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Abstract. The present research is concern to the solution of a class of mild solutions linked to a class of
impulsive Hilfer fractional differential equations driven Brownian motion with non-compact semi group in
Hilbert spaces. All the more obviously the Hausdorff measure of noncompactness has been utilized to get
these new results, in like manner, the arguments were scarred by following tools such as the Darbo-Sadovskii
fixed point theorem principle associated with vector-valued metrics technique as well as convergent to zero
matrices. An illustrated example has been provided for demonstrating efficiency and accuracy.

1. Introduction

In preset time, numerous evolution processes have been so for described that they take shapes by a

change of state in an abrupt manner in a form of shocks such as harvesting natural disasters and so. From
this starting point, it has been shown that these phenomena include short term perturbation resulting from
smooth and continuous dynamics which make their term insignificant when compared with that of whole
evolution. That is the reason another part of the theory of ordinary differential equations called impulsive
differential equations has drawn a lot of consideration recently (see [1, 2] and the references therein).
The impulsive systems with the compactness presumption on related operators just as the nonlinear func-
tion to be either completely continuous or Lipschitz function [3-5], Not with standing, these conditions are
stronger restrictions, they are not of the fulfilled as it can be seen in various practical problems [6, 7]. A
measure of non-compactness can be utilized to evacuate the suppositions for both the Lipschitz continuity
of the nonlinear item and compactness of the operator, to the extent we worried there are no important
reports linked to impulsive stochastic differential equations with non-instantaneous impulses towards non-
compactness measure techniques, and this over which our results stand. Besides, concerning stochastic
differential equations, basic theory can be found in [8, 9].
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Fractional differential equations (FDEs) have known much consideration recently, in different research areas
and in a variety of aspects since they have features for real-world problems (see [10-12], and references in
that).

Furthermore, Hilfer presented a generalized Riemann-Liouville fractional derivative for short, Hilfer frac-
tional (HF) derivative, which incorporates Caputo as well as Riemann-Liouville fractional derivatives (see
[13-15]). Likewise, several authors discussed the existence of the solution for FDEs having HF derivatives
(see [16-18]). Stochastic differential equations are today of a significant use they play a down-to-earth in
mathematical modelling in a major variety phenomenon when noises are non-insignificant. Add to this,
noise or stochastic perturbation bother is both unavoidable and inescapable in nature and wide range in
man-made frameworks [19]. Along these lines, stochastic effects need to be incorporated in any fractional
differential systems related investigation [20, 21].

In Hamdy et al. [22] examined the existence of mild solutions of HF stochastic integro-differential equations
(IDEs) with nonlocal conditions by method of the fixed-point theorems due to Sadovskii. Very recently
Yan and Jia [23] discussed the existence of mild solutions for a new class of impulsive stochastic partial
neutral functional IDEs. A new result on impulsive HF stochastic differential system has been proved by
Saravanakumar et al. [24].

This paper is concern to studying the existence of mild solutions of coupled systems for impulsive Hilfer
fractional stochastic IDEs of the following form

Dgl"“t[W(t) - q1(t, w(t), o(t)] = [A1w(t) + fi(t, w(t), v(t))]
+f o1(s,w(s),v(s))dB(s), te ] :=[0,b],
0

Dgl’qlt[v(t) — qa(t, w(t), v(t)] = [Ax0(t) + falt, w(t), v(t))]
+f o2(s, w(s),v(s))dB(s), te]:=][0,b],
0

L7 w(t) = wt) + k), ot), k=1,...,m,

L7o() = ot) + L(w(t), o(t), k=1,...,m,
Iy @(0) = (0, w(0),v(0)) =wo, Y =p1+q1-pih

1—y

1. " (v(0) = h2(0, w(0), v(0)) = vy, y=pi+qi—-mq

where D’Sl’ql is the Hilfer derivative of order 0 < q; < 1, A; and type 0 < p; <1, i = 1,2 is the infinitesimal
generator of an analytic semigroup of bounded linear operators 7;(t), t > 0, with norm || - || and inner
product (-, -) on a separable Hilbert space X. The state w(-), v(-) takes the value in X with (-, -) prompted
by || - ||, and as for a complete probability space (QQ, #;, ¥, IP) furnished with a family of right continuous
and increasing F-algebras {¥;, t € ]} satisfying F; ¢ F. Also 0; : [ Xx X X X — Lo(Y,X), where
Lo, X) = LO9Y,X) = Lr(QY2Y, X) be a separable Hilbert space with respect to the Hilbert-Schmidt
norm || - [lpo and Q-Wiener process on (Q, ¢, , IP) with a linear bounded covariance operator Q such that
Tr(Q) < co. Let {B(t),t € R} be a standard cylindrical Wiener process with values in Y for more details
(see[26, 32]). Further g; : [ X XXX = X, fi : [ x XXX — X,i = 1,2, which will be also defined in
the next section. In addition, the initial condition wy, vy is an ¥y measurable X-valued stochastic process
independent of Wiener process B with finite second moment.

This paper is presented as below. Section 1 is introductory. Basic definition, some notations and necessary
preliminaries are provided in section 2. In section 3, we give our main results, while in section 4 results are
discussed and illustrated by conducting numerical experiments solving an example.

2. Preliminaries

In this section, some notations and necessary preliminaries as well as some lemmas, which are used
throughout the current work, the reader may refer to [27-29].
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Let PC((0, b], L2(€3, X)) be the space of mean square valued bounded functions from (0, b] into L,(Q2, X),
which satisfies the condition ]ElwlgJC = sup ]Elw(t)lg( < oo such that w(t]) exists forany k = 1,...,m and w(t)

te(0,b]
is continuous on Ji = (#, t+1) with 0 < t; <t <... <t, < b < co. Let us introduce the spaces

Hy =PC1y = {u: (t- )" Vw(t) € PC(O, b], La(Q, X))},

endowed with the norm

el = \/(k:%‘lax sup Elt - 1) Vw(t, ).

M tei

where E is given by E(w) = fQ w(w)dP.

Definition 2.1. [11] The left-sided mixed Riemann-Liouville integral operator of order g1 > 0 for a function w can
be defined as the following

q :L t —g)1
Lw(t) T(qﬂjo‘(t s)1™ w(s)ds for ae. t>0

where the I'(+) is (Euler’s) Gamma function.

Definition 2.2. [11] The Riemann-Liouville fractional derivative of order g1 is defined as follows:
d i
Dgw(t) = Ell T(t)

14
T - gyt (f(; (t—s)" w(S)dS) for ae.  t>0

Definition 2.3. [18](Hilfer Derivative) Let 0 < p1 < 1 and order 0 < q1 < 1. The Hilfer fractional derivative of
order p1 and type q1 of the function w is defined as follows

I
D () = 1 Walf} POW@y forall ¢ 0. )

Properties 2.1. For p; =0, 0 < q1 < 1, generalization (2) coincides with the Riemann-Liouville derivative:

0 d a-
Dy w(t) = 105131 Ma(t) = DI ().

Forpi1 =1, 0 <q1 <1, with the Caputo derivative, namely,
g d
Dy w(t) = Iy ™ = w(t) = Dfj ()

For x, y € X, two families of operators are defined {S,, ;,(t), t>0}and {7,,(t), t>0}by

Spoa () = WP, (1), Pu(t) = I, T = fo 0160, (6)T (7 6)d6,

where

(e8]

oy
= (n—-1)T1- aq1)’

is function of Wright-type satisfying

Yy, (0) = 0<gq1<1,0€(0,00)

ra+c)

L 96%1 (6)do = T+ 710)
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Lemma 2.1. [11] Let o, q; € (0,1) and Yw € D((A)?),
AT, (Hw = AT, (HA W,

and
qlCal"(Z - 0()

t1eT(1+ q1(1 — a))

AT, (Bl <

where t € [0,b] and C, > 0.

Lemma 2.2. [10] The operators Sy, 4, and Py, are as follows

(A) {P,,(t), t > 0} is continuous in the uniform operator topology

(B) Forany fixed t > 0, Sp, 4, (t) and Py, (t) are bounded and linear operators, and

Mthl_l

1P @l < “s

llzol.

]\/ITi')/_1

I(q1)
(C) {Py, (D), t > 0} and {Sp, 4,(t), t > 0} are strongly continuous.

”8}71,171 (t)ZUH < ”w”/ Y= (1 - pl)(l - lh)

Now some useful definitions and results are recalled.
Lemma 2.3. [30] Let Dy, D1 C X be bounded , a measure of non-compactness x is called
(i) Monotone if Dy, D1 C X, Dy € Dy implies x(Do) < x(D1)
(ii) Nonsingular if x({a} U D) = x(D) for everya € X, D C X;
(iii) Invariant with respect to union with compact sets, if x({K} U D) = x(D) for every K € X and D € X.
(iv) Regular if the condition x(D) = 0 is equivalent to the relative compactness of D.
(v) Lower-additive if (Do + D1) < x(Dy) + x(D1) for each Dy, D1 C X.

A typical example of an m.n.c. is the Hausdorff measure of noncompactness x defined for all D3 C X by
where
X(D3) = {e € R} : thereexists n€IN suchthat D3 C UL, B(x;e€)}

3. Mild Solutions

Definition 3.1. An X— adapted stochastic process w(t) = (w(t), v(t)) € Hy X H; is said to be a mild solution of the
problem (1) if. 1) the function APy, (t — s)hi(s,ws), i = 1,2, is integrable

I ’/(w(t) - hl(t,w(t),v(t))t_0 = wy and Il:y(v(t) - ho(t, w(t),v(if))t_0 = vy, a Fo adapted stochastic process 3)
the process w satisfying the beneath integral equation:

t
w(t) = SpqHwo + hi(t, w(t), o)) + ](; qu(t—s)(Alhl(s,w(s),v(s))
b AGRE, )+ [ a0 AOMBO)s, P-as, te[0,n]
0
W(E) = Spyg(t— B@E) + I(@(E), 0(E)) + bt x(8), y(6)) )

+

t
f Pyt - s)(Alhl(s, w(s), v(s)) + fi(s, w(s), v(s))ds
tk

+

f 01(C, w(Q), U(C))dB(C))dS/ P-as, te(ti,tim], y=p1+q1—piq1
0
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and
t
o) = Spg(Oyo + ot x(t), y(b) + fo Py, (t = 5)(Azha(s, w(s), v())
b AGRE, )+ [ w0, AOMBQO), P-as, e [0,n]
0
o) = Syt () + Tl 0(6) + alh w(t), o) (4)
+ fqu(t—s)(Azhz(s,w(s),v(s))+f2(s,w(s),v(s))ds
tks
+ foUz(C,w(C)/U(C))dB(C))dS, P—-as, te(to,tim, y=p1+q1—mq

To prove the principle results, the accompanying hypotheses are required:
(H1) Ti(t) of bounded linear operators on X, we suppose that 0 € p(4;), and 3 a constant Mt such that

I7:OI? < My forall t>0,i=1,2

(Hz) (i) Japositive constant g, a € (0, 1), the functions /; : [ X X x X — X,i = 1,2 are a continuous function
and satisfies with aff > % such that h; € D(AY) and for any w,v € X, t € ],

(ii) 3 constants ¢y, a;;_ > 0 and ¢y, 0‘(2 > 0, A%h; satisfies the inequality
E|AShi(t, w,v) = Afhi(t, @, ) < ¢jllw — @l +llo -2, te],

2 i 2 2 i
EIAMh(t,w,0)f < (ol +l0l2,) + &, te],
forallw,v,w,ve X

(iii) The function s — AP, (t — s)hi(s, w(s), v(s)), i = 1,2 is measurable.

(Hs) () f;isa L?-Carathéodory map and for every ¢ € [0, b] for each i = 1,2 the function t —> fi(t, w(t), v(t))
and t — fi(t, w(t), v(t)), u,v € X are measurable.

(i) 3 constants ¢’

fv,c‘} and a function ; € L/%(], R*), 0 < B < g1 such that for any w,v € X and each
te];

E|fi(t, w, )% < i(t) + Cjcillwllé1 + Ejf‘llvllgm-
(Hs) The function o; : [0, 0] X X X X = Lo(Y, X) satisfying the beneath conditions:

(1) The function oi(f,,-) : X X X = L(¥, X) is a continuous function for each w,v € X, t € |

(ii) The function o;(-, w(:), v(")) : [0, b] = Lo(Y, X) is strongly measurable function
(iii) J a function ¢; € Li (J;R"), 0 < B < g1 and a positive constant ¢ , A% , ¢ , Al , R such that
t . .
sup f Eloi(s, w0, 00, < du(t) + ¢ ol + 2, ol
llwlP llol*<R <0

and

t
sup f E|o;(s, w,v) — o(t, @, D) io < Agllw - zDII,ZHl + A llv = 5”3{1-
Il lylP <R <O

forany w,v,w,? € X and each t € .
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(Hs) dconstants d]’(, d;( >0,k=1,. .. for each

Hme—Mmm&swm—mm+ﬂw—wa,

and
Elli(w,0) - @, ) < dllw - @R, + &l - oI},

forall w,0,@,5€ X ,and ) dj < o0 Z f <
k=1

For suitability, we start introduce some notation
M, =A%), As = max{Ay, Ay, Ay, Ay} # 1

and o
Ne = max{Aq, A1, Az, Az}

MTti_y 2 21
Ty el + Miaj

My 28 (1= B)\@-p P
+(nw)quﬁQ Il

+(§%) (@Ulib%mW%wn]

A = 5[t2(1—l71)(1—l71)((

Ci—ol(1 + a)\2_
1 = ) allh

al(1 + q1a)

A = B[RO0 (224! 2((?170I(1+01))20(111
1

af, al'(1 +q10€)
My 2,47 2 M t‘h
+ (i) () @ v a0+ (q?)) TG e 2

and
1

A = 5[t§<l—m><1—ql>((”;(t )y) Elyol2 + M2 ]32<C1 —I(1 +a))2_ﬁz

al(1 + q1a)
th

My 2 1 =B)\ap
Gwﬂﬁﬂw—m)

M 1=p) \@-p (-
() 3O wop) 0 eyl

@-p)
Pyl

Ci—al'(1 + @) )2

A — 2(1-p1)(1-q) M2al +2
= S[t ( Mia ( al'(1 + qloz)

ahl

th

M 2,72 M
+ (tgy) (5 G+ 2>+<m,j)) <Q>(—<coz+ )

CraT(1+a)\2_ My 2021 (1 = B) \@-p
al (1 + qia) ) % +(T(q1)) 7 ((vh —ﬁ))

1- 1
ﬂ@ﬂ&_%WmW%g

As = 6P (M2a, + ( il 3
2B
(Fiy)

L) ¢
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_ MTbliy 2 1 A1 s 1 Cl_al"(l +a) 2 1
Ay = 6R(( F(y) ) (]. +dk + dk) + ZMaahl +2(m) ahl)
Myt 2p1—B T4 Mrbh 2
+ (———) —Tr(Q)(c, +¢c. )+ c, +¢C
(\/qTF(ql)) g (Do o) (T(q1)q1) € +5)
and
- _ _ Ci—al(1 + a)\2_ Mr 2D P (1= B) \@-P)
_ 2(1-p) (A 12 72 a 2
As = P2 +( Tt 7.0 ) a2, +(r(ql)) - ( s ﬁ)) Il 3
My \2b*1=P (1-B) \@-p
(ray) 5 TG —g) i)
< Mrb'77\2 s s o CieaT1 +a)\2 ,
Ay = 6R(( o) ) (1 +d; +dk) +2M o, +2(—a1"(1 T ) ahz)
Mr \2b1P T Mrbh 2
e Tr ¢ +0C. )+ c, +¢.))-
(o) g Q@ + &) + (gga) € +e)
We have the beneath results:
Theorem 3.1. Assume that (H1)-(Hs) are satisfied and the matrix
_ (b)) p2(b)
Mrix =\~ P
f (yl(b) fa(0)
where c ( ) .
oI (1 + )2 M \2 b0
_ 21,209 (Af2 -1 1-a 1 T\ 1
() = 370 (M, + ( al(1 + g1a) e +(F(q1)) a THQA)
_ _ CioT(1 + a)\2_ My \2b*n _
_ 2200 (a2Al y (Slmal U AN o 1
ua(b) = 350V (Mg, + ar(1 +q1a)) h (r(’h)) q; THQY,)
n CioI(1+ ) b?
= by = 2p20=9)(Af2 -2 1oL+ @)\2 5 o Mr 2071 2
f(b) = 3 (M2 + ( 7.0 ) e +(r (ql)) 7 TrHQ)AZ,)
_ —y _ CioIT(1 + a)\2_ My 2% ~
_ 21209 (A2 2 a 1 o 2
fa(b) = 3b (M“Ch+( aF(1+q1a)) I (I"(ql)) 7 Tr(QMaz)

If Myyix converges to zero, Therefore, the problem (1) possesses a unique mild solution on [0, b].

Proof. Consider the operator @ = (0, ®,) : Hi X Hi — Hi X H; associated with the problem (1) defined by

D(w,v) = (P1(w, v), D2 (w, v)), (w,v) € Hy X H;
where
t
Spq (Hwo + hi(t, w(t), v(t)) + L P (t = s)(Alhl(s,w(s),v(s))
b AGRE, )+ [ a0 AOMBQO), P-as, te[0,n]
0

D1, 0)(E) = Syt = B)@(E) + T (E), 0(E)) + I, (), o(t)

t
b Pt (A w6, 99 + it w06), o6
tk

+ f 01(C,w(@), v(O)BQ))ds, P—as, te (t bl ¥ =p1+q —pin

0
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t
Spq (Dyo + ha(t, w(t), o(t)) + fov P (t - s)(Azhz(s,w(s),U(s))

b O, + [ 0xCw@, HOMBQ), P-as, 1€ [0,0]
0

Splt,ql(t = t)(0(ty) + L((e(8), y(£)) + ha(t, w(t), v(t))
+ f P, (t - s)(Azhz(s, w(s), v(s)) + fa(s, x(s), y(s))ds
t

k

+ f 02(C, w(C,),v(C))dB(C))ds, P-as, te(tytis]l, y=p1+q1 -1
0

A
— 2 6
Bu={ueHxH, ol <R R>1=%]

A
— 2 6
B ={vethxH, o, <R R>7o5)

is obviously a bounded closed convex set in H; x H;. Noting that any fixed point of the operator ®
corresponds to the classical solution of the system (1), we break the proof into a sequence of steps.

The first step. O(Br X Br) C Br X Br.

[|D;(w, U)“;l—{l = sup tz(l_pl)(l_ql))]E|(Di(w(t), ‘U(t))|§(, i=1,2
te[0,t1]

foreach t € [0, t1], (w, v) € Br X Br, we get

E|®1 (w, 0)(1)l5

Similarly,

E|D2 (w, 0)(1)[5

t
5(1E|Sp1,q1 (Hxo* + Elha(t, w(t), v(H)* + ]E’ f APy, (t = 5)ha(s, w(s), v(s))ds ’
0

g 2
1E|L ?ql(t_S)fl(S,ZU(S),U(S))dS|

' 2
1E| f Py (t =) f ol(C,w(C),v(C))dB(C))ds')

0 0

5
5;11

5(E1Sp, . (0ol + Elha(t, w(t), o) + E| f APy (¢ = 5)hals, 0(s), 0S|
0
t 2
IE‘ fo Py (t - 9) fols, w(s), v(s))ds‘
t S 5
E| fo Pt =) fo 02(C, w(0), o(O)AB())ds|
5
5) i
1=1

)



T. Blouhi et al. / Filomat 37:2 (2023), 531-550
by utilizing the Lemma 2.2, one can have

1-y

) Mrt,
Ji = EISy 4 Bwol} < ( ) Bl

T
()

From (H,)(ii), we obtain

T2 = Elha(t, w(t), o(t)% < AT IPEIA (8 w(®), o) < M2(2al R +a))).

Using Holder inequality and Lemma 2.1, yields
t 2
s = E f APyt = 3 (s, (), (e
0

t
= E f (t—5)41-1A1—“frq(t—s)A;*hl(s,w(s),v(s))dsﬂ

IA

Ci_T(1 _ 2
E f (t — 5™ 1’7;} ( 1:;3( _gyne qTAfhl(s,w(s),v(s))ds’X

" 1C1T(1 + )
o T+ qa)
Ci_T(1 +a) .
(ot ) f (= as) 2al R )

Cl_al“(l + Oé)
( al(1+ q1a) ) (2 @, )

- E (t - s)‘“""lAi‘hl(s,w(s),v(s))ds|i

539

By Bochner’s theorem [31] and APy, (t — s)h1(s, w(s), v(s)) is integrable on | , so @; is well defined on Bxg.

Applying (H3) (ii) and Lemma 2.2 together with the Holder inequality, we find that

Ja

t
]E| f Pyt - 9)fi(s, w(s), U(S))ds|2
r@ qulswlﬁ f(n—#l@«w+cmm@u & Elo(s)R )ds
F(q) f (t, — )"~ 1ds f (t —s)1 71y (s)ds
ﬁf (t1 —s)1~ 1]E|w(s)|de+c1f (t1 — )"~ 1]‘Elw(s)lf\,ds)
0
Mq 2t t i.‘q1
(i (M- B) ([t + (s ()R + 8

Mzt‘“ (1 =B) \@=B) (g8 M i
= (i) 5 o=p) ﬁq”%W%(mﬁﬂl)<% &)

+

By assumption (Hy) (iii), Lemma 2.2 and Burkholder Gundy’s inequality,

ko= | [ 29 [ o, o)

m

(B L@ [t =9~ Bl ), o0t
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q1

7 t1 M
(r]é ))2% (Q)(f (t1 — 8)p1(s)ds + tiR(ci,1 + 5(1,1))
q h .
() QU [ =9 [Tonortasf « Sorct +2)

qn

(%%f @Mg %W”Wﬁww% :m¢+¢»

Therefore, we obtain that

MTtl_y 2

Cr_I(1
5(( r(yl) ) Elwol} + M2(2a} R+ ) ) + (M

aF(l +qa)
Mr 25" (1) @ M 2
<r(‘£)) 1L]l ((071 l,‘;))q lpall  + (F(qT)) ( ) R(ej, +¢5)

(1-B) \@-p ¢ i
m) WW&*%”%+%W

E|D; (w, v)l

) @ai,R

qu

(Fs)

(@) (G

q1

and therefore

1-y

Mrt, "2
sup RA=p)A-4)E|D, (w, U)|X - 5[ sup 2(1=p1)(1- ql)(( 1 ) 1E|w0|3\z +M§c‘v}“

te[0,t1] te[0,t1] r( )
Cio[(1+a)\2 4 My \2, (1= B) \@-p) tPn=P
arfea) % o) (eop) o
Mr 2 (1= B) \@-p 2P
+(T(ﬂll)> Tr(Q)<(f71 —ﬁ)) M

+5R[ sup tz(l_pT)(l—ﬂl)(mi il +2(
te[0,4]

I 1||L%

ipall 3 ]

CioI(1+a) )2
al"(l + q1a)

M 2 } My
(r(%)) (- ) (cf, +25) +( e )) qi (Q)(—(cm +2))]
Thus,
[P (w, o), < A1+ AzR

By similar technique, we get

2 20-pa-gn((MT H\e 2 L Af2a2
w0, = 5] sap (Vo +
te[0,4]
Gl @)y,  Mr 2ih (1= F) \aP)
( aI’(1+qa) ) (F(fh)) Lh((rh—ﬁ)) t ||1P2||L%
My 1=p)\ap
H@=p) N
() 5 ™ =) Igall, ]
+ SR[ sup X —pl)(l—ql)(ZMﬁ ]32 2<C1_al"(1+o¢))2 ﬁz

te[0,h] al(1 + q1a)

My \2/t7\2 ) My ztzl 1 .
(qu)) (a) (c}, +T3) + (F(ql)) q—lTr(Q)(q—l(cﬁ2 + caz)))]
/_\1 + /_\QR

+d,)

540
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In the similar way, forany t € Jr,k=1,...,m

E|D; (w, v)(t)]? 6(]E|Spl,ql (t — 1)@t + EISy, g, (F — t)I((@w(ty), o(t,)P

IA

t
+ Bl x(t), y(0)l + f Aqul(t—s)hl(s,w(s),v(s))dsr
te

+ IE‘ ftt fi(s, x(s), 1/(5))015‘2 +IE‘ It Py (t —s)(foS 01(C, x(0), y(C))dB(C))ds’z)

— )=
< 6((W)Z(El(w(t;))li + diElw(t)), + diElo(t,)P)

+  Mi(a (Elw(®)y + Elob)R) + )
+ (%)2% (Elw(t) + El®)) + &)
( Mr )2 (tke1 — fk)qu_ﬁ( 1-p) )(qrﬁ)
I'(q1) M (@1 = p)
+ (FIE/Z) )z ((tk+1q_1 )™ )z (c;, Elw(D + ¢, Elv(t)[%)
( Mr )2 (b1 — t)* 1P 1-p) )(m—ﬁ)
I'(q1) -B)

beat — b
o Qe B + mmv(t)w)

||¢1||L%

Tr(Q)((

||¢1||L%

Thus,

e A

10, )1, 0

Mr 2p7- 1 MrbT \2 1 1
+ () o Qg >+(r(ql)ql)<cﬁ+cﬁ>)

_ _ CioaT(1 +a)\2_ Mr 20?1 B, (1= B) \@-p
+ 6p21 y>(M§a;1+(—ar(l+qla)) 1+(1"(qj)) - (<q1— ﬁ)) Il

M \2p2n—=P (1-p8)\@-p
+ (r(qj)) . Tr(Q)(((ql_ﬁ)) ipall )
= A3+ A4R

Similarly
pl-r\2 Ci_.I(1
I0aw 0, = 6R((F) (14 + ) + 203, +2(0:r(+;5)))2a§)

Mr 2pn

" («/Tf(ql))q_l TrQ)(e, + &) + (F( )q)(fz %)

+ ep20- ;)(Mz 2 (Cl—ar(l +a))20_( +( Mr ) 2p2nmp ((l -B) )(qrﬁ)

a%y, T al(1 + q1) T@) 7 @1 -p) ||¢2||L%

My 2 b2 F 1= p) \@-p
" (F(QZ)) 91 Tr(Q)(( (- ﬁ)) ||¢2||L%)
= /_\3 + /_\4R

This yields that ©1(Br X Br) C Br and D,(Bg X Br) € Br -



T. Blouhi et al. / Filomat 37:2 (2023), 531-550 542

The second step: @ is continuous.
Let {(w",v")}> | € H1 X H; be a sequence such that (w",v") — (w,v), (n — o) in H; X H;. Then there is a
number R > 0 such that ||w”||3_{] <R, ||U"||3_{] <Rforallnand a.e. t € |, sow",v" € B and w",v" € Bg. Thus,
by (H3)(i) and (Ha)(i),
filt, w"(t), V" (1)) = fi(t,w(t),v()), i=1,2, asn — o0

and

oi(t, w"(t), 0" (t)) = oi(t, w(t),v(®)), i=1,2, asn — o
Hence, by (H>)(ii) and (Hy)(iii), we see that, for t € [0, 1],

2 . .
(t = YV (fls, 0" (9), 0"(5)) = fls, ), 0| < 2t = )W) + 4R + 4 R)

and

(-9 'E| fo (00, (©), 7(0) = (C, (0, DO, < 2THQ) =9 (0e) + ¢, R+, )

Lebesgue dominated the convergence theorem, we need the uniform convergence of the preceding rela-
tionships to

E|®;(w", 0")(t) - Dilw, 0)(#)y
< 4(ElRi(t, w" (1), 0" (1)) — I (¢, w(®), 0O

| [ 0= A6 06,6 - A 06, ]

t 2
+E fo qu(f—S)(ﬁ(srwn(S),v”(S))—fz‘(s,W(S)/U(S)))dS‘X

+E fo Py, (t = 5)( fo S(oxc,w"(o,v"«:))—oz-<c,w<c>,v(o»dB(o)dsD

foreacht € J,k=1,...,m, by a similar argument we obtain
E|®; (", 0")(t) - @1(w, 0)(1)
< 6(ELS,, g, (t = ) (@" () — ()
HEISp, 4, (¢ = BT (), 0" (1)) = T@" (1), 0" (55
+El (£, w" (), 0" (1) = ha (£, x(8), v(®)Iz

t
+E f Py (t = 8)(Arhi(s, w"(s), 0" (s)) — Arhi(s, w(s), v(s))dslj(
b

+ 2
+E f Por(t = 5)(fi(6, 0"(6),"(5) = fis, w(s), 0],

t S
+E f Pt = 5)( fo (cn(c,w"(c»v"(c»—ol<c,w<c:>,y(C)))dB(c:))dsD

similarly, using the same way, we find

EID2(w", 0")(t) = @a(w, 0)(B)y
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< 6(EIS,, 0, (t — L)@ (1) - ()R
+ELS), g, (£ = t)Te@ (1), 0" (£7) — L@ (£), 0" ()
+Elha(t, 0" (1), y" () — hat, w(t), o)

+E f Py (t = 5)(A2ha(s, w"(s), 0" (s)) — Asha(s, w(s), v(s)))ds‘

+E f Pt = (s, 09, 01(6) — als, ws), 0NN

t S
+E f Pt = 5)( fo <az<c,w"<c>,v"<c>>—oz<c,w<c:>,v<c>>>dB<c>)ds|i)

Clearly, the right-hand side of tends to zero as n — co. This implies that ® is continuous in B X Br.

The third step: ® maps bounded sets into bounded sets in H; x H;. Indeed, it is sufficient to show that for
any R > 0, 3 a positive constant « such that for each z € Br = {(z € Hi, |lzll, < R}, we have

10w, V)llg, < 1 = (K1, %2)-

Then, for each t € | and thanks to Lemma 2.1 and 2.2, for each t € [0, ¢;]
Dy (w, 0)ll7, < A1+ AR =k

In the same fashion, one has
102w, 0)lE, < Ai+AR=1E

foreacht € Ji,k=1,...,m, which gives

D1 (w, v)Ilng 6R((M)2(1 +d + d_l) +2M?%al + Z(M)Za}“)

IA

T'(y) %y al'(1+ q10)
Mr  \2(t—tgF Lo (M=t

(@r(ql)) 7 TrQ)teo, + &) +< NGV ) s +Cf1))
e R )

My \2(t=#)* 1P (1= B) \@—p)
’ (F(ql)) 0 ( ﬁ)) Il

My \2(t = )*1 P (1=Pp)\@-p

(r(qn) . (Q)((( ﬁ)) il 1)

Similarly, we can also get

ot 9l 6R<<M>2<1+dz+az> e+ Sl o

B I'(y) @ T AU + qra)
MT 2 (t - tk) MT(t - tk)q1 2 1 1
) THOE, +11) + Craom ) € %)
+ 6(t _ tk)z(l_y)<M§ iz (Cl—ar(l + Ck) )2 _iz

al(1+ qra)
My \2(t = 1)*1F (1= B) \@-p)
(F(ql)) n ((vh —ﬁ))

gl
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Mr \2(t—t )qu—ﬁ a- ﬁ) @-p)
) T Qlgzp) ely)

Take x, = max {K%,K’{} and x, = max {Kf, Kg}
k=1,...,,,m k=1,...,,m

@1, 0, | _ [
12w, )5, )=\ w2
The fourth step: © = (P;,D,) is a y— contraction

We decompose @ as @; = @ + @2 and @, = @] + @37 where the operators @1, @3 and @}, @3 are defined on
Hy X H; , respectively, by

Further, we obtain

Splflh (t)wO + ﬁ Pf]l (t - S)fl (S/ ZU(S), U(S))r P - a.s, te [Or tl]

Ol (w, v)(t) = Splﬂl (t = t)((t) + Ie((w(ty), v(t))
+ f Po(t =) fils,x(s), y(s)ds, P —as, t €t bl
tk

t
I (t, w(t), v(t) + fo Pyt = 5)(Arh (s, (s), 0(5))ds
+ fo 01(C,w(0), 0(Q)dB(QO))ds, P —as, te[0,h]
qD%(w,v)(t): ,
hy(t, w(t), v(t)) +f qu(t—s)(Alhl(s,w(s),v(s))
tk

+ f 01(C,w(@), v(O)BQ))ds, P—as, te (t bl ¥ =p1+q—pin
0

and

t
SPMh (t)yo + f qu (t - S)fZ(S/ ZU(S), U(S)), P - as, te [0/ tl]
0

(6, y)(E) = S (= )@(E) + TolE), o)
t
+ fqu(t—s)fz(s,w(s),v(s))ds, IP—as, te(t, tr]
tk
t
hz(t,w(t),v(t))+£P,h(t—s)(Azhz(s,w(s),v(s))ds
¢ [ oG u©oOMBOMs, Pas, telon]
Di(w, v)(t) = t
a0, 20) + [ P46 = 9 Aahats 068, 269
t

k

+ f 02(C,w(0), 0(Q)ABO))ds, P—as, te (ty bl ¥ =p1+q1 - P
0

We will show that q)%, (D; is a compact operator, while the @?, q)i verifies a contraction condition. We take

(w, v) € Br X B, to prove @7, O] satisfies a contraction condition. We require the beneath three claims.
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The first claim: @2, 7 is Lipschitz continuous.
Lett €[0,t;1] and (w, v), (@, 7) € Br X Br. From (H,) (ii),(Hy)(iii) and Lemma 2.2, we have

E|®3(w, v)(H) — D@, 0)(1)l
< 3(1E|h1(t, w(b), v(t)) — hi(t, (), 5()))[5

t
| [, - 96,00, 209) - A, 006, 5]
0

+]E| fo Pt = s)( fs(Ol(C,x(C)/y(C))—Gl(C,f(C),y(C)))dB(C))ds'i)

< Mﬁ(c,ﬁlElw(t) — ()3 + ¢, Elo(t) - v(t)|X)
() (GlEk® — o) + R - o))

qu
(r]t/;T)) _T (Q)( Elu(t) - o) + AL Elo(t) - 27(t)|f\,))

<3(M2c, +

M)Z | My ) _T QAL JEl(t) - (b

al' (1 + q1a) I'(q1)
2q1
_ Cl_al”(l + 0() 2_1 Mr 2
+3(M2c1 +(ar(1—+w)) ¢ +(T(q1)) q—T HQ)AL )]Elv(t)—v(t)lX

Thus,
192w, 0) — D@, ), < pur(t)llo — @IE, + ()0 — o,
Similarly, using the same way, we find

D3 (w, v) = 3@, D)5, < f(t)llw = @Il5, + fa(tr)llo -2l

where
20 Ci1-oI(1+ a)y2 Mr 1_ 1
p(h) = 3677 (Mae, + ( al(1 + g1a) e <F(q1)) I QM)
_ ~ Cial'(1 + a)\2_ M

pat) =367 (M2, + (S ) +(r(qT)) "o, )
wnd CraT(l+a)2 , | My 2B"

7 — 3.20-n Sl ra) T

[Jl(i’l) 3t v (Mac +( ar(l " qla) ) c, t+ (I_.(ql)) ql (Q) )

2q1

_ _ ~ Ci—ol (1 + a)\2_ M

fa(b) =36 (M2g + (Srer T Jai+ (5 (qT)) THQ)AZ)
Hence

_ 3 (w, v) — ©}(@, D)
1% (w, v) - ©*(@, V)3, ( : ; Jh

||(D§(w, v) - cD%(w/ Z_))”3_{1

N ITICORTICY ||w—w||;,1)
fa(t)  pa(t) ||v—z7||3{l .
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Therefore

llw — @l

||(D2(wl U) - @2(@[ 6)”3.(1 < Mtrix(tl) ( ”,U _ Z—)HZHl) s for all/ (x/ 3/)/ (}/ }7) € 7_{1 X 7_[1'
H,

In the similar way, for any f € J,k =1,...,m, we have
D3 (x, y) = DIE, DIl < pB)llw =@l + pa(d)llo -3l
Similarly, we have
0.
13 (w, v) = 3@, D)5, < m®llv — oIl + E2(0)llo —3ll5,
Then, for all ¢ € [0, b], we have

llw — @l

||¢)2(w/ U) - (I)Z(w/ 6)”,2 : < Mtrix(b) ( ”,0 _ ,(7”2H1) 7 for all/ (wr 'U), (ﬁ/ 5) € 7—{1 X 7—{1'
Hi

Since the spectral radius p(Mjix) < 1. Hence, @7, @3 is Lipschitz continuous.

The second claim: @], ®) maps bounded sets into equicontinuous sets of H; X ;.

Let B, be a bounded set in H; X H; as in Step 3. Let (;, (; € [0,t1], &1 < (2 and w, v € Bg. Then, fori=1,2, we
get

E|0} (w(C2), v(C2)) — P} (w(Ca), oG )
< 2(EI(S,, 4, (C2) = Spr s (Dol

Co C1
+]E’ f Py(Ca = s) f1(s, w(s), v(s))ds — Py (C2 = 5) fi(s, w(s), v(s))ds’i)
0 0
Co
< 2(”(8,171,111 (CZ) - SPIJ]](CZ))||2]E|wO|§( + ]E| L qu(CZ - S)fl(sr ZU(S), U(S))dS
Gy 1 2
S RGICEREEACERTISER N
Co
< 2{1(Sy0.(0) = Sy @Bl + Ca= 0 [ EP =96 009, s
C1—€ 1 2
| [ P9~ PG~ s 00, o]
2
+E| fc (Po(Ca = 9) = Py (€1~ N fils,006), o],
C2
< 2{1(Sy0(2) - Sua @I ERf + @2~ 0 [Py (G =96 060 060 s
C1—€ 1 2
G [ =9 =Py = DB e, o]

C1
te | Pp(Ca—s)—Py(Ci- s))]E| fl(s,w(s),v(s))ds|i.

G-

Similarly, for any (;, G € [0, 5], G < &
E|0;(w(C2), v(C)) — @ (w(Cr), v(Cr)ly

Ca
< 2{1(Sy0.©) = Sy @I + G = ) [ B @ = 96 09, w6 s
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C1—€ 2
w0 [ Pa@ =9 - Py - NE]Gs w6, oo,

€ (P (G2 —8) =Py (C1 - S))]E| fa(s, w(s), v(s))ds|:

Observe that from ||®} (w((2), v(C2)) — @} (w(Ch), y(Cl))II,2H1 tends to zero independently of w,v € Bg,i = 1,2
as (1 — Cp , with e sufficiently small since the compactness of S, 4, (t) for t > 0 (see [33] ) implies the conti-

nuity in the uniform operator topology. Similar result can be found when t; < (; < G <, k=1,2,...,m.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem @}, @) is relatively compact.

The third claim: (I)%, @72 is a y-contraction.
Lett€[0,t1] and w,v, @, 7 € Brk.
|0} (w, v) — Di(@, 77)||§{1

<3 sup LU (Elh(t,w(t), v(t) - ha(t, @), 5(1)
te[0,4]

+]E| f qu(t—s)(Alhl(s,w(s),v(s))—Ahl(s,w(s),ﬁ(s)))ds'i
0

f S
+E| fo Pyt = 5) fo (o1&, 0(0), 0(0) = 01(C, D(O), HONBO)| ).

From (H;)(ii), (H4)(iii) and Lemma 2.1, we have

|(D%(w/ U) - CD%(ZI), 5)”3{1

2q1
20=9)(r 2 1 . (Cr-al (T +a)\2 4 My \2t] ) o
< 4 - —_ —
<3t (M“Ch+(ar(1+q1a)) h+(r(q1)) 7 THQAL )Iiw - @I,
2q1
209 (a1, (Clmal(L+a)\2 4 Mr 26 - "
#3 PV (SR gy ) & () g 7@ Il - 21

which implies that
103 (w, v) = DH@, D)z, < pa(t)llw — @i, + pa(t)llo = a3,

Similarly, for any ¢ € [0, 1], we see that
193w, v) - V2@, DB, < fr(t)llw — DIZ, + ma(t)llo - B2,
Foranyte€ Ji,k=1,2,..,mand w,v,®, 0 € Bg, we have

103 (w, v) - D@, D),

Ci—al'(1 + @) )262[ + ( Mr

220
< 3b2(1_y)(MiC21 + ( ) —2T7’(Q)/\L171)”w - w”%‘ﬁ

al' (1 + 1) (g’ a3
~ 4 CioaT( +a)\2_ Mr \2 b2 . i}
+3020 N (M2 + (== 20) ! —-Tr( Q)AL llo - all
( h ( aF(l +LI10€) ) h (r(ql)) q% (Q) 1) Hy

Hence, for all t € [0, b]:
D3 (w, v) = O} (@, D)7, < ®)lw — DI, + pa(b)llo -2l

Similarly,
3 (w, v) = ©3(@, D)3, < E®)llw — @I, + F2(b)llo — 217,



T. Blouhi et al. / Filomat 37:2 (2023), 531-550 548

We give now an upper estimate for y(N?((Br, Br)). we get the inequalities given bellow

X(DT(Br, Br)) < p1(b)xX(Br) + p2(b)x(Br)
Similarly, we have

X(P3((Br, Br)) < f1(b)x(Br) + f2(b)x(Br)
Then

(X((Dl((BR/BR))) < (X(q)%((BR/BR))+X(N%((BR/BR))
X(@,((Br, Br))] ~— \X(Py((Br, Br)) + x(N5((Br, Br))

Since N (Bg, Br) and @}(Bg, Br) is relatively compact in X,
X(@L((Br, Br)) _ (0
X(D,((Br, Br)) 0

Hence,

, _ [x(@(Br, Br))
X(@(Br,Br)) = (X((D%((BR,BR)))

(}11(17) #2(5))()((812))
pab)  f2b)) \x(Br))

IA

where

| B Hl(b) ,U2(b)
Mtrzx(b) - ([-_ll(b) ﬁZ(b))

As a consequence of Lemma ??, the mapping @ has at least one fixed point on 8g x Br. 0O

4. Example

Consider the following Hilfer fractional stochastic partial differential equation with impulsive effects

D4 (w(t, ) ~ Hi(t,w(t,0), 0(t, ) = Zxw(t, €) + F(t, wit, <), o, <))
t

+ f 01(C 0T ), 0(C OB, 20, t#h, 0<c<m,

D’Si“(v(t ¢) = Ha(t, wlt, ), o(t, f;))) Zolt, €) + Gt wit, ©), (t, <))

. f 2G0T ), oG JdBQ), 20, t#h, 0<c<m,
0

®)

witf, Q) - wlt;, ) = ma(t;, <), k=1,-

o(ty,c) — oty o) = axo(t,c), k=1,---,m,

w(t,0) =w(t,m)=0,t>0,

o(t,0)=v(t,7)=0,t >0,

(1-p1)j Tl _
Iy " @(0,0)) + [ Ki(e, 2)w(t, ) = wo(c), 0 < ¢ <7,
—p)d

11 00,0) + [ Kale, 2)0(t,0) = v0(c), 0< c <,

where Dgl’% is the Hilfer fractional derivative of order p; € [0,1], g1 = %, 13(1 P is the Riemann-Liouville

integral of order 1(1 — p1) and ay > 0, B represents a one-dimensional standard Brownian motion.
Let

x(£)(¢) = w(t, ¢), y(t)(c) = v(t,¢) te ] c€[0,7]
Ik(X(tk))(g) = akw(t]:/ C), Tk(]/(tk))(g) = akv(t[:/ C) cE [0/ T(]/ k=1,---,m
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ft,x(), y(H)(c) = F(t,w(t, c),v(t,c)), , ¢€l0,m],
g(t, x(t), y()(c) = G(t, w(t, ¢),v(t,c)), , ¢c€l0,m].
wo(c) = w(0,¢), vo(c) =v(0,¢) , ¢€[0,m],

Take Y = X = L*([0, 7t]),wo(c), vo(c) € L*([0, t]),Ki(c,z) € L*([0, ] X [0, 7]). With domain D(A) = {u €
Xu,ueX and w(0)=w(n) =0}, the operator A is defined byy Au = u", .

So, it is clear that

)

Az = Z —n’Kz, e,)en, z € X,

n=1
and A is the infinitesimal generator of an analytic semigroup {7 (f)};»0 on X, which is written as
T (Hw = Ze‘”ztw, enYen, en(w) = (2/m)Y?sin(nu), where w € X and n = 1,2,-+, is the orthogonal set
n=1
of eigenvectors of A. The analytic semigroup {T(t)}s0, t € ], is compact and 3 a constant M > 1 such that
|7 (> < M. Furthermore, for any w € X, we have

P%(t)=2 fo O3 ()T (£ 0)d0

© t
Ps(Hhw = %Z f O3 (0) exp(—1*t™3HdO(u, e, e,
1 5 ~ Jo i

We choose a sequence {0,,},>1 C R* to define the operator Q : K — K, set Qe, = A,e,, and assume that

Q) = Z \/A—n < oo.
n=1
Define the process Bg(s) by
Bo =Y VAiu(tlen,
n=1

where {B,}seN is a sequence of two-sided one-dimensional mutually independent Brownian motions.
Also, we define the following functions:

x(H)(c) = w(t, c), y(t)(c) =o(t,c) te] cel0,m],
a;wi(t, c)

it w(t, 0ot ) = 577 )1+ w(t,c) + 02, 0))

x>0, te], ce€l0,m],

a3’ (t, )

ottt )2 ) = 5 T a1+ w0 + )

a, >0, te] ¢ce[0,m],

—t

E(t, w(t, <), o(t, <)) = uj—e) sin(w(t, <) + o(t, <))

—2t

G(t,wit, c), vlt, <)) = ﬂj—ez) sin(w(t, ) +v(t, )))

sin(w(t, ¢) + v(t, <))
2ti

sin(w(t, ¢) + v(t, <))
3ti

o1(t, w(t, ¢),v(t,¢) =

oa(t, w(t, ¢),v(t, ¢) =
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with the above choices, the system (5) can be revamped in the theoretical type of (1), since clearly functions
H;, F, G and ¢; are altogether uniformly bounded. Then again, it is simple to infer that all the conditions of
Theorem 3.1 are fulfilled. In this manner, we conclude that the system (1) has a unique mild solution.
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