Bounds on Ricci curvature for doubly warped products pointwise bi-slant submanifolds and applications to Physics

Mohd. Aquib ${ }^{\text {a }}$, Mohd Aslam ${ }^{\text {b }}$, Mohammad Hasan Shahid ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics,Sri Venkateswara College, University of Delhi, New Delhi-110021, India
${ }^{b}$ Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India

Abstract

In this article, we obtain bounds for Ricci curvature for doubly warped products pointwise bi-slant submanifolds in generalized complex space forms and discuss the equality case of the inequality. We also derive the non-existence of such immersions. Finally, we construct some applications of the result in terms of the Harmonic function, Hessian tensor, and Dirchilet energy function.

1. Introduction

In 2000, B. Unal [22] introduced doubly warped products as a generalization of warped products and according to him: let M_{1} and M_{2} be two Riemannian manifolds with Riemannian metrics g_{1} and g_{2}, respectively. Further, let us suppose that σ_{1} be positive differentiable functions on M_{1} and σ_{2} be positive differentiable functions on M_{2}. Then, the doubly warped product $M={ }_{\sigma_{2}} M_{1} \times{ }_{\sigma_{1}} M_{2}$ [22] of dimension n is defined on the basis of the product manifold $M_{1} \times M_{2}$ equipped with the warped metric $g=\sigma_{2}^{2} g_{1}+\sigma_{1}^{2} g_{2}$.

In a meticulous manner, if $\iota_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\iota_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ be natural projections, then the metric g is given by

$$
\begin{equation*}
g(X, Y)=\left(\sigma_{2} \circ \iota_{2}\right)^{2} g_{1}\left(\iota_{1}^{*} X, \iota_{1}^{*} Y\right)+\left(\sigma_{1} \circ \iota_{1}\right)^{2} g_{2}\left(\iota_{2}^{*} X, \iota_{2}^{*} Y\right) \tag{1}
\end{equation*}
$$

for any vector fields X, Y on M, where $*$ denotes the symbol for tangent maps and σ_{1} and σ_{2} are the warping functions on M_{1} and M_{2}, respectively.

It is important to note that on a double warped product manifold $M={ }_{\sigma_{2}} M_{1} \times{ }_{\sigma_{1}} M_{2}$ if either σ_{1} or σ_{2} is constant on M, but not both then M is a single warped product. Furthermore, if both σ_{1} and σ_{2} are constant function on M, then M is locally a Riemannian product. A doubly warped product manifold is said to be proper if both σ_{1} and σ_{2} are non-constant functions on M.

On the other hand, the immersibility/non-immersibility of a Riemannian manifold in a space form is one of the most fundamental problem in the theory of submanifold which started with the most celebrated Nash [] embedding theorem. In this theorem, actually Nash was aiming to take extrinsic help. However, due to the lack of control of the extrinsic properties of the submanifolds by the known intrinsic invariant,

[^0]the aim cannot be reached. Motivated by this and to overcome the difficulties, Chen introduced new types of Riemannian invariants and established general optimal relationship between extrinsic invariants and intrinsic invariants on the submanifold. The same author obtained the inequalities for submanifolds between the k-Ricci curvature, the squared mean curvature, and the shape operator in the real space form with arbitrary codimension [7]. After that many research articles has been published in this area [6, 8-12, 15, 21].

Motivated by this, we obtain bounds for Ricci curvature for doubly warped product pointwise bi-slant submanifolds in generalized complex space forms and discuss the equality case of the inequality. We also derive non-existence of such immersions. Finally, we construct some applications of the result in terms of Harmonic function, Hessian tensor and Dirchilet energy function.

2. Preliminaries

Let $\tilde{\mathcal{M}}$ be a $2 m$-dimensional almost Hermitian manifold with an almost complex structure J and a Riemannian metric g. An almost Hermitian manifold is said to be a nearly Kaehler manifold if $\left(\tilde{\nabla}_{X} J\right) X=0$ and becomes a Kaehler manifold if $\tilde{\nabla} J=0$ for all $X \in T \tilde{M}$, where $\tilde{\nabla}$ is the Levi-Civita connection of the Riemannian metric g.

Tricerri and Vanhecke [17] introduced the concept of generalized complex space form as a generalization of the complex space form.

An almost Hermitian manifold $\tilde{\mathcal{M}}$ is called the generalized complex space form, denoted by $\tilde{\mathcal{M}}\left(f_{1}, f_{2}\right)$, if the Riemannian curvature tensor \bar{R} satisfies

$$
\begin{equation*}
\bar{R}(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z\} \tag{2}
\end{equation*}
$$

for all $X, Y, Z \in T \tilde{\mathcal{M}}$, where f_{1} and f_{2} are smooth function on $\tilde{\mathcal{M}}\left(f_{1}, f_{2}\right)$.
Let $\tilde{\mathcal{M}}^{2 m}$ be an almost Hermitian manifold and \mathcal{M}^{n} be a submanifold $\tilde{\mathcal{M}}^{2 m}$ with induced metric g. Let ∇ be an induced connection on the tangent bundle $T \mathcal{M}$ and ∇^{\perp} be an induced connection on the normal bundle $T^{\perp} \mathcal{M}$ of \mathcal{M}. Then, the Gauss and Weingarten formulas are given by

$$
\begin{aligned}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi
\end{aligned}
$$

where $X, Y \in T \mathcal{M}, N \in T^{\perp} \mathcal{M}$ and $h, A_{\mathcal{N}}$ are second fundamental form and the shape operator, respectively.
The relation between the shape operator and the second fundamental form is given by

$$
g(h(X, Y), \mathcal{N})=g\left(A_{\mathcal{N}} X, Y\right)
$$

for vector fields $X, Y \in T M$ and $\mathcal{N} \in T^{\perp} \mathcal{M}$.
Let \bar{R} and R be the curvature tensors of $\bar{M}(c)$ and M, respectively. Then, the Gauss equation is given by

$$
\begin{equation*}
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, Z), h(Y, W))-g(h(X, W), h(Y, Z)) \tag{3}
\end{equation*}
$$

for any $X, Y, Z, W \in T M$.
In this context, we shall define another important Riemannian intrinsic invariant called curvature of $\tilde{\mathcal{M}}^{m}$, and denoted by $\tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{m}\right)$, which at some x in $\tilde{\mathcal{M}}$ is given as follows"

$$
\begin{equation*}
\tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{m}\right)=\sum_{1 \leq \alpha<\beta \leq m} \tilde{\mathcal{K}}_{\alpha \beta} \tag{4}
\end{equation*}
$$

where $\tilde{\mathcal{K}}_{\alpha \beta}=\tilde{\mathcal{K}}\left(e_{\alpha} \wedge e_{\beta}\right)$.
From (4) it follows that

$$
\begin{equation*}
2 \tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{m}\right)=\sum_{1 \leq \alpha<\beta \leq m} \tilde{\mathcal{K}}_{\alpha \beta}, \quad 1 \leq \alpha, \beta \leq n \tag{5}
\end{equation*}
$$

Similarly, the scalar curvature $\tilde{\tau}\left(\mathcal{L}_{x}\right)$ of the \mathcal{L} plan is given by

$$
\begin{equation*}
\tilde{\tau}\left(\mathcal{L}_{x}\right)=\sum_{1 \leq \alpha<\beta \leq m} \tilde{\mathcal{K}}_{\alpha \beta} . \tag{6}
\end{equation*}
$$

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of the tangent space $\mathcal{T}_{x} \mathcal{M}$ and $e_{r}=\left\{e_{n+1}, \ldots, e_{m}\right\}$ belong to an orthonormal basis of the normal space $\mathcal{T}^{\perp} \mathcal{M}$, then we have

$$
\begin{equation*}
\|h\|^{2}=\sum_{\alpha, \beta=1}^{n} g\left(h\left(e_{\alpha}, e_{\beta}\right), h\left(e_{\alpha}, e_{\beta}\right)\right) . \tag{7}
\end{equation*}
$$

Let $\mathcal{K}_{\alpha \beta}$ and $\tilde{\mathcal{K}}_{\alpha \beta}$ denote the sectional curvature of the plane section in the submanifold \mathcal{M}^{n} and the Riemannian space form $\tilde{\mathcal{M}}^{m}(c)$, respectively. Thus, $\mathcal{K}_{\alpha \beta}$ and $\tilde{\mathcal{K}}_{\alpha \beta}$ are the intrinsic and extrinsic sectional curvature of the span $\left\{e_{\alpha}, e_{\beta}\right\}$ at x. From the Gausss equation, we have

$$
\begin{align*}
2 \tau\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{n}\right)=\mathcal{K}_{\alpha \beta} & =2 \tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{n}\right)+\sum_{r=n+1}^{m}\left(h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-\left(h_{\alpha \beta}^{r}\right)^{2}\right) \\
& =\tilde{\mathcal{K}}_{\alpha \beta}+\sum_{r=n+1}^{m}\left(h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-\left(h_{\alpha \beta}^{r}\right)^{2}\right) . \tag{8}
\end{align*}
$$

Further, assuming that for a local field of the orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on \mathcal{M}^{n}, the global tensor is defined as

$$
\begin{equation*}
\tilde{\mathcal{S}}(X, Y)=\sum_{i=1}^{m}\left\{\tilde{g}\left(\tilde{R}\left(e_{\alpha}, X\right) Y, e_{\alpha}\right)\right\}, \quad X, Y \in \mathcal{T}_{x} \mathcal{M}^{m} \tag{9}
\end{equation*}
$$

is called Ricci tensor. If we fix a distinct integer from $\left\{e_{1}, \ldots, e_{n}\right\}$ on \mathcal{M}^{n} by e_{A}, which is governed by X, then the Ricci curvature is given by

$$
\begin{equation*}
\operatorname{Ric}(X)=\sum_{\alpha=1, \alpha \neq A} \mathcal{K}\left(e_{\alpha} \wedge e_{A}\right) . \tag{10}
\end{equation*}
$$

Now, we define an important Riemannian intrinsic invariant called the scalar curvature of \mathcal{M}^{m} and it is denoted by $\tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{m}\right)$, that is

$$
\begin{equation*}
\tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{m}\right)=\sum_{1 \leq \alpha<\beta \leq n} \mathcal{K}\left(e_{\alpha} \wedge e_{\beta}\right)=\frac{1}{2} \sum_{A=1}^{m} \operatorname{Ric}\left(e_{A}\right) . \tag{11}
\end{equation*}
$$

It is clear that the above the inequality is congruent to the following equation which will be frequently used in next study:

$$
\begin{equation*}
2 \tilde{\tau}\left(\mathcal{T}_{x} \tilde{\mathcal{M}}^{m}\right)=\sum_{1 \leq \alpha<\beta \leq n} \mathcal{K}\left(e_{\alpha} \wedge e_{\beta}\right)=\frac{1}{2} \sum_{A=1}^{m} \operatorname{Ric}\left(e_{A}\right) . \tag{12}
\end{equation*}
$$

For a k-plan \mathcal{L} of $\mathcal{T}_{x} \mathcal{M}^{m}$, let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of \mathcal{L}_{k}, then for each $A \in\{1, \ldots, k\}$ the k-Ricci curvature $\tilde{\operatorname{Ric}} \mathcal{L}_{k}\left(e_{A}\right)$ of \mathcal{L}_{k} is defined by

Similarly, a Riemannian invariant $\Phi_{k} x$ for $2 \leq k \leq m$ is defined as

$$
\begin{equation*}
\Phi_{k}(x)=\left(\frac{1}{k-1}\right)_{\mathcal{L}_{k}, e_{A}}=\operatorname{infRic}_{\mathcal{L}_{k}}\left(e_{A}\right) \quad, x \in \mathcal{M} . \tag{14}
\end{equation*}
$$

The following consequences can be obtain from (3) and (8) as:

$$
\begin{equation*}
\tau\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{1}}^{n_{1}}\right)=\sum_{r=n+1}^{m} \sum_{1 \leq i<j \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right)-\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{1}}^{n_{1}}\right) \tag{15}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\tau\left(\mathcal{T}_{x} \mathcal{N}_{1}^{n_{2}}\right)=\sum_{r=n+1}^{m} \sum_{1 \leq a<b \leq n_{1}}\left(h_{a a}^{r} r_{b b}^{r}-\left(h_{a b}^{r}\right)^{2}\right)-\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{1}^{n_{2}}\right) \tag{16}
\end{equation*}
$$

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal frame of vector field \mathcal{M}^{n}, thus the squared norm of gradient of the positive differentiable function φ for an orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ is defined as follows:

$$
\begin{equation*}
\left\|\nabla_{\varphi}\right\|^{2}=\sum_{i}^{n}\left(e_{i}(\varphi)\right)^{2} \tag{17}
\end{equation*}
$$

According to B. Unal [22] for the unit vector fields X and Z tangent to M_{1} and M_{2}, respectively, we have

$$
\begin{equation*}
K(X \wedge Z)=\frac{1}{\sigma_{1}}\left\{\left(\nabla_{X}^{1} X\right) \sigma_{1}-X^{2} \sigma_{1}\right\}+\frac{1}{\sigma_{2}}\left\{\left(\nabla_{Z}^{2} Z\right) \sigma_{2}-Z^{2} \sigma_{2}\right\} \tag{18}
\end{equation*}
$$

Let us assume a local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m}\right\}$ such that $e_{1}, e_{2}, \ldots, e_{n_{1}}$ are tangent to M_{1} and $e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2}, e_{n+1} is parallel to the mean curvature vector H. Then

$$
\begin{align*}
\sum_{1 \leq i \leq n_{1}} \sum_{n_{1}+1 \leq j \leq n} K\left(e_{i} \wedge e_{j}\right) & =n_{2} \frac{\Delta_{1} \sigma_{1}}{\sigma_{1}}+n_{1} \frac{\Delta_{2} \sigma_{2}}{\sigma_{2}} \\
& =n_{2}\left(\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2}-\Delta_{1}\left(\ln \sigma_{1}\right)\right)+n_{1}\left(\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2}-\Delta_{2}\left(\ln \sigma_{2}\right)\right) \tag{19}
\end{align*}
$$

where Δ_{1}, Δ_{2} are the Laplacian operators and $\nabla^{1}\left(\ln \sigma_{1}\right)$ and $\nabla^{2}\left(\ln \sigma_{2}\right)$ are the gradient vectors on $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$, respectively.

Finally, we conclude the section with the following definitions of pointwise slant and pointwise bi-slant submanifolds.

Definition 2.1. [12] Let $\bar{M}^{2 m}$ be an almost Hermitian manifold. Then, a submanifold M^{n} of $\bar{M}^{2 m}$ is said a pointwise slant, if for each given point $x \in M^{n}$ and for any non-zero vector $X \in T_{x} M$, the angle $\theta(X)$ between JX and $T_{x} M$ is free from the choice of X.

In [12], Chen and Garay obtained necessary and sufficient condition for a submanifold to be a pointwise slant submanifold. They proved that a submanifold M of an almost Hermitian manifold \tilde{M} is pointwise slant if and only if

$$
\begin{equation*}
T^{2}=-\left(\cos ^{2} \theta\right) I \tag{20}
\end{equation*}
$$

for some real-valued function θ defined on M, where I is the identity transformation of the tangent bundle $T M$ of M.

On the other hand, Chen and Siraj Uddin generalized the above concept for a pointwise bi-slant submanifold as follows [11].
Definition 2.2. Let $\bar{M}^{2 m}$ be an almost hermitian manifold. Then, a submanifold M^{n} of $\bar{M}^{2 m}$ is said a pointwise bi-slant submanifold if there exists a pair of orthogonal distributions \mathfrak{D}_{1} and \mathfrak{D}_{2}, such that
(i) $T M^{n}=\mathfrak{D}_{1} \oplus \mathfrak{D}_{2}$,
(ii) $J \mathfrak{D}_{1} \perp \mathfrak{D}_{2}$ and $J \mathfrak{D}_{2} \perp \mathfrak{D}_{1}$;
(iii) Each distribution \mathfrak{D}_{i} is a pointwise slant with a slant function $\theta_{i}: T^{*} M \rightarrow \mathbb{R}$ for $i=1,2$, where $T^{*} M$ is a set of all non-zero vectors on M

Indeed, pointwise bi-slant submanifold englobe not only slant submanifold but also semi-slant submanifolds, hemi-slant submanifolds, CR-submanifolds.

Since M^{n} is a pointwise bi-slant submanifold, we define an adapted orthonormal frame fileds of the tangent space. If $n=2 d_{1}+2 d_{2}$, where $d_{1}=\frac{1}{2} \operatorname{dim} \mathfrak{D}_{1}$ and $d_{2}=\frac{1}{2} \operatorname{dim} \mathfrak{D}_{2}$, the, we have the following frame field of the tangent space $T M$

$$
\begin{aligned}
& \left\{e_{1}, e_{2}=\sec \theta_{1} T e_{1}, \cdots, e_{2 d_{1}-1}, e_{2 d_{1}}=\sec \theta_{1} T e_{2 d_{1}-1}, \cdots, e_{2 d_{1}+1}, e_{2 d_{1}+2}\right. \\
& \left.\quad=\sec \theta_{2} T e_{2 d_{1}+1}, \cdots, e_{2 d_{1}+2 d_{2}-1}, e_{2 d_{1}+2 d_{2}}=\sec \theta_{2} T e_{2 d_{1}+2 d_{2}-1}\right\} .
\end{aligned}
$$

Then, by setting $g\left(e_{1}, J e_{2}\right)=-g\left(J e_{1}, e_{2}\right)=-g\left(J e_{1}, \sec \theta_{1} T e_{1}\right)$, one can obtain $g\left(e_{1}, J e_{2}\right)=-\sec \theta_{1} g\left(T e_{1}, T e_{2}\right)$. Following (20), we get $g\left(e_{1}, J e_{2}\right)=\cos \theta_{1} g\left(e_{1}, e_{2}\right)$. This implies

$$
g^{2}\left(e_{i}, J e_{j}\right)= \begin{cases}\cos ^{2} \theta_{1}, & \forall i=1, \cdots, 2 d_{1}-1 \\ \cos ^{2} \theta_{2}, & \forall j=2 d_{1}+1, \cdots, 2 d_{1}+2 d_{2}-1\end{cases}
$$

Hence, we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} g^{2}\left(J e_{i}, e_{j}\right)=\left(n_{1} \cos ^{2} \theta_{1}+n_{2} \cos ^{2} \theta_{2}\right) \tag{21}
\end{equation*}
$$

3. Main theorem

This section is dedicated to the study of main result of the article.
Theorem 3.1. Let $M={ }_{\sigma_{2}} N_{\theta_{1}}^{n_{1}} \times_{\sigma_{1}} N_{\theta_{2}}^{n_{2}} \rightarrow \tilde{M}^{2 m}(c)$ be a $D_{\theta_{i}}$-minimal isometric immersion of an n-dimensional doubly warped products pointwise bi-slant submanifold M into a generalized complex space form $\tilde{M}(c)$ for $i=1$ or $i=2$, where $N_{\theta_{1}}$ and $N_{\theta_{2}}$ are pointwise slant submanifolds. Then for each unit vector $X \in T_{x} M$, we have

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{4} n^{2}\|H\|^{2}+n_{2}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2}-n_{2} \Delta\left(\ln \sigma_{1}\right)+n_{1}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2}-n_{1} \Delta\left(\ln \sigma_{2}\right) \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) . \tag{22}
\end{align*}
$$

1. If $\vec{H}(x)=0$, then at each point $x \in M$ there is a unit tangent vector X satisfies the equality case in (22) if and only if M is mixed totally geodesic and X lies in the relative null space \mathcal{N}_{x} at x.
2. For the equality cases, we have
(a) the equality case of (22) holds identically for all unit tangent vectors $N_{\theta_{1}}$ at each $x \in M$ if and only if M is mixed totally geodesic and $D_{\theta_{1}}$-totally geodesic doubly warped product pointwise bi-slant submanifold in $\tilde{M}(c)$.
(b) the equality case of (22) holds identically for all unit tangent vectors $N_{\theta_{2}}$ at each $x \in M$ if and only if M is mixed totally geodesic and either $D_{\theta_{2}}$-totally geodesic doubly warped product pointwise bi-slant submanifold or M is a $D_{\theta_{2}}$-totally umbilical in $\tilde{M}(c)$ with $\operatorname{dim} N_{\theta_{2}}=2$.
3. the equality case of (22) holds identically for all unit tangent vectors M at each $x \in M$ if and only if M is mixed totally geodesic submanifold, or M is a mixed totally geodesic, totally umbilical and $D_{\theta_{1}}$-totally geodesic warped product pointwise bi-slant submanifolds with $\operatorname{dim} N_{\theta_{2}}=2$.

Proof. From the Gauss equation, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\|h\|^{2}-2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right) \tag{23}
\end{equation*}
$$

Now, we assume that $\left\{e_{1}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n}\right\}$ to be a local orthonormal frame fields of $\chi\left(\tilde{\mathcal{M}^{2 m}}(c)\right)$ such that $\left\{e_{1}, \ldots, e_{n_{1}}\right\}$ are tangent to $\mathcal{N}_{\theta_{1}}^{n_{1}}$ and $\left\{e_{n_{1}+1}, \ldots, e_{n}\right\}$ are tangent to $\mathcal{N}_{\theta_{2}}^{n_{2}}$. So, for the unit tangent vector $X=e_{A} \in\left\{e_{1}, \ldots, e_{n}\right\}$ from (23), we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\frac{1}{2} \sum_{r=n+1}^{2 m}\left\{\left(h_{11}^{r}+\ldots+h_{n n}^{r}-h_{A A}^{r}\right)\right\}-\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right) \tag{24}
\end{equation*}
$$

We see that we can write equation (24) as

$$
\begin{aligned}
n^{2}\|H\|^{2} & =2 \tau\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\sum_{r=n+1}^{2 m}\left\{\left(h_{11}^{r}+\ldots+h_{n n}^{r}\right)+\left(2 h_{A A}^{r}-\left(h_{11}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} \\
& +2 \sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2}-2 \sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n} h_{\alpha}^{r} h_{\beta}^{r}-2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right) .
\end{aligned}
$$

Since \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{1}}$-minimal doubly warped product pointwise bi-slant submanifold, we obtain

$$
\begin{align*}
n^{2}\|H\|^{2} & =\sum_{r=n+1}^{2 m}\left\{\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)+\left(2 h_{A A}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} \\
& +2 \tau\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right) \\
& +\sum_{r=n+1}^{2 m} \sum_{\substack{a=1 \\
a \neq A}}^{n}\left(h_{a A}^{r}\right)^{2}+\sum_{r=n+1}^{2 m} \sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{r=n+1}^{2 m} \sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r} . \tag{25}
\end{align*}
$$

It follows from (8) that

$$
\begin{equation*}
\sum_{\substack{r=n+1}}^{2 m} \sum_{\substack{1 \leq \alpha<\beta \leq n \\ \alpha, \beta \neq A}}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{\substack{r=n+1}}^{2 m} \sum_{\substack{1 \leq \alpha<\beta \leq n \\ \alpha, \beta \neq A}}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}=\sum_{\substack{1 \leq \alpha<\beta \leq n \\ \alpha, \beta \neq A}}^{n} \tilde{K}_{\alpha \beta}-\sum_{\substack{1 \leq \alpha<\beta \leq n \\ \alpha, \beta \neq A}}^{n} K_{\alpha \beta} . \tag{26}
\end{equation*}
$$

Moreover, $\mathcal{D}_{\theta_{1}-\text { minimality of }} \mathcal{M}^{n}$ implies

$$
\begin{equation*}
n^{2}\|H\|^{2}=\sum_{r=n+1}^{2 m}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)^{2} . \tag{27}
\end{equation*}
$$

Using (26) and (27) in (25), we derive

$$
\begin{align*}
\frac{1}{2} n^{2}\|H\|^{2} & =2 \tau\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\frac{1}{2}\left(2 h_{A A}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2} \\
& +\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{\substack{r=n+1}}^{2 m} \sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right) \\
& +\sum_{r=n+1}^{2 m} \sum_{\substack{a=1 \\
a \neq A}}^{n}\left(h_{a A}^{r}\right)^{2}+\sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n} \tilde{K}_{\alpha \beta}-\sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n} K_{\alpha \beta} . \tag{28}
\end{align*}
$$

On the other hand from (4) and (7), we find

$$
\begin{align*}
\frac{1}{2} n^{2}\|H\|^{2} & =\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}+\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}}-2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right) \\
& +\sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n} \tilde{K}_{\alpha \beta}+\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{1}}^{n_{1}}\right)+\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{2}}^{n_{2}}\right) \\
& +\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{\substack{1 \leq \alpha<\beta \leq n \\
\alpha, \beta \neq A}}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}\right\} \\
& +\sum_{r=n+1}^{2 m} \sum_{\substack{a=1 \\
a \neq A}}^{n}\left(h_{a A}^{r}\right)^{2}+\sum_{r=n+1}^{2 m} \sum_{1 \leq i \neq j \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right) \\
& +\sum_{r=n+1}^{2 m} \sum_{n_{1}+1 \leq s \neq t \leq n}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right) \\
& +\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{A A}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2} . \tag{29}
\end{align*}
$$

Now, we remark that, for the unit tangent unit vector e_{A}, we have two choices: it is either tangent to base manifold $\mathcal{N}_{\theta_{1}}^{n_{1}}$ or fiber to $\mathcal{N}_{\theta_{2}}^{n_{2}}$. Next, we will prove for the first case.

Case 1. If e_{A} tangent to $\mathcal{N}_{\theta_{1}}^{n_{1}}$, then we fix a unit tangent vector from $\left\{e_{1}, \ldots, e_{n_{1}}\right\}$ to be e_{A} and consider $X=e_{A}=e_{1}$. Then from (10) and (29), we obtain

$$
\begin{align*}
\frac{1}{2} n^{2}\|H\|^{2} & \geq \operatorname{Ric}(X)+\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}+\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}} \\
& -2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{1}}^{n_{1}}\right)+\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{2}}^{n_{2}}\right)+\sum_{2 \leq \alpha<\beta \leq n} \tilde{K}_{\alpha \beta} \\
& \left.+\frac{1}{2}\left(2 h_{A A}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} \\
& +\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq i \neq j \leq n_{1}}\left(h_{i j}^{r}\right)^{2}+\sum_{n_{1}+1 \leq s \neq n}\left(h_{s t}^{r}\right)^{2}\right\} \\
& +\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq i<j \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}+\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{r} h_{t t}^{r}-2 \sum_{2 \leq \alpha<\beta \leq n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}\right\} .\right. \tag{30}
\end{align*}
$$

Combining (2) and (3), putting $X=Z=e_{\alpha}, Y=W=e_{\beta}$ and summing over $1 \leq \alpha, \beta \leq n$, we deduce that

$$
\begin{equation*}
\sum_{\alpha, \beta}^{n} \tilde{R}\left(e_{\alpha}, e_{\beta}, e_{\alpha}, e_{\beta}\right)=f_{1}\{n(n-1)\}+3 f_{2} \sum_{i, j=1}^{n} g^{2}\left(J e_{i}, e_{j}\right) . \tag{31}
\end{equation*}
$$

From (21) and (30), it is easy to see that

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}-\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}-\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}} \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \\
& -\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{11}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)^{2}\right\}+\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq i<j \leq n_{1}}\left(h_{i j}^{r}\right)^{2}+\sum_{n_{1}+1 \leq s t t \leq n}\left(h_{s t}^{r}\right)^{2}\right\} \\
& -\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq i<j \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}+\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{r} h_{t t t}^{r}\right\}+\sum_{r=n+1}^{2 m} \sum_{2 \leq \alpha \alpha \beta \leq n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2} .\right. \tag{32}
\end{align*}
$$

But from the last two terms of (32) we see that

$$
\begin{equation*}
\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq i<j \leq n_{1}}\left(h_{i j}^{r}\right)^{2}+\sum_{n_{1}+1 \leq s<t \leq n}\left(h_{s t}^{r}\right)^{2}\right\}-\sum_{r=n+1}^{2 m} \sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{r}\right)^{2}=\sum_{r=n+1}^{2 m} \sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} . \tag{33}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{r=n+1}^{2 m}\left\{\sum_{1 \leq i<j \leq n_{1}} h_{i i}^{r} h_{j j}^{r}+\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{r} h_{t t}^{r}-\sum_{2 \leq \alpha<\beta \leq n} h_{\alpha}^{r} h_{\beta}^{r}\right\}=\sum_{r=n+1}^{2 m}\left(\sum_{j=2}^{n_{1}} h_{11}^{r} h_{j j}^{r}-\sum_{\alpha=2}^{n_{1}} \sum_{\beta=n_{1}+1}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}\right) \tag{34}
\end{equation*}
$$

Furthermore, (34) and (30) gives

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}-\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}-\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}} \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \\
& -\sum_{r=n+1}^{2 m}\left(\sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}+\sum_{b=2}^{n_{1}} h_{11}^{r} h_{b b}^{r}-\sum_{\alpha=2}^{n_{1}} \sum_{\beta=n_{1}+1}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}\right) \\
& \left.-\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{11}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} . \tag{35}
\end{align*}
$$

Taking into account \mathcal{M}^{n} is $\mathcal{D}_{\theta_{1}}$-minimality doubly warped product pointwise bi-slant submanifold, we compute

$$
\begin{align*}
\sum_{r=n+1}^{2 m} \sum_{\alpha=2}^{n_{1}} \sum_{\beta=n_{1}+1}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r} & =\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+}^{n}\left\{g\left(h\left(e_{2}, e_{2}\right), e_{r}\right)+\ldots+g\left(h\left(e_{n_{1}}, e_{n_{1}}\right), e_{r}\right)\right\} h_{\beta \beta}^{r} \\
& =\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+}^{n}\left\{g\left(h\left(e_{1}, e_{1}\right), e_{r}\right)+\ldots+g\left(h\left(e_{n_{1}}, e_{n_{1}}\right), e_{r}\right)-g\left(h\left(e_{1}, e_{1}\right), e_{r}\right)\right\} h_{\beta \beta}^{r} \\
& =-\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+}^{n} h_{11}^{r} h_{\beta \beta}^{r} . \tag{36}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{r=n+1}^{2 m} \sum_{b=2}^{n_{1}} h_{11}^{r} h_{b b}^{r}=-\sum_{r=n+1}^{2 m}\left(h_{11}^{r}\right)^{2} . \tag{37}
\end{equation*}
$$

Further, by $\mathcal{D}_{\theta_{1}-\text {-minimality, it follows that }}$

$$
\begin{align*}
\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{11}^{r}\right. & \left.\left.-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\}+\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+1}^{n} h_{11}^{r} h_{\beta \beta}^{r} \\
& \left.\left.=2 \sum_{r=n+1}^{2 m}\left(h_{11}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+1}^{2 m}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} \\
& \left.\left.-\sum_{r=n+1}^{2 m} h_{11}^{r}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)\right\}+\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+1}^{n} h_{11}^{r} h_{\beta \beta}^{r} \\
& =2 \sum_{r=n+1}^{2 m}\left(h_{11}^{r}\right)^{2}+\frac{1}{2} n^{2}\|H\|^{2} . \tag{38}
\end{align*}
$$

Equations (36), (37), (35) and (38) yield the following relation

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}-\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}-\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}} \\
& +f_{1}\left(n_{1}\left(n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)\right. \\
& \left.-\sum_{r=n+1}^{2 m}\left\{\left(h_{11}^{r}\right)^{2}-\sum_{\beta=n_{1}+1}^{n} h_{11}^{r} h_{\beta \beta}^{r}+\frac{1}{4} \sum_{r=n+1}^{2 m}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} \\
& \left.-\frac{1}{4} \sum_{r=n+1}^{2 m}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)^{2}\right\} . \tag{39}
\end{align*}
$$

Making use of (27) in (39), we conclude

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{4} n^{2}\|H\|^{2}-\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}-\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}} \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)-\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{11}^{r}-\sum_{\beta=n_{1}+1}^{n} h_{\beta \beta}\right)^{2} \tag{40}
\end{align*}
$$

which together with (19) yield (22).
For the other case, we have
Case 2. If e_{A} tangent to $\mathcal{N}_{\theta_{2}}^{n_{2}}$, then we fix a unit tangent vector from $\left\{e_{n_{1}+1}, \ldots, e_{n}\right\}$ such that $X=e_{A}=e_{n}$. From (10) to (30) and using similar analogue to Case 1, we obtain

$$
\begin{align*}
\frac{1}{4} n^{2}\|H\|^{2} & \geq \operatorname{Ric}(X)+\frac{n_{2} \Delta^{1} \sigma_{1}}{\sigma_{1}}+\frac{n_{1} \Delta^{2} \sigma_{2}}{\sigma_{2}} \\
& -2 \tilde{\tau}\left(\mathcal{T}_{x} \mathcal{M}^{n}\right)+\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{1}}^{n_{1}}\right)+\tilde{\tau}\left(\mathcal{T}_{x} \mathcal{N}_{\theta_{2}}^{n_{2}}\right) \\
& +\sum_{1 \leq \alpha \alpha \beta \leq n} \tilde{K}_{\alpha \beta}+\frac{1}{2}\left(2 h_{n n}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2} \\
& +\sum_{r=n+1}^{2 m} \sum_{\beta=1}^{n-1} h_{n n}^{r} h_{\beta \beta}^{r}+\sum_{r=n+1}^{2 m} \sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}-\sum_{r=n+1}^{2 m} \sum_{\alpha=2}^{n_{1}} \sum_{\beta=n_{1}+1}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r} . \tag{41}
\end{align*}
$$

By using (21) in the last equation, we find that

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}+n_{2}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2}-n_{2} \Delta^{1}\left(\ln \sigma_{1}\right) \\
& +n_{1}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2}-n_{1} \Delta^{2}\left(\ln \sigma_{2}\right) \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \\
& \left.-\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{n n}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} \\
& -\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+1}^{n-1} h_{n n}^{r} h_{\beta \beta}-\sum_{r=n+1}^{2 m} \sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} \\
& -\sum_{r=n+1}^{2 m} \sum_{\alpha=2}^{n_{1}} \sum_{\beta=n_{1}+1}^{n} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r} . \tag{42}
\end{align*}
$$

Application of $\mathcal{D}_{\theta_{1}}$-minimality of \mathcal{M}^{n} in (42) gives

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}+n_{2}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2}-n_{2} \Delta\left(\ln \sigma_{1}\right)+n_{1}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2}-n_{1} \Delta\left(\ln \sigma_{2}\right) \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \\
& -\frac{1}{2} \sum_{r=n+1}^{2 m}\left(2 h_{n n}^{r}-\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2} \\
& -\sum_{r=n+1}^{2 m} \sum_{\beta=1}^{n-1} h_{n n}^{r} h_{\beta \beta}-\sum_{r=n+1}^{2 m} \sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} . \tag{43}
\end{align*}
$$

On the other hand, by a straight forward but lengthy computation we obtain that

$$
\begin{align*}
\sum_{r=n+1}^{2 m}\left\{\frac { 1 } { 2 } \left(\left(h_{n_{1}+1 n_{1}+1}^{r}\right.\right.\right. & \left.\left.\left.\left.+\ldots+h_{n n}^{r}\right)\right)-2 h_{n n}^{r}\right)^{2}+\sum_{\beta=n+1}^{n-1} h_{n n}^{r} h_{\beta \beta}^{r}\right\} \\
& =\sum_{r=n+1}^{2 m} \frac{1}{2}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)^{2}+\sum_{r=n+1}^{2 m} 2\left(h_{n n}^{r}\right)^{2}-\sum_{r=n+1}^{2 m} \sum_{\beta=1}^{n_{1}} h_{n n} h_{\beta \beta}-\sum_{r=n+1}^{2 m} \sum_{\beta=n_{1}+1}^{n} h_{n n}^{r} h_{\beta \beta}^{r} \\
& =\sum_{r=n+1}^{2 m} \frac{1}{2}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)^{2}+\sum_{r=n+1}^{2 m} 2\left(h_{n n}^{r}\right)^{2}-\sum_{r=n+1}^{2 m}\left(h_{n n}^{r}\right)^{2} \\
& \left.=\sum_{r=n+1}^{2 m}\left\{\frac{1}{2}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)+h_{n n}^{r}\right)^{2}-\sum_{\beta=n+1}^{n-1} h_{n n}^{r} h_{\beta \beta}^{r}\right\} \tag{44}
\end{align*}
$$

Thus, by using (44) in (43), we deduce that

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}+n_{2}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2}-n_{2} \Delta\left(\ln \sigma_{1}\right)+n_{1}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2}-n_{1} \Delta\left(\ln \sigma_{2}\right) \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)-\frac{1}{4} \sum_{r=n+1}^{2 m}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)^{2} \\
& \left.-\sum_{r=n+1}^{2 m}\left\{\left(h_{n n}^{r}\right)^{2}-\sum_{\beta=n_{1}+1}^{n} h_{n n}^{r} h_{\beta \beta}^{r}+\frac{1}{4}\left(h_{n_{1}+1 n_{1}+1}^{r}+\ldots+h_{n n}^{r}\right)\right)^{2}\right\} . \tag{45}
\end{align*}
$$

Finally, it follows from $\mathcal{D}_{\theta_{1}}$-minimality of \mathcal{M}^{n} that

$$
\begin{align*}
\operatorname{Ric}(X) & \leq \frac{1}{2} n^{2}\|H\|^{2}+n_{2}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2}-n_{2} \Delta\left(\ln \sigma_{1}\right)+n_{1}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2}-n_{1} \Delta\left(\ln \sigma_{2}\right) \\
& +f_{1}\left(n_{1} n_{2}+n-1\right)+\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)-\frac{n^{2}}{4}\|H\|^{2}-\sum_{r=n+1}^{2 m}\left(2 h_{n n}^{r}-\frac{1}{2} \sum_{\beta=n_{1}+1}^{n} h_{\beta \beta}^{r}\right)^{2} \tag{46}
\end{align*}
$$

This concludes the proof of the inequality (22). To derive the inequality (22), when warped product pointwise bi-slant submanifold \mathcal{M}^{n} is $\mathcal{D}_{\theta_{1}}$-minimal, we will use a similar techniches as in Case 1. Hence, we conclude that the inequality (22) holds for the both $\mathcal{D}_{\theta_{1}}$-minimal isometric immersion for $i=1$ or 2 . Now, we will verify the equality cases in the inequality (22). Let us consider the relative null space \mathcal{N}_{x} of the warped product pointwise bi-slant submanifold \mathcal{M}^{n} in a complex spaces $\tilde{\mathcal{M}}^{2 m}(c)$. For $A \in\left\{e_{1}, \ldots, e_{n}\right\}$ a unit tangent vector e_{A} to \mathcal{M}^{n} at x satisfies the equality sign of (22), if and only if the following conditions hold:
(i) $\sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}=0$,
(ii) $\quad \sum_{b=1, b \neq A}^{2 m}\left(h_{b A}^{r}\right)^{2}=0$,
(iii) $2 h_{A A}^{r}=\sum_{\beta=n_{1}+1}^{n}\left(h_{\beta \beta}\right)$,
such that $r \in\left\{e_{n+1}, \ldots, e_{2 m}\right\}$. The first condition (i) implies that \mathcal{M}^{n} is a mixed totally geodesic warped product pointwise bi-slant submanifold. Using the fact of minimality and combining (ii) and (iii) of (47), it can be easily seen that the unit tangent vector $X=e_{A Q}$ lies in the relative null space \mathcal{N}_{x} at x. The converse part is straightforward and hence, we complete the proof of (1) of the inequality (22), Moreover for $\mathcal{D}_{\theta_{1}}$-minimal isometric warped product pointwise bi-slant submanifold, the equality condition in (22) hold if and only if

$$
\left\{\begin{array}{l}
\text { (i) } \quad \sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}=0 \\
\text { (ii) } \quad \sum_{b=1}^{n} \sum_{A=1, b \neq A}^{n_{1}}\left(h_{b A}^{r}\right)^{2}=0 \tag{48}\\
\text { (iii) } \quad 2 h_{\alpha \alpha}^{r}=\sum_{\beta=n_{1}+1}^{n}\left(h_{\beta \beta}\right),
\end{array}\right.
$$

where $\alpha \in\left\{1, \ldots, n_{1}\right\}$ and $r \in\{n+1, \ldots, 2 m\}$. As \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{1}}$-minimal, then the third term of (48) implies that $h_{\alpha \alpha}^{r}=0$, $\alpha \in\left\{1, \ldots, n_{1}\right\}$. So combining these condition with the second term (ii) of (48), we find that \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{1}}$-totally geodesic warped product pointwise bi-slant submanifold in a complex space form $\tilde{\mathcal{M}}^{2 m}(c)$. This proves the statement (a) of (2).

As we assume that \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{1}}$-minimal, the equality sign hold in (22) for all unit tangent vectors to $\mathcal{N}_{\theta_{2}}^{n_{2}}$ at x if and only if the following condition are satisfied:
(i) $\sum_{\alpha=1}^{n_{1}} \sum_{\beta=n_{1}+1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}=0$,
(ii) $\quad \sum_{b=1}^{n} \sum_{A=n_{1}+1, b \neq A}^{n_{1}}\left(h_{b A}^{r}\right)^{2}=0$,
(iii) $2 h_{L L}^{r}=\sum_{\beta=n_{1}+1}^{n}\left(h_{\beta \beta}\right)$,
such that $L \in\left\{n_{1}+1, \ldots, n\right\}$ and $r \in\{n+1, \ldots, 2 m\}$. There are two cases which arises from third condition (iii) of (49), that is

$$
\begin{array}{r}
h_{L L}^{r}=0, \quad \forall L \in\left\{n_{1}+1, \ldots, n\right\} \quad \text { and } \quad r \in\{n+1, \ldots, 2 m\}, \\
\text { or } \quad \operatorname{dim}_{\mathcal{N}_{2}}^{n_{2}}=2 . \tag{50}
\end{array}
$$

If the first part of (50) holds, then in the light of second condition in (49), we get that \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{2}}$ is totally geodesic warped product pointwise bi-slant submanifold in complex space form $\tilde{\mathcal{M}}^{2 m}(c)$. This is the first statement of part (b) of (2) of the theorem. For the other part, we consider that \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{1}}$ is not totally geodesic warped product
submanifold and $\operatorname{dim} \mathcal{N}_{\theta_{2}}^{n_{2}}=2$, then from the (ii) of (49), we hypothesize that \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{2}}$ umbilical warped product pointwise bi-slant submanifold in $\tilde{\mathcal{M}}^{2 m}(c)$. Hence, the part (b) of (2) is proved completely.

Now, to prove (3), we emerge (48) and (49), together and we use the part (a) and (b) of (2). thus, let consider that $\operatorname{dim} \mathcal{N}_{\theta_{2}}^{n_{2}} \neq 2$. Since from part (a) and (b) of statements (3), respectively imply that \mathcal{M}^{n} is a $\mathcal{D}_{\theta_{1}}$ is totally geodesic and $\mathcal{D}_{\theta_{2}}$ totally geodesic submanifold in $\tilde{\mathcal{M}}^{2 m}(c)$, this means that \mathcal{M}^{n} totally geodesic warped product pointwise bi-slant submanifold in $\tilde{\mathcal{M}}^{2 m}(c)$. Moreover, for the other case, we assume that the previous does not hold then from part (a) and (b) of statements (2) gives that \mathcal{M}^{n} is mixed totally geodesic and $\mathcal{D}_{\theta_{1}}$-totally geodesic warped product pointwise bi-slant submanifold in $\mathcal{\mathcal { M }}^{2 m}(c)$ with $\operatorname{dim} \mathcal{N}_{\theta_{2}}^{n_{2}}=2$. As for last assertion to show that \mathcal{M}^{n} is a totally umbilical warped product pointwise bi-slant submanifold into complex space form $\tilde{\mathcal{M}}^{2 m}(c)$, it is sufficient to prove that \mathcal{M}^{n} is $\mathcal{D}_{\theta_{2}}$ and $\mathcal{D}_{\theta_{1}}$-totally geodesic warped product pointwise bi-slant submanifold in $\tilde{\mathcal{M}}^{2 m}(c)$ which comes directly from (b) and (a), respectively. this gives the complete proof of part (3). By similar technique as in the above case, we can prove the theorem when \mathcal{M}^{n} is $\mathcal{D}_{\theta_{2}}$-minimal warped product pointwise bi-slant submanifold in a complex space form $\tilde{\mathcal{M}}^{2 m}(c)$. This completes the proof of the theorem.

4. Application of the results in Physics

In this section, we obtain physical applications of the main result.

4.1. Results on doubly warped product poimtwise bi-slant submanifolds with harmonic function

Theorem 4.1. Let $M={ }_{\sigma_{2}} N_{\theta_{1}}^{n_{1}} \times_{\sigma_{1}} N_{\theta_{2}}^{n_{2}} \rightarrow \tilde{M}^{2 m}(c)$ be a $D_{\theta_{i}}$-minimal isometric immersion of an n-dimensional doubly warped products poimtwise bi-slant submanifold M into a generalized complex space form $\tilde{M}(c)$ for $i=1$ or 2 . Then for each unit vector $X \in T_{x} M$, if the warping functions σ_{1} and σ_{2} are harmonic functions, we have

$$
\begin{equation*}
\left.\frac{1}{4} n^{2}|H|\right|^{2} \geq \operatorname{Ric}(X)-f_{1}\left(n_{1} n_{2}+n-1\right)-\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \tag{51}
\end{equation*}
$$

Proof. If σ_{1} and σ_{2} are harmonic functions, then $\Delta^{1} \sigma_{1}=0$ and $\Delta^{2} \sigma_{2}=0$. Using this fact in (22) yields the results.

4.2. Results on doubly warped product poimtwise bi-slant submanifolds related to Hessian functions

Let ϕ be a positive differentiable C^{∞}-differentiable function. Then the Hessian tensor of function ϕ is a symmetric 2 -covariant tensor field on M^{n} defined by

$$
\begin{equation*}
\mathcal{H}^{\phi}: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M) \tag{52}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mathcal{H}^{\phi}(X, Y)=\mathcal{H}_{i j}^{\phi} X^{i} Y^{j} \tag{53}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(M)$, where $\mathcal{H}_{i j}^{\phi}$ can be expressed as

$$
\begin{equation*}
\mathcal{H}_{i j}^{\phi}=\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}-\Gamma_{i j}^{k} \frac{\partial \phi}{\partial x_{k}} . \tag{54}
\end{equation*}
$$

Let us assume that $\phi=\ln \sigma_{1}=\ln \sigma_{2}$. Then as a consequence of the Theorem 3.1 and the above relation, we conclude the following result.

Theorem 4.2. Let $M={ }_{\sigma_{2}} N_{\theta_{1}}^{n_{1}} \times_{\sigma_{1}} N_{\theta_{2}}^{n_{2}} \rightarrow \tilde{M}^{2 m}(c)$ be a $D_{\theta_{i}}$-minimal isometric immersion of an n-dimensional doubly warped products poimtwise bi-slant submanifold M into a generalized complex space form $\tilde{M}(c)$. Then for each unit vector $X \in T_{x} M$, we have

$$
\begin{equation*}
\frac{1}{4} n^{2}|H| \|^{2} \geq \operatorname{Ric}(X)+n_{2} \frac{\operatorname{trace} \mathcal{H}^{\phi}}{\sigma_{1}}+n_{1} \frac{\operatorname{trace} \mathcal{H}^{\phi}}{\sigma_{2}}-f_{1}\left(n_{1} n_{2}+n-1\right)-\frac{3}{2} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \tag{55}
\end{equation*}
$$

4.3. Results on doubly warped product poimtwise bi-slant submanifolds related to Dirichlet energy functions

A great motivation of bound of Ricci curvature is to express the Dirichlet energy of the warping functions σ_{1} and σ_{2}, which is a useful tool in physics. The Dirichlet energy of any function ς on a compact manifold M is defined as:

$$
\begin{equation*}
E(\varsigma)=\frac{1}{2} \int_{M}\|\nabla \varsigma\|^{2} d V \tag{56}
\end{equation*}
$$

where $\nabla \varsigma$ is the gradient of ς and $d V$ is the volume element.
Theorem 4.3. Let $M={ }_{\sigma_{2}} N_{\theta_{1}}^{n_{1}} \times_{\sigma_{1}} N_{\theta_{2}}^{n_{2}} \rightarrow \tilde{M}^{2 m}(c)$ be a $D_{\theta_{i}}$-minimal isometric immersion of an n-dimensional compact oriented doubly warped products pointwise bi-slant submanifold M into a generalized complex space form $\tilde{M}(c)$ for $i=1$ or $i=2$, then

$$
\begin{align*}
n_{2} E\left(\ln \sigma_{1}\right)+n_{1} E\left(\ln \sigma_{2}\right) & \geq \frac{1}{2} \int_{M}\left(\operatorname{Ric}(X)-\frac{1}{4} n^{2}|H| \|^{2}\right) d V \\
& -\frac{1}{2}\left[\int_{M} f_{1}\left(n_{1} n_{2}+n-1\right) d V+\frac{3}{2} \int_{M} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) d V\right] . \tag{57}
\end{align*}
$$

where $\operatorname{vol}\left(N_{\theta_{1}}\right)$ is the volume $N_{\theta_{1}}$.
Proof. Taking integration along M with respect to volume element $d V$, we get

$$
\begin{align*}
\int_{M} \operatorname{Ric}(X) d V & \leq \frac{1}{4} n^{2} \int_{M}\|H\|^{2} d V+n_{2} \int_{M}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2} d V \\
& -n_{2} \int_{M} \Delta\left(l n \sigma_{1}\right) d V+n_{1} \int_{M}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2} d V \\
& -n_{1} \int_{M} \Delta\left(l n \sigma_{2}\right) d V+\int_{M} f_{1}\left(n_{1} n_{2}+n-1\right) d V \\
& +\frac{3}{2} \int_{M} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) d V \tag{58}
\end{align*}
$$

Since M is compact, (58) implies

$$
\begin{align*}
\int_{M} \operatorname{Ric}(X) d V & \leq \frac{1}{4} n^{2} \int_{M}\|H\|^{2} d V+n_{2} \int_{M}\left\|\nabla^{1}\left(\ln \sigma_{1}\right)\right\|^{2} d V+n_{1} \int_{M}\left\|\nabla^{2}\left(\ln \sigma_{2}\right)\right\|^{2} d V \\
& +\int_{M} f_{1}\left(n_{1} n_{2}+n-1\right) d V+\frac{3}{2} \int_{M} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) d V \tag{59}
\end{align*}
$$

Now, Making use of (56) in (60), we find

$$
\begin{align*}
\int_{M} \operatorname{Ric}(X) d V & \leq \frac{1}{4} n^{2} \int_{M}\|H\|^{2} d V+2 n_{2} E\left(\ln \sigma_{1}\right)+2 n_{1} E\left(\ln \sigma_{2}\right) \\
& +\int_{M} f_{1}\left(n_{1} n_{2}+n-1\right) d V+\frac{3}{2} \int_{M} f_{2}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) d V \tag{60}
\end{align*}
$$

which is the desired inequality.

References

[1] F. R. Al-Solamy, V. A. Khan, S. Uddin, Geometry of warped product semi-slant submanifolds of nearly Kaehler manifolds, Result Math., 71 (2017) 783-799.
[2] M. Aquib, M. N. Boyom, M. H. Shahid, G. E. Vilcu, The first fundamental equation and generalized wintgen-type inequalities for submanifolds in generalized space forms, Mathematics, 7 (2019) 1151.
[3] M. Aquib, Bounds for generalized normalized δ-casorati curvatures for bi-slant submanifolds in T-space forms, Filomat 32(1) (2018) 329-340.
[4] M. Aquib, M. H. Shahid, M. Jamali, Lower extremities for generalized normalized δ-Casorati curvatures of bi-slant submanifolds in generalized complex space forms, Kragujevac Journal of Mathematics, 42(4) (2018) 591-605.
[5] R. L. Bishop, B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1967) 1-49.
[6] B. Y. Chen, On isometric minimal immersions from warped products into real space forms, Proc. Edinb. Math. Soc. 45 (2002) 579-587.
[7] B. Y. Chen, Relationship between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J., 41 (1999) 33-41.
[8] B. Y. Chen, Geometry of warped product submanifolds: a survey, J. Adv. Math. Stud. 6(2) (2013) 1-43.
[9] B. Y. Chen, Geometry of warpes product CR-submanifolds in Kaehler manifolds, Monatsh. Math , 133 (2001) 177-195.
[10] B. Y. Chen, Differential geometry of warped manifolds and submanifolds, World Scientific, Hackensack, NJ, USA, 2017.
[11] B. Y. Chen, S. Uddin, Warped product pointwise bi-slant submanifolds of Kaehler manifolds, Publ. Math. Debrecen, 92 (2018) 183-199.
[12] B. Y. Chen, O. J. Gray, Pointwise slant submanifolds in almost Hermitian manifolds, Turk. J. Math., 79 (2012) 630-640.
[13] A. Friedmann, J. A. Schouten, Über die geometric der halbsymetrichen Übertragung, Math.Z., 21 (1924) 211-223.
[14] C. W. Lee, J. W. Lee, G. E. Vilcu, D. W. Yoon, Optimal inequalities for the casorati curvatures of submanifolds of generalized space forms endowed with semi-symmetric metric connections, Bull. Korean Math. Soc., 52(5) (2015) 1631-1647.
[15] A. Mihai, Warped product submanifolds in generalized complex space forms, Acta Mathematica Academiae Paedagogicae Ny'rregyh'aziensis, 21 (2005) 79-87.
[16] Z. Olszak, On the existence of generalized complex space forms, Israel J. Math., 65 (1989) 214-218.
[17] F. Tricerri, L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trnas. Amer. Math. J., 26 (2003) 85-94.
[18] S. Uddin, B. Y. Chen, F. R. Al-Solamy, Warped product bi-slant immersion in Kaehler manifolds, Mediterr. J. Math, (2017) 14-95.
[19] S. Uddin, A. Y. M. Chi, Warped pruct pseudo slant submanifolds of nearly Kaehler manifolds, An. Stiintfice Unio. Ovidius Constanta, 19 (2011) 195-204.
[20] S. Uddin, F. R. Al-Solamy, K. A. Khan, Geometry of warped product pseudo-slant submanifold in nearly Kaehler manifolds, An Stiin. Univ. Al.I. Cuza Iasi. Math, 3 (2016) 323-234
[21] S. Uddin, Chen, B. Y. Chen, F. R. Al-Solamy, Warped product bi-slant immersions in kaehler manifolds, Mediterr. J. Math., 14(2) (2017) 11.
[22] B. Unal, Doubly warped products, University of Missouri, Columbia.

[^0]: 2020 Mathematics Subject Classification. Primary 53B05; Secondary 53B20, 53C40.
 Keywords. Pointwise bi-slant submanifolds; Ricci curvature; Doubly wraped products.
 Received: 21 December 2020; Accepted: 04 May 2021
 Communicated by Ljubica Velimirović
 Email addresses: aquib80@gmail.com (Mohd. Aquib), kidwaiaslam@gmail.com (Mohd Aslam), mshahid@gmail.com (Mohammad Hasan Shahid)

