length u of striction curve, we
have 

⃗̄q′

⃗̄h′

⃗̄a′

 =
 0 k1 0
−k1 0 k2

0 −k2 0



⃗̄q
⃗̄h
⃗̄a

 ,
where ⃗̄q, ⃗̄h and ⃗̄a are unit vectors of ruling, central normal and central tangent, respectively. Here k1 and k2
denote curvature and torsion of ϕ in turn, see [16].

The orthonormal system {⃗̄q, ⃗̄h, ⃗̄a} is obtained as Frenet frame of slant ruled surface generated by striction

curve of natural lift curve for the rest of paper. Here ⃗̄q, ⃗̄h and ⃗̄a are unit vectors of rulling, central normal
and central tangent of slant ruled surface generated by striction curve of natural lift curve, respectively.

3. Unit dual sphere and ruled surfaces

In this section, some basic definitions and theorems about the dual vectors are represented. Furthermore,
the correspondence between TM̄ and DS2 is given.

The set of dual numbers is defined as

ID = {X = x + εx∗; (x, x∗) ∈ IR × IR, ε2 = 0}.

The combination of x⃗ and x⃗∗ is called dual vectors in IR3. These vectors are real part and dual part of
X⃗, respectively. If x⃗ and x⃗∗ are vectors in IR3, then X⃗ = x⃗ + εx⃗∗ is defined as dual vector. Assume that
X⃗ = x⃗ + εx⃗∗ and Y⃗ = y⃗ + εy⃗∗ are dual vectors. The addition, inner product and vector product are
represented, respectively, as follows:
The addition is

X⃗ + Y⃗ = (x⃗ + y⃗) + ε(x⃗∗ + y⃗∗)

and their inner product is
⟨X⃗, Y⃗⟩ = ⟨x⃗, y⃗⟩ + ε(⟨x⃗∗, y⃗⟩ + ⟨x⃗, y⃗∗⟩).

Also the vector product is given as

X⃗ × Y⃗ = x⃗ × y⃗ + ε(x⃗ × y⃗∗ + x⃗∗ × y⃗).

The norm of X⃗ = x⃗ + εx⃗∗ is defined as

|X⃗| =
√
⟨x⃗, x⃗⟩ + ε

⟨x⃗, x⃗∗⟩√
⟨x⃗, x⃗⟩

. (12)

The norm of X⃗ exists only for x⃗ , 0. If the norm of X is equal to 1, the dual vector is called unit dual vector.
The unit dual sphere which consists of the all unit dual vectors is defined as

DS2 = {X⃗ = x⃗ + εx⃗∗ ∈ ID3 : |X⃗| = 1}. (13)
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For detailed information for dual vectors, see [1]. The correspondence between the unit dual sphere and
the tangent bundle of unit 2-sphere of the natural lift curve is given via (2) and (13):

TM̄ −→ DS2,

Γ̄ = (q̄, ϑ̄) 7−→ ⃗̄Γ = ⃗̄q + ε⃗̄ϑ.

Here q̄ and ϑ̄ are taken as q′ and ϑ
′

, respectively.

Theorem 3.1. (E. Study mapping) There exists one-to-one correspondence between the oriented lines in IR3 and the
points of DS2, see [1].

Theorem 3.2. Assume that ⃗̄Γ(u) = ⃗̄q(u) + ε⃗̄ϑ(u) is a natural lift curve on DS2 with parameter u. In IR3, the ruled
surface obtained by the natural lift curve Γ̄(u) can be represented as

ϕ̄(u, v) = ⃗̄q(u) × ⃗̄ϑ(u) + v⃗̄q(u), (14)

where

β(u) = ⃗̄q(u) × ⃗̄ϑ(u) (15)

is the base curve of ϕ̄.

Consequently, the isomorphism among TM̄, DS2 and IR3 can be given as:

TM̄ −→ DS2
−→ IR3,

Γ̄(u) = (q̄(u), ϑ̄(u)) 7−→ ⃗̄Γ(u) = ⃗̄q(u) + ε⃗̄ϑ(u) 7−→ ϕ̄(u, v) = ⃗̄q(u) × ⃗̄ϑ(u) + v⃗̄q(u).

Here ϕ̄(u, v) is the ruled surface in IR3 corresponding to the dual curve Γ̄(u) = ⃗̄q(u) + ε⃗̄ϑ(u) ∈ DS2 (or to the
natural lift curve Γ̄(u) ∈ TM̄), see [9].

4. Tangent bundle of unit 2-sphere and slant ruled surfaces

In this section, the properties and the conditions for being a slant ruled surface generated by the striction
curve of a natural lift curve are considered.

Definition 4.1. A ruled surface ϕ̄(u, v) = ⃗̄q(u)× ⃗̄ϑ(u)+ v⃗̄q(u) in IR3 is called a ⃗̄q−(resp., ⃗̄h−, ⃗̄a−) slant ruled surface
if the following three conditions are satisfied:
(i) The base curve β(u) = ⃗̄q(u) × ⃗̄ϑ(u) of the ruled surface ϕ̄(u, v) must be taken as

β̄(u) = (⃗̄q(u) × ⃗̄ϑ∗(u)) −
⟨(⃗̄q(u) × ⃗̄ϑ∗(u))

′

, ⃗̄q′ (u)⟩,

⟨⃗̄q′ (u), ⃗̄q′ (u)⟩
⃗̄q(u), ⃗̄ϑ∗ ⊆ ⃗̄ϑ.

(ii) The equations ⟨⃗̄q(u), ϑ̄∗(u)⟩ = 0 and |⃗̄q(u)| = 1 must be satisfied.

(iii) ⃗̄q − (resp., ⃗̄h−, ⃗̄a−) must make a constant angle with a fixed non-zero direction.

Let Γ̂(u) = ⃗̄q(u) + ε⃗̄ϑ∗(u) be a striction curve of natural lift curve on DS2 with parameter u. In IR3, the slant
ruled surface generated by Γ̂(u) is represented as

ϕ̂(u, v) = ⃗̄q(u) × ⃗̄ϑ∗(u) + v⃗̄q(u), u ∈ I, ⃗̄ϑ∗ ⊆ ⃗̄ϑ, (16)

where

β̄(u) = ⃗̄q(u) × ⃗̄ϑ∗(u) (17)
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is the base curve of ϕ̂.
Consequently, we can write the isomorphism

TM̄ −→ DS2
−→ IR3,

Γ̂(u) = (q̄(u), ϑ̄∗(u)) 7−→
⃗̂Γ(u) = ⃗̄q(u) + ε⃗̄ϑ∗(u) 7−→ ϕ̂(u, v) = ⃗̄q(u) × ⃗̄ϑ∗(u) + v⃗̄q(u),

where ϕ̂(u, v) is the slant ruled surface in IR3 corresponding to the striction curve ⃗̂Γ(u) = ⃗̄q(u)+ ε⃗̄ϑ∗(u) ∈ DS2

(or to the smooth curve Γ̂(u) ∈ TM̄).
The following sections are about the characterizations for ⃗̄q−, ⃗̄h−, ⃗̄a− slant ruled surfaces, respectively.

4.1. Tangent bundle of unit 2-sphere and ⃗̄q− slant ruled surfaces
In this section, the definition and characterizations of ⃗̄q− slant ruled surfaces in IR3 are introduced.

Definition 4.2. Let Γ̂(u) = (q̄(u), ϑ̄∗(u)) ∈ TM̄ be striction curve of natural lift curve. Therefore, the ruled surface
ϕ̂(u, v) corresponding to Γ̂(u) in IR3 is

ϕ̂(u, v) = β̄(u) + v⃗̄q(u), (18)

where β̄(u) is the striction curve of ϕ̂(u, v). u denotes the arc length parameter of β̄(u). Let {⃗̄q, ⃗̄h, ⃗̄a, k̄1, k̄2} be Frenet
operators of ϕ̂. The following equation exists

⟨⃗̄q, u⃗⟩ = cosθ = constant; θ ,
π
2

if the rulling makes constant angle θwith a fixed non-zero direction u⃗ in the space. ϕ̂ is called a ⃗̄q− slant ruled surface.

Theorem 4.3. The following equation

tanθ =
k̄1

k̄2
(19)

is constant if and only if ϕ̂ is a ⃗̄q− slant ruled surface. Here θ denotes the angle between the rulling ⃗̄q and a fixed
direction.

Proof. Let Γ̂(u) = (q̄(u), ϑ̄∗(u)) ∈ TM̄ be striction curve of natural lift curve and ϕ̂(u, v) be the ruled surface
corresponding to the curve Γ̂(u) in IR3. Thus, ϕ̂ provides

⟨⃗̄q, u⃗⟩ = cosθ = constant. (20)

Differentiating (20) with respect to u, we get ⟨⃗h̄, u⃗⟩ = 0. Thus, u lies on the plane spanned by the vectors ⃗̄q
and ⃗̄a, i.e.,

u⃗ = (cosθ)⃗̄q + (sinθ)⃗̄a. (21)

Differentiating (21) with respect to u we obtain

0 = (cosθk̄1 − sinθk̄2 )⃗h̄. (22)

Therefore, we obtain that tanθ = k̄1

k̄2
is constant.

Conversely, (19) is satisfied for the ruled surface ϕ̂.We define the following equation:

u⃗ = (cosθ)⃗̄q + (sinθ)⃗̄a. (23)

Differentiating (23) and using (19), we obtain u⃗′ = 0. Therefore, u⃗ is a constant vector and ⟨⃗̄q, u⃗⟩ = cosθ is
constant. Thus, ϕ̂ is a ⃗̄q− slant ruled surface in IR3.
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Theorem 4.4. det(⃗̄q′ , ⃗̄q′′ , ⃗̄q′′′ ) = 0 if and only if ϕ̂ is a ⃗̄q− slant ruled surface.

Proof. Let ϕ̂ be the ruled surface in IR3. From Frenet formulas, we write

⃗̄q
′

= k̄1
⃗̄h,

⃗̄q
′′

= −k̄2
1
⃗̄q + k̄

′

1
⃗̄h + k̄1k̄2⃗̄a,

⃗̄q
′′′

= (−3k̄1k̄
′

1)⃗̄q + (k̄
′′

1 − k̄3
1 − k̄1k̄2

2 )⃗h̄ + (2k̄
′

1k̄2 + k̄
′

2k̄1)⃗̄a.

Thus, we obtain

det(⃗̄q
′

, ⃗̄q
′′

, ⃗̄q
′′′

) = k̄3
1k̄2

2(
k̄1

k̄2
)
′

. (24)

Assume that ϕ̂ is ruled surface. From Theorem 7, k̄1

k̄2
is constant. Therefore, det(⃗̄q′ , ⃗̄q′′ , ⃗̄q′′′ ) is equal to zero.

Conversely, if det(⃗̄q′ , ⃗̄q′′ , ⃗̄q′′′ ) = 0, since the curvatures are non-zero from (24), it is obtained that k̄1

k̄2
is

constant. Thus, ϕ̂ is ⃗̄q− slant ruled surface in IR3.

Theorem 4.5. det(⃗̄a′ , ⃗̄a′′ , ⃗̄a′′′ ) = 0 if and only if ϕ̂ is a ⃗̄q− slant ruled surface.

Proof. Let ϕ̂ be the ruled surface in IR3. From Frenet formulas, we write

⃗̄a
′

= −k̄2
⃗̄h,

⃗̄a
′′

= k̄1k̄2⃗̄q − k̄
′

2
⃗̄h − k̄2

2
⃗̄a,

⃗̄a
′′′

= (k̄
′

1k̄2 + 2k̄1k̄
′

2)⃗̄q + (−k̄
′′

2 + k̄3
2 + k̄2

1k̄2 )⃗h̄ − 3k̄2k̄
′

2
⃗̄a.

Thus, we obtain

det(⃗̄a
′

, ⃗̄a
′′

, ⃗̄a
′′′

) = k̄5
2(

k̄1

k̄2
)
′

. (25)

Assume that ϕ̂ is ruled surface generated by striction curve of natural lift curve. From Theorem 4.3., we
have k̄1

k̄2
= constant. Therefore, det(⃗̄a′ , ⃗̄a′′ , ⃗̄a′′′ ) is equal to zero.

Conversely, if det(⃗̄a′ , ⃗̄a′′ , ⃗̄a′′′ ) = 0, since the curvature k̄2 is non-zero, we obtain that k̄1

k̄2
is constant. Thus, ϕ̂

is ⃗̄q− slant ruled surface in IR3.

Theorem 4.6. ϕ̂ is a ⃗̄q− slant ruled surface if and only if

⃗̄q
′′′

= m⃗̄q
′

+ 3k̄1
⃗̄h
′

, (26)

where m is obtained as
k̄′′1
k̄1
− (k̄2

1 + k̄2
2), exists.

Proof. Let ϕ̂ be ⃗̄q− slant ruled surface. From Frenet formulas, we get

⃗̄q
′′

= −k̄2
1
⃗̄q + k̄

′

1
⃗̄h + k̄1k̄2⃗̄a,

⃗̄q
′′′

= (−3k̄1k̄
′

1)⃗̄q + (k̄
′′

1 − k̄3
1 − k̄1k̄2

2 )⃗h̄ + (2k̄
′

1k̄2 + k̄
′

2k̄1)⃗̄a.

As we take derivative of k̄1

k̄2
,we obtain

k̄1k̄
′

2 = k̄2k̄
′

1. (27)
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Substituting (27) into ⃗̄q′′′ ,we get

⃗̄q
′′′

= (
k̄′′1
k̄1
− k̄2

1 − k̄2
2)⃗̄q

′

− (3k̄1k̄
′

1)⃗̄q + (3k̄2k̄
′

1)⃗̄a. (28)

Using the Frenet formulas, (26) is obtained from (28).

Conversely, let (26) provide. Differentiating ⃗̄h =
⃗̄q′

k̄1
,we have

⃗̄h
′

= −(
k̄′1
k̄2

1

)⃗̄q
′

+ (
1
k̄1

)⃗̄q
′′

, (29)

⃗̄h
′′

= −(
k̄′1
k̄2

1

)
′⃗̄q
′

− 2(
k̄′1
k̄2

1

)⃗̄q
′′

+ (
1
k̄1

)⃗̄q
′′′

. (30)

Substutituting (26) in (30) it can be obtained

⃗̄h
′′

= −2(
k̄′1
k̄2

1

)⃗̄q
′′

− [(
k̄′1
k̄2

1

)
′

+
m
k̄1

]⃗̄q
′

+ 3(
k̄′1
k̄1

)⃗h̄
′

. (31)

Hence, we can write

⃗̄h
′′

= −[(
k̄1

k̄2
1

)
′

+
m
k̄1

]⃗̄q
′

− k̄
′

1
⃗̄q − 2(

k̄′1
k̄1

)2⃗̄h + (
k̄2k̄′1
k̄1

)⃗̄a. (32)

On the other hand, from Frenet formulas it is obtained

⃗̄h
′′

= −k̄1⃗̄q
′

− k̄
′

1
⃗̄q − k̄2

2
⃗̄h + k̄

′

2
⃗̄a. (33)

Substituting (33) in (32) we have

k̄′2
k̄2
=

k̄′1
k̄1
. (34)

Integrating (34), we acquire that k̄1

k̄2
is constant and from Theorem 4.3. So, ϕ̂ is a ⃗̄q− slant ruled surface.

4.2. Tangent bundle of unit 2-sphere and ⃗̄h− slant ruled surfaces

In this section, the definition and characterizations of ⃗̄h− slant ruled surfaces in IR3 are introduced.

Definition 4.7. Let Γ̂(u) = (q̄(u), ϑ̄∗(u)) ∈ TM̄ be striction curve of natural lift curve. Therefore, the ruled surface
ϕ̂(u, v) corresponding to Γ̂(u) in IR3 is

ϕ̂(u, v) = β̄(u) + v⃗̄q(u), (35)

where β̄(u) is the striction curve of ϕ̂. u denotes the arc length parameter of β̄(u). Let {⃗̄q, ⃗̄h, ⃗̄a, k̄1, k̄2} be Frenet operators
of ϕ̂. The following equation exists

⟨⃗h̄, u⃗⟩ = cosφ = constant; φ ,
π
2

if the central normal vector makes constant angle φ with a fixed non-zero direction u⃗ in the space. ϕ̂ is called a ⃗̄h−
slant ruled surface.
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Theorem 4.8. The following equation

k̄2
1

(k̄2
1 + k̄2

2)
3
2

(
k̄1

k̄2
)
′

(36)

is constant if and only ϕ̂ is a ⃗̄h− slant ruled surface.

Proof. Let ϕ̂ be a ⃗̄h− slant ruled surface in IR3. Assume that u⃗ is a fixed constant vector such that ⟨⃗h̄, u⃗⟩ =

cosφ = c = constant. Here φ is the constant angle between ⃗̄h and u⃗. Therefore, we have

u⃗ = b1(u)⃗̄q(u) + c⃗h̄(u) + b2(u)⃗̄a(u), (37)

where b1 = b1(u) and b2 = b2(u) are smooth functions of arc length parameter u for the vector u⃗. Since u⃗ is
constant, derivative of (37) gives

b
′

1 − ck̄1 = 0,
b1k̄1 − b2k̄2 = 0,

b
′

2 + ck̄2 = 0.

For b1k̄1 − b2k̄2 = 0, we have

b1 = b2
k̄2

k̄1
. (38)

Moreover, it is obtained that

⟨u⃗, u⃗⟩ = b2
1 + c2 + b2

2 = constant. (39)

Substituting (38) in (39) gives

b2
2(1 + (

k̄2

k̄1
)2) = n2 = constant. (40)

If n = 0, then b2 = 0 and we have b1 = 0, c = 0. It means that u⃗ = 0⃗ which is a contradiction. Thus, n , 0.
Then from (40) it is acquired that

b2 = ±
n√

1 + ( k̄2

k̄1
)2

(41)

Considering b′2 + ck̄2 = 0, from (41) we have

d
du

[±
n√

1 + ( k̄2

k̄1
)2

] = −ck̄2. (42)

This can be written as

k̄2
1

(k̄2
1 + k̄2

2)
3
2

=
c
n
= l = constant, (43)

which is desired.
Conversely, let the function in (36) be constant. That is,

k̄2
1

(k̄2
1 + k̄2

2)
3
2

=
c
n
= l = constant. (44)
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We define

u⃗ =
k̄2√

k̄2
1 + k̄2

2

⃗̄q + l⃗h̄ +
k̄1√

k̄2
1 + k̄2

2

⃗̄a. (45)

Differentiating (45) with respect to u and using (36) we have u⃗ = 0. That is, u⃗ is a constant vector. On the

other hand, ⟨⃗h̄, u⃗⟩ is constant. Therefore, ϕ̂ is a ⃗̄h− slant ruled surface in IR3.

Theorem 4.9. Let ϕ̂ be a regular ruled surface in IR3 with first curvature k̄1 = 1.Moreover, we have

k̄2(u) = ±
u√

tan2 φ − u2
(46)

for a fixed constant the unit vector u⃗.

Proof. Let ϕ̂ be a regular ruled surface in IR3 with first curvature k̄1 = 1. Therefore, we have

⟨⃗h̄, u⃗⟩ = cosφ = constant (47)

for a fixed constant unit vector u⃗. Differentiating (47) with respect to u gives

⟨−⃗̄q + k2⃗̄a, u⃗⟩ = 0, (48)

and from (48) we have

⟨⃗̄q, u⃗⟩ = k̄2⟨⃗̄a, u⃗⟩. (49)

If we put ⟨⃗̄a, u⃗⟩ = x,we can write

u⃗ = k̄2x⃗̄q + cosφ⃗̄h + x⃗̄a. (50)

Since u⃗ is unit, from (50) we have

x = ±
sinφ√
1 + k̄2

2

. (51)

Then the vector u⃗ is given as follows:

u⃗ = ±
k̄2 sinφ√

1 + k̄2
2

+ cosφ⃗̄h ±
sinφ√
1 + k̄2

2

⃗̄a. (52)

Differentiating (48) with respect to u, it follows

⟨−(1 + k̄2
2 )⃗h̄ + k̄

′

2
⃗̄a, u⃗⟩ = 0. (53)

Writing x and substituting (47) in (53), we have

x =
(1 + k̄2

2) cosφ

k̄′2
. (54)

From (51) and (54), we obtain the following differential equation:

± tanφ
k̄′2

(1 + k̄2
2)

3
2

+ 1 = 0. (55)
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Integrating (55) we get

± tanφ
k̄2√

1 + k̄2
2

+ u + c = 0, (56)

where c is integration constant. The integration constant can be subsumed thanks to a parameter change
u −→ u − c. Then (56) can be written as

± tanφ
k̄2√

1 + k̄2
2

= −u, (57)

which gives us k̄2(u) = ± u√
tan2 φ−u2

.

Conversely, assume that k̄2(u) = ± u√
tan2 φ−u2

holds and let us put

x = ±
sinφ√
1 + k̄2

2

= ±
sinφ√

1 + u2

tan2 φ−u2

= ± cosφ
√

tan2 φ − u2. (58)

Here we are assuming that when k̄2 has the positive(negative) sign, then x gets the negative (positive) sign
and φ is constant. Therefore, k2x = −s cosφ. Let consider the vector u⃗ given as

u⃗ = cosφ(u⃗̄q + ⃗̄h ± (tan2 φ − u2)⃗̄a). (59)

We will prove that u⃗ is constant and makes a constant angle φwith ⃗̄h. Differentiating (59) and using Frenet

formulas we have u⃗′ = 0, i.e., the direction of u⃗ is constant and ⟨⃗h̄, u⃗⟩ = cosφ = constant. Then ϕ̂ is a ⃗̄h− slant
ruled surface in IR3.

On the other hand, if the striction curve β̄ is a geodesic on ϕ̂, then the principal normal vector n⃗ of β̄ and

the central normal vector ⃗̄h of ϕ̂ coincide. Then we have the following corollary.

Corollary 4.10. Let the striction line β̄ be a geodesic on ϕ̂. Then ϕ̂ is a ⃗̄h− slant ruled surface if and only if the
striction line is a slant helix in IR3.

If the ruled surface ϕ̂ is developable, the Frenet frame {⃗t, n⃗, b⃗} of the striction line β̄ coincides with the frame

{⃗̄q, ⃗̄h, ⃗̄a} and we can give the following corollary.

Corollary 4.11. Let ϕ̂ be a developable surface. Then ϕ̂ is a ⃗̄h− slant ruled surface if and only if the striction line is
a slant helix in IR3.

4.3. Tangent bundle of unit 2-sphere and ⃗̄a− slant ruled surfaces
In this section, the definition and characterization of ⃗̄a− slant ruled surfaces in IR3 are introduced.

Definition 4.12. Let Γ̂(u) = (q̄(u), ϑ̄∗(u)) ∈ TM̄ be striction curve . Therefore, the ruled surface ϕ̂(u, v) corresponding
to Γ̂(u) in IR3 is

ϕ̂(u, v) = β⃗(u) + v⃗̄q(u), (60)

where β̄(u) is the striction curve of ϕ̂. u denotes the arc length parameter of β̄(u). Let {⃗̄q, ⃗̄h, ⃗̄a, k̄1, k̄2} be Frenet operators
of ϕ̂. The following equation exists

⟨⃗̄a, u⃗⟩ = cosµ = constant; µ ,
π
2

if the central tangent vector makes constant angle µ with a fixed non-zero direction u⃗ in the space. ϕ̂ is called a ⃗̄a−
slant ruled surface.
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From (21) it is clear that a ruled surface ϕ̂ is a ⃗̄a− slant ruled surface if and only if it is a ⃗̄q− slant ruled
surfaces. So, all the theorems for ⃗̄q− slant ruled surfaces also characterize the ⃗̄a− slant ruled surfaces.

Example 4.13. Let us consider the slant ruled surface ϕ̂(u, v) in IR3.

ϕ̂(u, v) = (cos(u + 1), v cos u, v sin u), (61)

where the base curve and rulling of ϕ̂(u, v) are β̄(u) = (cos(u + 1), 0, 0) and ⃗̄q(u) = (0, cos u, sin u), respectively.
The striction curve of ϕ̂(u, v) is given as

β̄(u) = (cos(u + 1), 0, 0), (62)

where arc parameter of the striction curve is ⃗̄u = arccos(−s − cos 1) − 1.
Since the striction curve β̄(u) = ⃗̄q(u) × ⃗̄ϑ∗(u), we obtain

⃗̄ϑ∗(u) = (0,−
1
2

tan u(cos(2u + 1) + cos 1),
1
2

(cos(2u + 1) + cos 1)). (63)

Since ⟨⃗̄q(u), ⃗̄ϑ∗(u)⟩ = 0 and |⃗̄q(u)| = 1, the curve Γ̂ = (⃗̄q, ϑ̄∗) is in TM̄. Therefore, the striction curve and Frenet vectors
of ϕ̂(u, v) are

β̄(s) = (−s − cos 1, 0, 0),
⃗̄q(s) = (0, cos(arccos(−s − cos 1) − 1), sin(arccos(−s − cos 1) − 1)),
⃗̄h(s) = (0,− sin(arccos(−s − cos 1) − 1), cos(arccos(−s − cos 1) − 1)),
⃗̄a(s) = (1, 0, 0).

The derivatives of Frenet vectors are

d⃗̄q
ds

=
1√

1 − (s + cos 1)2
(0,− sin(arccos(−s − cos 1) − 1), cos(arccos(−s − cos 1) − 1)),

d⃗̄h
ds

=
1√

1 − (s + cos 1)2
(0,− cos(arccos(−s − cos 1) − 1),− sin(arccos(−s − cos 1) − 1)),

d⃗̄a
ds

= (0, 0, 0),

where k̄1 =
1√

1−(s+cos 1)2
and k̄2 = 0 are curvature and torsion of ϕ̂, respectively.

Figure 2: Slant ruled surface ϕ̂(u, v) generated by striction curve Γ̂(u)



E. Karaca, M. Çalışkan / Filomat 37:2 (2023), 491–503 503

5. Conclusion

E. Study mapping plays a significiant role in modeling motions in IR3. It is a novel attempt to provide
a corresponcence between the striction curves of natural lift curves on TM̄ and the slant ruled surfaces in
IR3. Employing this mapping, it is possible to model motions by considering TM̄ instead of DS2. Therefore,
the slant ruled surfaces generated by striction curves of natural lift curves on TM̄ can also be used to model
motions in IR3.
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