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Abstract.
It is proved by counter example that one of the theorems presented in [FILOMAT 29:8 (2015), 1781-

1788] does not always hold true. It is also proved by counter example that the necessary condition given in
Theorem 3.7 [If diam(H) = 2, then s(K1 ⊙H) = s(H)] mentioned in the above cited paper does not hold true.

By a 1raph G = (V,E), we mean a finite undirected connected graph without loops or multiple edges.
The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology we refer
to [7]. For every vertex v ∈ V, the open neighborhood N(v) is the set {u ∈ G/uv ∈ E(G)}. The degree of a vertex
v ∈ V is de1(v) = |N(v)|. If e = {u, v} is an edge of G with de1(u) = 1 and de1(v) > 1, then we call e a pendant
edge or end edge, u a leaf or end vertex and v a support. A vertex of degree n − 1 is called a universal
vertex. The minimum and maximum degrees of G are denoted by δ(G) and △(G), respectively. The subgraph
induced by a set S of vertices of G is denoted by ⟨S⟩ with V(⟨S⟩) = S and E(⟨S⟩) = {uv ∈ E(G) : u, v ∈ S}. A
vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete. Let K and H be two
graphs and let n be the order of H. The corona product K ⊙ H is defined as the graph obtained from K and
H by taking one copy of K and n copies of H and then joining by an edge, all the vertices from the ith-copy
of H to the ith-vertex of K. The closed interval I[u, v] consists of all vertices lying on some u − v geodesic of
G including the vertices u and v. For S ⊆ V, I[S] = ∪u,v∈SI[u, v]. A set S of vertices is called a geodetic set
if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of
cardinality g(G) is called a 1-set. The geodetic number of a graph was studied in [5,6,9,10,12,18]. Recently
tremendous work in geodetic number of a graph has been done by H. Abdollahzadeh Ahangar et al. in
[1, 2, 3, 4]. It has applications in game theory, telephone switching centres, facility location, distributed
computing, information retrieval, and communication networks. For W ⊆ V, the Steiner distance d(W) of
W is the minimum size of a connected subgraph of G containing W. Necessarily, each subgraph is a tree
and is called a Steiner tree with respect to W or a Steiner W-tree. It is to be noted that d(W) = d(u, v), when
W = {u, v}. If v is an end vertex of a Steiner W- tree, then v ∈W. If v is a cut vertex of G, then v lies in every
Steiner W - tree of G. Also if ⟨W⟩ is connected, then any Steiner W-tree contains the elements of W only.
The Steiner distance was studied in [13]. For W ⊆ V, S(W) denotes the set of all vertices that lie on Steiner
W - trees. It is to be noted that S(W) = W if and only if ⟨W⟩ is connected. A set W ⊆ V is called a Steiner
set of G if S(W)=V. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set and this
cardinality is the Steiner number s(G) of G. Let W be a Steiner set of G. Then W ∪ {v} is also a Steiner set
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of G if and only if v is a cut vetex of G. The Steiner number of a graph was introduced in [6]. The Steiner
number of a graph was further studied in [8,9,10,11,12,14,15,16,17,18]. Steiner tree problem is used in
combinatorial optimization and computer science especially in design of computer circuits. They have nu-
merous applications in industries. Applying the Steiner tree concept improves the effectiveness in networks.

Geodetic and Steiner numbers of some class of graphs of diameter 2

Table 1

G K1,n−1 C4 C5 Kr,s(2 ≤ r ≤ s) W1,n−1 Kn − {e}

1(G) n − 1 2 3 min{4, r}
⌈

n−1
2

⌉
2

s(G) n − 1 2 3 r n − 3 2

1. Not every Steiner set of minimum cardinality in a graph of diameter 2 is a geodetic set of G

In [6], it is proved that every Steiner set in a connected graph is a geodetic set. Later in [14], I.M.Pelayo
disproved that every Steiner set in a connected graph need not be a geodetic set. By Observing Table 1, all
graphs has diameter 2 and the inequality 1(G) ≤ s(G) holds. Hence, they deduced in [10] that every minimum
Steiner set is a geodetic set of a graph having diameter 2. With regard to this derivation, the proof of Theorem
4.1 in [10] can be cited below.

Let W be a Steiner set of minimum cardinality in G and let n be the order of G. If ⟨W⟩ is connected, then
| W |= n. Then G � Kn, which is a contradiction because G has diameter two. Thus, ⟨W⟩ is non-connected.
Let B1,B2, ...Br be the connected components of ⟨W⟩. We assume that W is not a geodetic set. Then there
exists a vertex x of G such that x < I[W]. Thus, x < W and x < I[u, v] for every u, v ∈ W. Hence, NW(x) ⊆ Bi,
for some i ∈ {1, 2, ..., r}. Since G has diameter two, any Steiner W-tree is formed by r Steiner Bi-trees
connected by vertices v1, v2, ..., vt, t ≥ 1, not belonging to W such that NW(vi) ⊈ B j, for every i ∈ {1, 2, ..., t}
and j ∈ {1, 2, ..., r}. Hence, S(W) = (∪r

i=1S(Bi)) ∪(∪t
i=1{vi}) = (∪r

i=1Bi)∪ (∪t
i=1{vi}), where the last equality comes

from the connectivity ⟨Bi⟩. Therefore x < S(W), which is a contradiction.
It can be proved in other-way that the statement is not necessarily true. For example consider the graph

G given in Figure 1.1. The distance matrix of G is given in the Table 2
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Table 2

d(x, y) x1 v2 v1 x2 v3 x3 v4

x1 0 1 1 2 2 2 1
v2 1 0 1 2 2 1 2
v1 1 1 0 1 2 2 2
x2 2 2 1 0 1 2 2
v3 2 2 2 1 0 1 1
x3 2 1 2 2 1 0 2
v4 1 2 2 2 1 2 0

From the Table 2, we see that diameter of G is 2. It can be easily verified that no 2-element subsets of G
is a Steiner set of G and so s(G) ≥ 3. Let W = {x1, x2, x3}. Then S(W) = V and so W is a minimum Steiner set
of G so that s(G) = 3. So by a careful analysis of proof by taking the minimum Steiner set W = {x1, x2, x3},
we disprove Theorem 4.1 in [10]. We assume that W is not a geodetic set. Then there exists a vertex x of G
such that x < I[W]. Thus, x < W and x < I[u, v] for every u, v ∈ W. Let us take the vertex x as v4. Hence,
NW(v4) ⊆ B1.

The connected components of ⟨W⟩ are B1 = x1, B2 = x2 and B3 = x3 and they are shown in Figure 2.2.
The element not belonging to W are v1, v2, v3 and v4. Now NW(v1) = {x1, x2} ⊈ B j, NW(v2) = {x1, x3} ⊈ B j
and NW(v3) = {x2, x3} ⊈ B j for some j (1 ≤ j ≤ 3). But NW(v4) = {x1} = B1. Since ⟨B1⟩ = K1, the
elements of Steiner B1 - tree is x1. Therefore S(B1) = x1. Similarly S(B2) = x2 and S(B3) = x3. Therefore
S(W) = S(B1) ∪ S(B2) ∪ S(B3) = {x1, x2, x3} = W. Which implies ⟨W⟩ is connected. But, we have ⟨W⟩ is not
connected, which is a contradiction. This contradiction arises because any Steiner Bi - trees, (1 ≤ i ≤ 3)
contain only one element. Therefore we cannot connect the vertices v1, v2, ..., vt(1 ≤ t ≤ 4), not belonging
to W such that NW(vi) ⊈ B j for every i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4} to any Steiner Bi - tree, (1 ≤ i ≤ 3) and
also x < I[u, v] is not used anywhere in the proof of Theorem 4.2 in [10]. Observe that the vertex v4 < I[W].
Therefore W is not a geodetic set of G. Since s(G) = 3, 1(G) ≥ 3. It is easily verified that no 3-element subsets
of G is not a geodetic set of G and so 1(G) ≥ 4. Let S = {x1, v1, v2, v3}. Then I[S] = V and so S is a geodetic
set of G so that 1(G) = 4. Hence for the graph G given in the Figure 1.1, s(G) > 1(G) and diameter of G is 2.
Therefore Corollary 4.2 in [10] is wrong.

2. The Steiner number of corona product graphs

The necessary condition given in Theorem 3.7 in [10] is not true. i.e., If H is a graph having diameter
2, then s(K1 ⊙ H) = s(H) is not necessarily true. With regard to this derivation, the proof of first part of
Theorem 3.7 in [10] is given below. Let B be a Steiner set of minimum cardinality in H and let v be the
vertex of K1. If Diam(H) = 2, then there exist three vertices of H such that x, y ∈ B and z < B, dH(x, y) = 2
and x, y ∈ NB(z). So, if we take a Steiner B-tree T in H containing the path xzy, then replacing the vertex z
of T by the vertex v, and replacing every edge uz of T by a new edge uv, we obtain a Steiner B-tree T′ in
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K1 ⊙ H. Hence, B is a Steiner set of K1 ⊙ H. Therefore, s(H) ≥ s (K1 ⊙ H) and, by Lemma 3.3, we conclude
s(H) = s(K1 ⊙H).

Again by observing Table 1 all graphs has diameter 2 and s(K1 ⊙ H) = s(H). Hence, they deduced that
for a connected non-complete graph H, s(K1 ⊙H) = s(H) if and only if diameter of H is 2.

The graph H given in Figure 1.1 has diameter 2. Take the minimum Steiner set B = {x1, x2, x3}

and let v be the vertex of K1. Since diameter of H is 2, there exists three vertices of H such that x, y ∈ B and
z < B, dH(x, y) = 2 and x, y ∈ NB(z). Take x = x2, y = x3 and z = v3 so that x, y ∈ NB(z). Consider the Steiner
B-tree T of H containing the path xzy. It is the tree T1 given in Figure 1.1(a), Let T′ be a tree obtaining T1 by
deleting the edges x2v3, x3v3, v4v3 of T1 and introducing the vertex v and adding the edges x2v,x3v and v4v.
Since W ⊆ V(T′ ) and |V(T′ )| = |V(T1)|, T′ is a Steiner B-tree of H. The tree T′ is given in Figure 2.2(a). But, v is
adjacent to x1 in K1⊙H. Let T′′ be a tree obtained from T′ by introducing the edge vx1 and deleting the edge
x1v4 from T′ . The tree T′′ is given in Figure 2.2(b). Since B ⊂ V(T′′ ), the tree T′′ is a Steiner B-tree of K1 ⊙H.
Since |V(T′′ )| = |V(T′ )|−1 = 3, T′′ is the only Steiner B-tree of K1⊙H. Which implies S(B) , V(K1⊙H). Hence
it follows that B is not a Steiner set of K1⊙H. Therefore we cannot conclude that s(K1⊙H) ≤ s(H). It is easily
verified that no 2-element or 3-element subsets of K1 ⊙ H is a Steiner set of K1 ⊙ H and so s(K1 ⊙ H) ≥ 4.
Let W′

= {v1, v3, x1, x3}. Then S(W′

) = V(K1 ⊙ H) and so W′

is a Steiner set of K1 ⊙ H so that s(K1 ⊙ H) = 4.
Therefore for the graph K1 ⊙H given in Figure 2.1, s(H) , s(K1 ⊙H) with Diam(H) = 2. Hence Theorem 3.7
in [10] is wrong.

3. Conclusion

In the presented article, it is validated that 1(G) ≤ s(G) is disproved for a connected graph having diameter
two. Alternatively it can be further investigated that under what condition 1(G) ≤ s(G) holds for a
connected graph having diameter two.
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