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Abstract. In this study, generalized multivalued vector inverse quasi-variational inequality problems
are developed, and error bounds are obtained in terms of the residual gap function, the regularized gap
function, and the D-gap function. With the help of these constraints, one can effectively estimate the
distances between any feasible point and the solution set of problems involving generalized multivalued
vector inverse quasi-variational inequality.

1. Introduction

The theory of variational (Quasi-variational) inequality is quite application oriented and thus developed
much in recent years in many different disciplines. This theory provides us with a framework to understand
and solve many problems arising in the field of economics, optimization, transportation, elasticity and
applied sciences. The fundamental goal in the theory of variational (Quasi-variational) inequality is to
develop a streamline algorithm for solving a variational inequality and its various forms. These methods
include the projection method and its novel forms, approximation methods, Newton’s methods and the
methods derived from auxiliary principle techniques.

In 1980, vector variational inequalities were initiated in setting of the finite dimensional Euclidean
space, see [5]. This is a generalization of scalar variational inequalities to the vector case by virtue of multi-
criteria consideration. The inverse variational inequalities were introduced by He et al. [7] and have many
applications in various fields such as market equilibrium problems in economics and telecommunication
networks, see [8–12, 17, 18, 20, 25].

In 2014, Li et al. [14] introduced a new class of inverse mixed variational inequality in the setting of
Hilbert spaces, which has simple traffic network equilibrium control problem as an application. For the
analysis of optimization problems, the idea of gap function was first introduced and plays an important
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role in developing iterative algorithms, but more importantly in evaluating their convergence properties
and obtaining useful stopping rules for iterative algorithms, see [1, 3, 13, 16, 21]. Error bounds are very
important and useful because they provide a measure of the distance between a solution set and a feasible
arbitrary point.

Solodov [22] developed some merit functions associated with a generalized mixed variational inequality
and used those functions to obtain mixed variational inequality error limits. Recently, Aussel et al. [2]
introduced a new inverse quasi-variational inequality (IQVI), obtained local (global) error bounds for IQVI
in terms of some gap functions to demonstrate IQVI’s applicability, and gave an example of problems with
road pricing. Sun and Chai [23] introduced regularized gap functions for generalized vector variational
inequalities (GVVI) and obtained GVVI error bounds for regularized gap functions.

Our goal in this paper is to initiate a study of a problem of generalized mixed vector inverse quasi-
variational inequality with point to set-valued mappings. We propose three gap functions, the residual gap
function, the regularized gap function, and the D-gap function, and obtain error bounds for generalized
mixed vector inverse quasi-variational inequality using these gap functions and generalized ζ-projection
operator under the strong monotonicity, relaxed monotonicity and Lipschitz continuity of underlying
mappings.

2. Preliminaries

Throughout this paper, we assume that the set of non-negative real numbers is denoted by R+, the
origin of all finite dimensional spaces is denoted by 0, and the norms and the inner products of all finite
dimensional spaces are denoted by ∥ · ∥ and ⟨·, ·⟩, respectively. LetΩ,F ,T : Rn

→ 2Rn
be the mappings with

nonempty closed convex values and Pi,Qi : Rn
→ Rn (i = 1, 2, · · · ,m) be the point to point mappings. Let

p : Rn
→ Rn be a point to point mapping and ζi : Rn

→ R (i = 1, 2, · · · ,m) be real-valued convex functions.
We put

ζ = (ζ1, ζ2, · · · , ζm), P = (P1,P2, · · · ,Pm)

and for any x,w ∈ Rn,
⟨P(x),w⟩ = (⟨P1(x),w⟩, ⟨P2(x),w⟩, · · · , ⟨Pn(x),w⟩).

We consider the following generalized vector inverse mixed quasi-variational inequality (GVIMQVI)
for finding ū ∈ F (x̄), v̄ ∈ T (x̄) and x̄ ∈ Ω(x̄) such that

⟨P(ū) +Q(v̄), y − p(x̄)⟩ + ζ(y) − ζ(p(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), . (1)

where intA denotes the interior of the set A. The solution set of (1) is denoted by sol(GVIMQVI).

Special Cases:

(i) If we note that T is a point to point mapping and Q is a zero mapping, then problem GVIMQVI
reduces to the following problem for finding ū ∈ F (x̄) and x̄ ∈ Ω(x̄) such that

⟨P(ū), y − p(x̄)⟩ + ζ(y) − ζ(p(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄). (2)

(ii) If F is the identity, then (2) reduces to the following vector inverse mixed quasi-variational inequality
(VIMQVI) problem for finding x̄ ∈ Ω(x̄) such that

⟨P(x̄), y − p(x̄)⟩ + ζ(y) − ζ(p(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), (3)

which was studied in [24].
(iii) If C ⊂ Rn is a nonempty, closed and convex subset, p(x) = x and Ω(x) = C for all x ∈ Rn, then (3)

collapses to the following generalized vector variational inequality (GVVI) for finding x̄ ∈ C such that

⟨P(x̄), y − x̄⟩ + ζ(y) − ζ(x̄) < −intRm
+ , ∀y ∈ C, (4)

which was considered in [23].
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(iv) If ζ(x) = 0 for all x ∈ Rn, then (4) reduces to vector variational inequality (VVI) problem introduced
and studied by [4, 6, 19]. Obviously, for m = 1, (3) collapses to the following inverse mixed quasi-
variational inequality (IMQVI) problem for finding x̄ ∈ Ω(x̄) such that

⟨P1(x̄), y − p(x̄)⟩ + ζ1(y) − ζ1(p(x̄)) ≥ 0, ∀y ∈ Ω(x̄), (5)

which was studied in [15].
(v) If ζ1(x) = 0 for all x ∈ R̄n, then inverse mixed quasi-variational inequality problem collapses to the

following inverse quasi-variational inequality ((IQVI) problem for finding x̄ ∈ Ω(x̄) such that

⟨P1(x̄), y − p(x̄)⟩ ≥ 0, ∀y ∈ Ω(x̄). (6)

(vi) If C ⊂ Rn is a nonempty closed and convex subset and Ω(x) = C for all x ∈ Rn, then inverse mixed
quasi-variational inequality problem collapses to the following mixed variational inequality (MVI)
problem for finding x̄ ∈ C such that

⟨P1(x̄), y − p(x̄)⟩ + ζ1(y) − ζ1(p(x̄)) ≥ 0, ∀y ∈ C, (7)

which was studied in [2]. When C = Rn, mixed variational inequality was introduced by Solodov
[22].

(vii) When P1(x) = x, for all x ∈ Rn, mixed variational inequality becomes inverse mixed variational
inequality (IMVI) which was studied by [14].

(viii) For i = 1, 2, · · · ,m,we denote the inverse mixed quasi-variational inequality (IMQVI) associated with
Pi, p, Ω, and ζi as (IMQVI)i. The solution sets of (IMQVI)i are denoted by sol(IMQVI)i.

In this paper, we intend to study several scalar-valued gap functions and error bounds for generalized
vector inverse mixed quasi-variational inequality problem with point to set-valued mappings. In order to
do this, we shall revoke some notations and definitions, which will be used in the sequel.

Definition 2.1. [2] Let P : Rn
→ Rn and p : Rn

→ Rn be two maps.

(i) (P, p) is said to be a strongly monotone couple with modulus µ if there exists a constant µ > 0 such
that

⟨P(y) − P(x), p(y) − p(x)⟩ ≥ µ∥y − x∥2, ∀x, y ∈ Rn;

(ii) (P, p) is said to be a relaxed monotone couple with modulus µ if there exists a constant µ > 0 such that

⟨P(y) − P(x), p(y) − p(x)⟩ ≥ −µ∥y − x∥2, ∀x, y ∈ Rn;

(iii) p is said to be ℓ-Lipschitz continuous on Rn if there exists a constant ℓ > 0 such that

∥p(x) − p(y)∥ ≤ ℓ∥x − y∥,∀x, y ∈ Rn.

For any fixed ρ > 0, let G : Rn
× Ω̃→ (−∞,+∞] be a function defined as follows:

G(φ, x) = ∥x∥2 − 2⟨φ, x⟩ + ∥φ∥2 + 2ρζ(x), ∀φ ∈ Rn, x ∈ Ω̃, (8)

where Ω̃ ⊂ Rn is a nonempty closed convex subset and ζ : Rn
→ R is convex.

Definition 2.2. [25] We say that ℸζ
Ω̃

: Rn
→ 2Ω̃ is a generalized ζ-projection operator if

ℸζ
Ω̃
φ =
{
w ∈ Ω̃ : G(φ,w) = inf

y∈Ω̃
G(φ, y)

}
, ∀φ ∈ Rn.
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Remark 2.3. If ζ(x) = 0 for all x ∈ Ω̃, then the generalized ζ-projection operator ℸζ
Ω̃

is equivalent to the
following metric projection operator:

PΩ̃(φ) =
{
w ∈ Ω̃ : ∥w − φ∥ = inf

y∈Ω̃
∥y − φ∥

}
, ∀φ ∈ Rn.

Lemma 2.4. [14, 25] The following statements hold:

(i) For any given φ ∈ Rn, ℸζ
Ω̃
φ is nonempty and ℸζ

Ω̃
is a single-valued mapping;

(ii) For any given φ ∈ Rn, x = ℸζ
Ω̃
φ if and only if

⟨x − φ, y − x⟩ + ρζ(y) − ρζ(x) ≥ 0, ∀y ∈ Ω̃;

(iii) ℸζ
Ω̃

: Rn
→ Ω is nonexpansive, that is,

∥ℸζ
Ω̃

x − ℸζ
Ω̃

y∥ ≤ ∥x − y∥, ∀x, y ∈ Rn.

Lemma 2.5. [15] Let m be a positive number, B ⊂ Rn be a nonempty subset such that

∥w∥ ≤ m, ∀ w ∈ B.

Let Ω : Rn
→ 2Rn be a mapping such that, for each x ∈ Rn, Ω(x) is a closed convex set, and let ζ : Rn

→ R be a
convex function on Rn. Assume that

(i) there exists a constant α > 0 such that

H(Ω(x),Ω(y)) ≤ α∥x − y∥, x, y ∈ Rn;

whereH(Ω(x),Ω(y)) is the Hausdorff distance between Ω(x) and Ω(y), that is,

H(Ω(x),Ω(y)) := max
{

sup
u∈Ω(x)

inf
v∈Ω(y)

∥u − v∥, sup
v∈Ω(y)

inf
u∈Ω(x)

∥u − v∥
}
.

(ii) 0 ∈
⋂

w∈Rn
Ω(w),

(iii) ζ is ℓ-Lipschitz continuous on Rn.

Then there exists a constant κ =
√

6α(m + ρℓ) such that

∥ℸζ
Ω(x)z − ℸ

ζ
Ω(y)z∥ ≤ κ∥x − y∥,∀x, y ∈ Rn, z ∈ B.

Definition 2.6. A function r : Rn
→ R is said to be a gap function for a generalized vector inverse mixed

quasi-variational inequality on a set S̃ ⊂ Rn if it satisfies the following properties:

(i) r(x) ≥ 0 for any x ∈ S̃;

(ii) r(x̄) = 0, x̄ ∈ S̃ if and only if x̄ is a solution of GVIMQVI.
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3. The residual gap functions

In this section, we will give the residual gap function for generalized vector inverse mixed quasi-
variational inequality (GVIMQVI) problem and we prove the error bounds related to the residual gap
function. Now, we define the residual gap function for GVIMQVI as follows:

rρ(x) = min
1≤i≤m

{
∥p(x) − ℸζi

Ω(x)[p(x) − ρ(P(ū) +Q(v̄))]∥
}
, x ∈ Rn,u ∈ F (x), v ∈ T (x), ρ > 0. (9)

Theorem 3.1. LetF ,T : Rn
→ 2Rn be mappings andPi,Qi : Rn

→ Rn(i = 1, 2, · · · ,m) be point to point mappings.
Assume that p : Rn

→ Rn is a point to point mapping. Then for any ρ > 0, rρ(x) is a gap function for GVIMQVI on
Rn.

Proof. It is clear that,
rρ(x) ≥ 0 for any x ∈ Rn.

Next, for x̄ ∈ Rn. if
rρ(x̄) = 0,

then there exists 0 ≤ i0 ≤ m such that

p(x̄) = ℸ
ζi0
Ω(x̄)[p(x̄) − ρ(Pi0 (ū) +Qi0 (v̄))], ∀ū ∈ F (x̄), v̄ ∈ T (x̄).

Lemma 2.4 implies that

⟨p(x̄) − [p(x̄) − ρ(Pi0 (ū) +Qi0 (v̄))], y − p(x̄)⟩ + ρζ(y) − ρζ(p(x̄)) ≤ 0, ∀y ∈ Ω(x̄),

and so
⟨Pi0 (ū) +Qi0 (v̄), y − p(x̄)⟩ + ζ(y) − ζ(p(x̄)) ≤ 0, ∀y ∈ Ω(x̄), ū ∈ F (x̄), v̄ ∈ T (x̄).

It means that

⟨P(ū) +Q(v̄), y − p(x̄)⟩ + ζ(y) − ζ(p(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), ū ∈ F (x̄), v̄ ∈ T (x̄).

Thus, x̄ is a solution of GVIMQVI.
Conversely, if x̄ is a solution of GVIMQVI, there exists 1 ≤ i0 ≤ m such that

⟨Pi0 (ū) +Qi0 (v̄), y − p(x̄)⟩ + ζi0 (y) − ζi0 (p(x̄)) ≥ 0, ∀y ∈ Ω(x̄), ū ∈ F (x̄), v̄ ∈ T (x̄).

By Lemma 2.4, we have

p(x̄) = ℸ
ζi0
Ω(x̄)[p(x̄) − ρ(Pi0 (ū) +Qi0 (v̄))],∀ ū ∈ F (x̄), v̄ ∈ T (x̄).

This means that
rρ(x̄) = min

1≤i≤m
{∥p(x̄) − ℸζi

Ω(x̄)[p(x̄) − ρ(Pi(ū) +Qi(v̄))]∥} = 0.

This completes the proof.

Next, we will give the error bounds for GVIMQVI in term of the residual gap function rρ.

Theorem 3.2. Let F ,T : Rn
→ 2Rn be H-δ-Lipschitz continuous and H-η-Lipschitz continuous, respectively,

and Pi,Qi : Rn
→ Rn(i = 1, 2, · · · ,m) be σi-Lipschitz continuous and ϱi-Lipschitz continuous, respectively. Let

p : Rn
→ Rn be ℓ-Lipschitz continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone couple with modulus

µi and (Qi, p) be a relaxed monotone couple with modulus πi. Let

m⋂
i=1

sol(GVIMQVI)i , ∅.
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Assume that there exists κi ∈
(
0,

µi − πi

δσi + ηϱi

)
such that

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥, ∀x, y ∈ Rn, (10)

where z ∈ {w | w = p(x)−ρ(Pi(u)+Qi(v))}, for all u ∈ F (x), v ∈ T (x). Then, for any x ∈ Rn, µi > πi+κi(δσi+ηϱi)
and

ρ >
κiℓ

µi − πi − κi(δσi + ηϱi)
,

we have

d(x, sol(GVIMQVI)) ≤
ρ(δσi + ηϱi) + ℓ

ρµi − ρπi − ρκi(δσi + ηϱi) − κiℓ
rρ(x),

where
d(x, sol(GVIMQVI)) := inf

x̄∈sol(GVIMQVI)
∥x − x̄∥

denotes the distance between the point x and the set sol(GVIMQVI).

Proof. Since
m⋂

i=1

sol(GVIMQVI)i , ∅,

we assume that x̄ ∈ Ω(x̄) is a common solution of (GVIMQVI)i, i = 1, · · · ,m, and thus for any i ∈ {1, · · · ,m},
we have

⟨Pi(ū) +Qi(v̄), y − p(x̄)⟩ + ζi(y) − ζi(p(x̄)) ≥ 0, ∀y ∈ Ω(x̄), ū ∈ F (x̄), v̄ ∈ T (x̄). (11)

By definition of ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] and Lemma 2.4 implies that

⟨ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − (p(x) − ρ(Pi(u) +Qi(v))), y − ℸζi

Ω(x̄)[p(x)

− ρ(Pi(u) +Qi(v))]⟩ + ρζi(y) − ρζi(ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))]) ≥ 0, (12)

for all y ∈ Ω(x̄),u ∈ F (x), v ∈ T (x).

Since x̄ ∈
m⋂

i=1
sol(GVIMQVI)i and p(x̄) ∈ Ω(x̄), replacing y by p(x̄) in (12), we get

⟨ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − (p(x) − ρ(Pi(u) +Qi(v))), p(x̄) − ℸζ

Ω(x̄)[p(x)

− ρ(Pi(u) +Qi(v))]⟩ + ρζi(p(x̄)) − ρ(ζi(ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))])) ≥ 0. (13)

Since ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] ∈ Ω(x̄), it follows from (11) that

⟨ρ(Pi(ū) +Qi(v̄)), ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − p(x̄)⟩

+ ρζi(ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))]) − ρζi(p(x̄)) ≥ 0. (14)

From (13) and (14), we have

⟨ρ(Pi(ū) +Qi(v̄)) − ρ(Pi(u) +Qi(v)) − ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] + p(x),

ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − p(x̄)⟩ ≥ 0,
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which also implies

⟨ρ(Pi(ū) +Qi(v̄)) − ρ(Pi(u) +Qi(v)), ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − p(x)⟩

− ⟨ρ(Pi(ū) +Qi(v̄)) − ρ(Pi(u) +Qi(v)), p(x̄) − p(x)⟩

+ ⟨p(x) − ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))],ℸζi

Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − p(x)⟩

+ ⟨p(x) − ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))], p(x) − p(x̄)⟩ ≥ 0.

Since, for i = 1, 2, · · · ,m, (Pi, p) are strongly monotone couples with modulus µi, and (Qi, p) are relaxed
monotone couples with modulus πi, we have

⟨ρ(Pi(ū) +Qi(v̄)) − ρ(Pi(u) +Qi(v)),ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))] − p(x)⟩

− ∥p(x) − ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))]∥2

+ ⟨p(x) − ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))], p(x) − p(x̄)⟩

≥ ρµi∥x − x̄∥2 − ρπi∥x − x̄∥2.

By inserting
ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]

and using the Cauchy—Schwarz inequality along with the triangular inequality, we have

∥ρ(Pi(ū) +Qi(v̄)) − ρ(Pi(u) +Qi(v))∥ ×
{
∥ℸζi
Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))]

− ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]∥ + ∥ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))] − p(x)∥
}

+ ∥p(x) − p(x̄)∥ ×
{
∥p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]∥

+ ∥ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))] − ℸζi

Ω(x̄)[p(x) − ρ(Pi(u) +Qi(v))]∥
}

≥ ρ(µi − πi)∥x − x̄∥2.

Using the Lipschitz continuity of Pi,Qi, p, H-δ-Lipschitz continuity of F , H-η-Lipschitz continuity of T
and condition (10), we have

ρ(δσi + ηϱi)∥x̄ − x∥ ×
{
κi∥x̄ − x∥ + ∥ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))] − p(x)∥
}

+ ℓ∥x − x̄∥ ×
{
∥p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]∥ + κi∥x − x̄∥
}

≥ ρ(µi − πi)∥x − x̄∥2.

Hence, for any x ∈ Rn, i ∈ {1, 2, · · · ,m}, µi > πi + κi(δσi + ηϱi) and

ρ >
κiℓ

µi − πi − κi(δσi + ηϱi)
,

we have

∥x − x̄∥ ≤
ρ(δσi + ηϱi) + ℓ

ρµi − ρπi − ρκi(δσi + ηϱi) − κiℓ
∥p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]∥.

This implies

∥x − x̄∥ ≤
ρ(δσi + ηϱi) + ℓ

ρµi − ρπi − ρκi(δσi + ηϱi) − κiℓ
min
1≤i≤m

{
∥p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]∥
}
.
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which means that

d(x, sol(GVIMQVI)) ≤ ∥x − x̄∥ ≤
ρ(δσi + ηϱi) + ℓ

ρµi − ρπi − ρκi(δσi + ηϱi) − κiℓ
rρ(x).

This completes the proof.

Remark 3.3. Lemma 2.5 implies that condition (10) holds under certain appropriate assumptions.

4. The regularized gap function

In general, the residual gap function fails to be smooth but for the algorithmic purpose, it is desirable
to deal with a smooth optimization problems. Sun and Chai [23] studied the regularize gap function for
generalized vector variational inequalities. Taking motivation from these works, we design a regularize
gap function for GVIMQVI and develop corresponding error bounds for GVIMQVI.

The regularized gap function for GVIMQVI is defined for all x ∈ Rn as follows:

ϕρ(x) = min
1≤i≤m

sup
y∈Ω(x)

{
⟨Pi(u) +Qi(v), p(x) − y⟩ + ζi(p(x)) − ζi(y) −

1
2ρ
∥p(x) − y∥2

}
,

for all u ∈ F (x), v ∈ T (x), ρ > 0.

Lemma 4.1. We have

ϕρ(x) = min
1≤i≤m

{
⟨Pi(u) +Qi(v),Ri

ρ(x)⟩ + ζi(p(x)) − ζi(p(x) − Ri
ρ(x)) −

1
2ρ
∥Ri

ρ(x)∥2
}
, (15)

where
Ri
ρ(x) = p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))],∀x ∈ Rn, u ∈ F (x), v ∈ T (x).

And if
x ∈ p−1(Ω) :=

{
ξ ∈ Rn

∣∣∣p(ξ) ∈ Ω(ξ)
}
,

then

ϕρ(x) ≥
1

2ρ
rρ(x)2. (16)

Proof. For given x ∈ Rn and i ∈ {1, 2, · · · ,m}, set

ψi(x, y) = ⟨Pi(u) +Qi(v), p(x) − y⟩ + ζi(p(x)) − ζi(y) −
1

2ρ
∥p(x) − y∥2,

for all y ∈ Rn,u ∈ F (x), v ∈ T (x). Consider the following optimization problem:

1i(x) = max
y∈Ω(x)

ψi(x, y).

Sinceψi(x, ·) is a strongly concave function andΩ(x) is nonempty, closed and convex, the above optimization
problem has a unique solution, say z ∈ Ω(x). Evoking the condition of optimality at z, we get

0 ∈ Pi(u) +Qi(v) + ∂ζi(z) +
1
ρ

(z − p(x)) +NΩ(x)(z),

where NΩ(x)(z) is the normal cone at z to Ω(x) and ∂ζi(z) denotes the subdifferential of ζi at z. Therefore,

⟨z − (p(x) − ρ(Pi(u) +Qi(v))), y − z⟩ + ρζi(y) − ρζi(z) ≥ 0, ∀y ∈ Ω(x),
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and so
z = ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))], ∀u ∈ F (x), v ∈ T (x).

Hence 1i(x) can be rewritten as

1i(x) = ⟨Pi(u) +Qi(v), p(x) − ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]⟩

+ ζi(p(x)) − ζi(ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))])

−
1

2ρ
∥p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]∥2,

for all u ∈ F (x), v ∈ T (x).
Letting

Ri
ρ(x) = p(x) − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))], ∀u ∈ F (x), v ∈ T (x),

then we get

1i(x) = ⟨Pi(u) +Qi(v),Ri
ρ(x)⟩ + ζi(p(x)) − ζi(p(x) − Ri

ρ(x)) −
1

2ρ
∥Ri

ρ(x)∥2, (17)

and so
ϕρ(x) = min

1≤i≤m

{
⟨Pi(u) +Qi(v),Ri

ρ(x)⟩ + ζi(p(x)) − ζi(p(x) − Ri
ρ(x)) −

1
2ρ
∥Ri

ρ(x)∥2
}
.

From the definition of projection (Lemma 2.4).

ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))],

we have

⟨ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))] − p(x) + ρ(Pi(u) +Qi(v)), y − ℸζi

Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]⟩

+ ρζi(y) − ρζi(ℸζi
Ω(x)[p(x) − ρ(Pi(u) +Qi(v))]) ≥ 0, (18)

for all u ∈ F (x), v ∈ T (x). For any x ∈ p−1(Ω), we have

p(x) ∈ Ω(x),

and therefore, by taking y = p(x) in (18), we get

⟨ρ(Pi(u) +Qi(v)) − Ri
ρ(x), Ri

ρ(x)⟩ + ρζi(p(x)) − ρζi(p(x) − Ri
ρ(x)) ≥ 0,

that is,

⟨Pi(u) +Qi(v),Ri
ρ(x)⟩ + ζi(p(x)) − ζi(p(x) − Ri

ρ(x)) ≥
1
ρ
⟨Ri

ρ(x),Ri
ρ(x)⟩

=
1
ρ
∥Ri

ρ(x)∥2,

for all u ∈ F (x), v ∈ T (x). From the definition of rρ(x) and (15), we get

ϕρ(x) ≥
1

2ρ
rρ(x)2.

This completes the proof.
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Theorem 4.2. For ρ > 0, ϕρ is a gap function for GVIMQVI on the set

p−1(Ω) = {ξ ∈ Rn
|p(ξ) ∈ Ω(ξ)}.

Proof. From the definition of ϕρ, we have

ϕρ(x) ≥ min
1≤i≤m

{
⟨Pi(u) +Qi(v), p(x) − y⟩ + ζi(p(x)) − ζi(y) −

1
2ρ
∥p(x) − y∥2

}
,

for all y ∈ Ω(x), u ∈ F (x), v ∈ T (x). Therefore, for any x ∈ p−1(Ω), by setting y = p(x), we have

ϕρ(x) ≥ 0.

Next, suppose that x̄ ∈ p−1(Ω) with ϕρ(x̄) = 0. From (16), it follows that

rρ(x̄) = 0,

which implies that x̄ is a solution of GVIMQVI.
Conversely, if x̄ is a solution of GVIMQVI, there exists 1 ≤ i0 ≤ m such that

⟨Pi0 (ū) +Qi0 (v̄), p(x̄) − y⟩ + ζi0 (p(x̄)) − ζi0 (y) ≤ 0,

for all y ∈ Ω(x̄), ū ∈ F (x̄), v̄ ∈ T (x̄) which means that

min
1≤i≤m

{
sup

y∈Ω(x̄)

{
⟨Pi(ū) +Qi(v̄), p(x̄) − y⟩ + ζi(p(x̄)) − ζi(y) −

1
2ρ
∥p(x̄) − y∥2

}}
≤ 0.

Thus,
ϕρ(x̄) ≤ 0.

The preceding claim leads to
ϕρ(x̄) ≥ 0

and it implies that
ϕρ(x̄) = 0.

This completes the proof.

Since ϕρ can act as a gap function for GVIMQVI , according to Theorem 4.2, investigating the error-
bound properties that can be obtained with ϕρ is interesting. The following corollary is obtained directly
from Theorem 3.2 and (13).

Corollary 4.3. Let F ,T : Rn
→ 2Rn beH-δ-Lipschitz continuous;H-η-Lipschitz continuous, respectively, Pi,Qi :

Rn
→ Rn (i = 1, 2, · · · ,m) be σi-Lipschitz continuous and ϱi-Lipschitz continuous, respectively. Let p : Rn

→ Rn

be ℓ-Lipschitz continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone couple with modulus µi and (Qi, p)
be a relaxed monotone couple with modulus πi. Let

m⋂
i=1

sol(GVIMQVI)i , ∅.

Assume that there exists κi ∈
(
0,

µi − πi

δσi + ηϱi

)
such that

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥,

for all x, y ∈ Rn and z ∈
{
w | w = p(x) − ρ(Pi(u) + Qi(v))

}
for u ∈ F (x), v ∈ T (x). Then, for any x ∈ p−1(Ω) and

ρ >
κiℓ

µi − πi − κi(δσi + ηϱi)
, we have

d(x, sol(GVIMQVI)) ≤
ρ(δσi + ηϱi) + ℓ

ρµi − ρπi − ρκi(δσi + ηϱi) − κiℓ

√
2ρϕρ(x).
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If T is an identity mapping and Q is zero mapping, then Corollary 4.3 will be as follows:

Corollary 4.4. Let F : Rn
→ 2Rn beH-δ-Lipschitz continuous and Pi : Rn

→ Rn (i = 1, 2, · · · ,m) be σi-Lipschitz
continuous. Let p : Rn

→ Rn be ℓ-Lipschitz continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone
couple with modulus µi. Let

m⋂
i=1

sol(GVIMQVI)i , ∅.

Assume that there exists κi ∈
(
0,
µi

δσi

)
such that

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥,

for all x, y ∈ Rn and z ∈
{
w | w = p(x)−ρPi(u)

}
for u ∈ F (x). Then, for any x ∈ p−1(Ω) and ρ >

κiℓ
µi − κiδσi

,we have

d(x, sol(2)) ≤
ρδσi + ℓ

ρµi − ρκiδσi − κiℓ

√
2ρϕρ(x),

where sol(2) is the set of all solutions of the variational inequality problem (2).

If F is a point to point mapping, then Corollary 4.4 will be as follows:

Corollary 4.5. Let Pi : Rn
→ Rn (i = 1, 2, · · · ,m) be σi-Lipschitz continuous, p : Rn

→ Rn be ℓ-Lipschitz
continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone couple with modulus µi. Let

m⋂
i=1

sol(2)i , ∅.

Assume that there exists κi ∈
(
0,
µi

σi
) such that

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥,

for all x, y ∈ Rn and z ∈
{
w | w = p(x) − ρPi(x)

}
. Then, for any x ∈ p−1(Ω) and ρ >

κiℓ
µi − κiσi

, we have

d(x, sol(VIMQVI)) ≤
ρσi + ℓ

ρµi − ρκiσi − κiℓ

√
2ρϕρ(x).

5. The D-Gap functions

It is surprising that the regularized gap function ϕρ does not provide global error bounds for GVIMQVI
on Rn. Solodov [22] proposed the D-gap function for mixed variational inequality and obtained error bounds
for mixed variational inequality related to the D-gap function. With this motivation, we develop the D-gap
function for GVIMQVI, which gives Rn the global error bounds for GVIMQVI.

For GVIMQVI with γ > λ > 0, the D-gap function for GVIMQVI is defined as follows:

Gγλ(x) = min
1≤i≤m

{
sup

y∈Ω(x)

{
⟨Pi(u) +Qi(v), p(x) − y⟩ + ζi(p(x)) − ζi(y) −

1
2γ
∥p(x) − y∥2

}
− sup

y∈Ω(x)

{
⟨Pi(u) +Qi(v), p(x) − y⟩ + ζi(p(x)) − ζi(y) −

1
2λ
∥p(x) − y∥2

}}
,
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for all u ∈ F (x), v ∈ T (x).
By (15) in Lemma 4.1, we know that Gγλ can be rewritten as

Gγλ(x) = min
1≤i≤m

{
⟨Pi(u) +Qi(v),Ri

γ(x)⟩ + ζi(p(x)) − ζi(p(x) − Ri
γ(x)) −

1
2γ
∥Ri

γ(x)∥2

−

(
⟨Pi(u) +Qi(v),Ri

λ(x)⟩ + ζi(p(x)) − ζi(p(x) − Ri
λ(x)) −

1
2λ
∥Ri

λ(x)∥2
)}
,

where
Ri
γ(x) = p(x) − ℸζi

Ω(x)[p(x) − γ(Pi(u) +Qi(v))]

and
Ri
λ(x) = p(x) − ℸζi

Ω(x)[p(x) − λ(Pi(u) +Qi(v))], ∀x ∈ Rn, u ∈ F (x), v ∈ T (x).

Theorem 5.1. For any x ∈ Rn, γ > λ > 0, we have

1
2

( 1
λ
−

1
γ

)
r2
λ(x) ≤ Gγλ(x) ≤

1
2

( 1
λ
−

1
γ

)
r2
γ(x). (19)

Proof. From the definition of Gγλ(x), it follows that

Gγλ(x) = min
1≤i≤m

{
⟨Pi(u) +Qi(v),Ri

γ(x) − Ri
λ(x)⟩ − ζi(p(x) − Ri

γ(x))

−
1

2γ
∥Ri

γ(x)∥2 + ζi(p(x) − Ri
λ(x)) +

1
2λ
∥Ri

λ(x)∥2
}
,

for all u ∈ F (x), v ∈ T (x). For any given i ∈ {1, 2, · · · ,m}, we set

1i
γλ(x) = ⟨Pi(u) +Qi(v),Ri

γ(x) − Ri
λ(x)⟩ − ζi(p(x) − Ri

γ(x)) −
1

2γ
∥Ri

γ(x)∥2

+ ζi(p(x) − Ri
λ(x)) +

1
2λ
∥Ri

λ(x)∥2, (20)

for all u ∈ F (x), v ∈ T (x). Since ℸζi
Ω(x)[p(x) − λ(Pi(u) +Qi(v))] ∈ Ω(x), by Lemma 2.4, we know

⟨ℸζi
Ω(x)[p(x) − γ(Pi(u) +Qi(v))] − (p(x) − γ(Pi(u) +Qi(v))),

ℸζi
Ω(x)[p(x) − λ(Pi(u) +Qi(v))] − ℸζi

Ω(x)[p(x) − γ(Pi(u) +Qi(v))]⟩

+ γζi(ℸζi
Ω(x)[p(x) − λ(Pi(u) +Qi(v))]) − γζi(ℸζi

Ω(x)[p(x) − γ(Pi(u) +Qi(v))]) ≥ 0,

for all u ∈ F (x), v ∈ T (x). Hence we have

⟨γ(Pi(u) +Qi(v)) − Ri
γ(x),Ri

γ(x) − Ri
λ(x)⟩ + γζi(p(x) − Ri

λ(x)) − γζi(p(x) − Ri
γ(x)) ≥ 0. (21)

Combining (20) and (21), we get

1i
γλ(x) ≥

1
γ
⟨Ri

γ(x),Ri
γ(x) − Ri

λ(x)⟩ −
1

2γ
∥Ri

γ(x)∥2 +
1

2λ
∥Ri

λ(x)∥2

=
1

2γ
∥Ri

γ(x) − Ri
λ(x)∥2 +

1
2

( 1
λ
−

1
γ

)
∥Ri

λ(x)∥2. (22)

And also, since ℸζi
Ω(x)[p(x) − γ(Pi(u) +Qi(v))] ∈ Ω(x), by Lemma 2.4, we have

⟨ℸζi
Ω(x)[p(x) − λ(Pi(u) +Qi(v))] − (p(x) − λ(Pi(u) +Qi(v))),

ℸζi
Ω(x)[p(x) − γ(Pi(u) +Qi(v))] − ℸζi

Ω(x)[p(x) − λ(Pi(u) +Qi(v))]⟩

+ λζi(ℸζi
Ω(x)[p(x) − γ(Pi(u) +Qi(v))]) − λζi(ℸζi

Ω(x)[p(x) − λ(Pi(u) +Qi(v))]) ≥ 0,
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for all u ∈ F (x), v ∈ T (x). Hence, we have

⟨λ(Pi(u) +Qi(v)) − Ri
λ(x),Ri

λ(x) − Ri
γ(x)⟩ + λζi(p(x) − Ri

γ(x)) − λζi(p(x) − Ri
λ(x)) ≥ 0,

and so

1
λ
⟨Ri

λ(x),Ri
γ(x) − Ri

λ(x)⟩ ≥ ⟨Pi(u) +Qi(v),Ri
γ(x) − Ri

λ(x)⟩

− ζi(p(x) − Ri
γ(x)) + ζi(p(x) − Ri

ζ(x)).

This and (21) imply that

1i
γλ(x) ≤

1
λ
⟨Ri

λ(x),Ri
γ(x) − Ri

λ(x)⟩ −
1

2γ
∥Ri

γ(x)∥2 +
1

2λ
∥Ri

λ(x)∥2

= −
1

2λ
∥Ri

γ(x) − Ri
λ(x)∥2 +

1
2

( 1
λ
−

1
γ

)
∥Ri

γ(x)∥2. (23)

From (22) and (23), for any i ∈ {1, 2, · · · ,m}, we obtain

1
2

( 1
λ
−

1
γ

)
∥Ri

λ(x)∥2 ≤ 1i
γλ(x) ≤

1
2

( 1
λ
−

1
γ

)∥Ri
γ(x)∥2.

Hence

1
2

( 1
λ
−

1
γ

)
min
1≤i≤m

{
∥Ri

λ(x)∥2
}
≤ min

1≤i≤m

{
1i
γλ(x)

}
≤

1
2

( 1
λ
−

1
γ

) min
1≤i≤m

{
∥Ri

γ(x)∥2
}
,

and so

1
2

( 1
λ
−

1
γ

)
r2
λ(x) ≤ Gγλ(x) ≤

1
2

( 1
λ
−

1
γ

)
r2
γ(x).

This completes the proof.

Now we prove that Gγλ in the set Rn is a global gap function for GVIMQVI.

Theorem 5.2. For 0 < λ < γ, Gγλ is a gap function for GVIMQVI on Rn.

Proof. From (20), we have
Gγλ(x) ≥ 0, ∀x ∈ Rn.

Suppose that x̄ ∈ Rn with Gγλ(x̄) = 0. Then (20) implies that

rλ(x̄) = 0.

From Theorem 3.1, we know that x̄ is a solution of GVIMQVI.
Conversely, if x̄ is a solution of GVIMQVI, than from Theorem 3.1, it follows that

rγ(x̄) = 0.

Obviously, (20) shows that
Gγλ(x̄) = 0.

The proof is completed.

From Theorem 3.2 and (20), we immediately get a global error bound in the set Rn for GVIMQVI.
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Corollary 5.3. Let F ,T : Rn
→ 2Rn be H-δ-Lipschitz continuous, H-η-Lipschitz continuous, respectively, and

Pi,Qi : Rn
→ Rn (i = 1, 2, · · · ,m) be σi-Lipschitz continuous, ϱi-Lipschitz continuous, respectively. Let p : Rn

→ Rn

be ℓ-Lipschitz continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone couple with modulus µi and (Qi, p)
be a ralaxed monotone couple with modulus with πi. Let

m⋂
i=1

sol(GVIMQVI)i , ∅.

Assume that there exists κi ∈
(
0,

µi − πi

δσi + ηϱi

)
such that

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥,

for all x, y ∈ Rn and z ∈
{
w | w = p(x) − λ(Pi(u) + Qi(v))

}
, for u ∈ F (x), v ∈ T (x). Then, for any x ∈ Rn and

λ >
κiℓ

µi − πi − κi(δσi + ηϱi)
, we have

d(x, sol(GVIMQVI)) ≤
λ(δσi + ηϱi) + ℓ

λµi − λπi − λκi(δσi + ηϱi) − κiℓ

√
2γλ
γ − λ

Gγλ(x).

Note that if T is a point to point mappings and Q is zero mapping, then Corollary 5.3 reduces to the
following:

Corollary 5.4. Let F : Rn
→ Rn beH-δ-Lipschitz continuous and Pi : Rn

→ Rn (i = 1, 2, · · · ,m) be σi-Lipschitz
continuous. Let p : Rn

→ Rn be ℓ-Lipschitz continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone
couple with modulus µi. Let

m⋂
i=1

sol(2)i , ∅.

Assume that there exists κi ∈
(
0,
µi

δσi

)
such that

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥,

for all x, y ∈ Rn and z ∈
{
w | w = p(x) − λPi(u)

}
, for u ∈ F (x). Then, for any x ∈ Rn and any λ >

κiℓ
µi − κiδσi

, we

have

d(x, sol(2)) ≤
λδσi + ℓ

λµi − λκiδσi − κiℓ

√
2γλ
γ − λ

Gγλ(x),

where sol(2) is the set of all solutions of the variational inequality problem (2).

Note that if F is an identity mappings and P is a point to point mapping, then Corollary 5.4 reduces to
the following:

Corollary 5.5. Let Pi : Rn
→ Rn(i = 1, 2, · · · ,m) be σi-Lipschitz continuous, p : Rn

→ Rn be ℓ-Lipschitz
continuous, and for i = 1, 2, · · · ,m, (Pi, p) be a strongly monotone couple with modulus µi. Let

m⋂
i=1

sol(VIMQVI)i , ∅.

Assume that there exists κi ∈
(
0,
µi

σi

)
such that



J. K. Kim et al. / Filomat 37:2 (2023), 627–642 641

∥ℸζi
Ω(x)z − ℸ

ζi
Ω(y)z∥ ≤ κi∥x − y∥,

for all x, y ∈ Rn and z ∈
{
w | w = p(x) − λPi(x)

}
. Then, for any x ∈ Rn and λ >

κiℓ
µi − κiσi

, we have

d(x, sol(VIMQVI)) ≤
λσi + ℓ

λµi − λκiσi − κiℓ

√
2γλ
γ − λ

Gγλ(x).

Remark 5.6. We note that if i = 1 and ζ1(x) = 0 for all x ∈ Rn, then the results obtained in this paper collapse
to the corresponding ones in [2] and [15].

6. Conclusions

One of the classical approaches in the interpretation of a variational inequality and its variants is to
transformed it into an equivalent optimization problem through the notion of gap functions. In contrast,
gap functions play a pivotal role in deriving the so-called error bounds that provide a measure of the
distances between the solution set and an arbitrary feasible point. These motivate us for GVIMQVI to
research and evaluate various gap functions and error bounds.
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