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Abstract. This paper introduces the notion of diagonal GC-quasiconcavity which generalizes the no-
tions of quasiconcavity, CF-quasiconcavity, diagonal transfer quasiconcavity, C-quasiconcavity, diagonal
C-concavity, and diagonal C-quasiconcavity. We first establish some theorems for the existence of α-
equilibrium of minimax inequalities for functions with noncompact domain and diagonal GC-quasiconcavity
in topological spaces without linear structure. Next, we apply these results to characterize the existence of
saddle points and solutions to the complementarity problem. Finally, we derive some intersection theorems
and their equivalent forms.

1. Introduction

Minimax inequalities play a key role in proving many existence problems in non-linear analysis and ap-
plied mathematics, especially in optimization problems, variational inequalities, saddle points, intersection
points, maximal elements, fixed points, and complementarity problems. In the framework of Hausdorff
topological vector spaces, Fan [15] established a classical minimax inequality for the functions satisfying
lower semicontinuity and quasiconcavity. Since then, many authors have generalized and extended mini-
max inequalities by weakening the quasiconcavity/semicontinuity of functions; see, for example, Ha [17],
Zhou and Chen [36], Chang and Zhang [10], Tian [29], Tian and Zhou [30], Baye et al. [7], Forgö [16], Yuan
et al. [35], Kim and Lee [19], Kim and Kum [20], Kim and Lee [21], Lu and Tang [24], Hou [18], Chang [11],
Nasri and Sosa [25], Cotrina and Zúñiga [12], Agarwal et al. [1], Balaj and Khamsi [4], Agarwal et al. [2],
Balaj [5, 6], Scalzo [28], Castellani and Giuli [9], and Cotrina and Svensson [13]. It is worth noticing that
Kim [22] introduced the notion of diagonal C-quasiconcavity, which unifies the notions of various concav-
ity in most of the literature. Further, based on this notion, Kim [22] obtained two minimax inequalities in
topological spaces without linear structure. In contrast to the perspective of the aforementioned authors,
Tian [31] recently proposed a single condition named γ-recursive transfer lower semicontinuity, which can
characterize the existence of γ-equilibrium of minimax inequalities in arbitrary topological spaces.

Motivated by the above observations, in this paper, we investigate the existence of α-equilibrium of
minimax inequalities for functions with noncompact domain and diagonal GC-quasiconcavity in topological
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spaces without linear structure. As applications, we establish a theorem on the existence of saddle points,
a theorem on the existence of solutions to the complementarity problem, and some intersection theorems
with their equivalent forms. The results presented in this paper generalize and extend the corresponding
results in the literature.

The rest of this paper is organized as follows. In the next section, we state notation, definitions and
a lemma for later use. In Section 3, by utilizing the notion of diagonal GC-quasiconcavity, we prove the
existence of α-equilibrium of minimax inequalities for functions with noncompact domain in topological
spaces without linear structure. Section 4 provides sufficient conditions for the existence of saddle points and
solutions to the complementarity problem. In Section 5, as applications of minimax inequalities obtained in
Section 3, we establish some intersection theorems and their equivalent forms in topological spaces without
linear structure. Section 6 concludes this paper.

2. Preliminaries

In this section, we begin with notation, definitions, and a lemma. We denote the set of all real numbers
as R. For a nonempty set X, we denote by 2X the family of all subsets of X. If X is a topological space
and A ⊆ B ⊆ X, then we shall use intBA to denote the relative interior of A in B. For two nonempty sets
X and Y, a set-valued mapping H : X → 2Y means that H assigns a unique set H(x) ⊆ Y for every x ∈ X.
Let δn = co{e0, e1, . . . , en} be the standard n-dimensional simplex whose vertices is {e0, e1, . . . , en}, where
co{e0, e1, . . . , en} denotes the convex hull of {e0, e1, . . . , en} and ei is the (i + 1)th unit vector in Rn+1. For all
t = {t0, t1, . . . , tn} ∈ δn, let Ω(t) := {i ∈ {0, 1, . . . ,n}|ti , 0}.

Now, we introduce the following two definitions which are more general than the notions of the di-
agonal C-quasiconcavity and α-C-quasiconcavity (respectively, C-quasiconvexity and α-C-quasiconvexity)
introduced by Kim [22].

Definition 2.1. Let X be a topological space and Y be a nonempty subset of X. A function f : X × X →
R
⋃
{±∞} is said to be diagonally GC-quasiconcave (for short, DGCQCV) in the second variable with respect

to Y if for each {y0, y1, . . . , yn} ⊆ X (n ≥ 1), there exists a nonempty-valued set-valued mapping σn : δn → 2Y

such that (i) f (x, x) ≥ min{ f (x, yi)|i ∈ Ω(t)} for all t ∈ δn and all x ∈ σn(t), and (ii) for any continuous mapping
β : Y→ δn, the composition β◦σn : δn → 2δn has a fixed point, i.e., there exists t∗ ∈ δn such that t∗ ∈ (β◦σn)(t∗).
We say that f is diagonally GC-quasiconvex (for short, DGCQCX) in the second variable with respect to Y
if − f is DGCQCV in the second variable with respect to Y.

Example 2.2. Let Y be a nonempty subset of a topological space X. Suppose that f : X × X → R
⋃
{±∞} is

diagonally C-quasiconcave on Y (for short, DCQCV) (see Kim [22]), i.e., for any {y0, y1, . . . , yn} ⊆ X (n ≥ 1),
there exists a continuous mapping σn : δn → Y such that f (σn(t), σn(t)) ≥ min{ f (σn(t), yi)|i ∈ Ω(t)} for all
t ∈ δn. Then, we can conclude that f is DGCQCV in the second variable with respect to Y. Indeed, for
any continuous mapping β : Y → δn, it follows from Brouwer fixed point theorem that the composition
β ◦ σn : δn → δn has a fixed point.

Remark 2.3. It follows from Example 2.2 and remarks of Kim [22] that DGCQCV condition includes
the diagonal quasiconcavity in Zhou and Chen [36] and Chang and Zhang [10], the diagonal transfer
quasiconcavity in Baye et al. [7], the CF-quasiconcavity in Forgö [16], the C-concavity in Kim and Lee [19]
and Kim and Lee [21], the C-quasiconcavity in Hou [18], and the pair-concavity in Chang [11] as special
cases.

Definition 2.4. Let X be a topological space and Y be a nonempty subset of X. A function f : X × X →
R
⋃
{±∞} is said to be α-diagonally GC-quasiconcave (for short, α-DGCQCV) in the second variable with

respect to Y for some α ∈ R if for each {y0, y1, . . . , yn} ⊆ X (n ≥ 1), there exists a nonempty-valued set-valued
mapping σn : δn → 2Y such that (i) α ≥ min{ f (x, yi)|i ∈ Ω(t)} for all t ∈ δn and all x ∈ σn(t), and (ii) for
any continuous mapping β : Y → δn, the composition β ◦ σn : δn → 2δn has a fixed point. If the function
f : X × X → R

⋃
{±∞} is DGCQCV in the second variable with respect to Y, then it must be α-DGCQCV
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in the second variable with respect to Y by taking α = supy∈Y f (y, y). In addition, f is called diagonally
α-GC-quasiconvex (for short, α-DGCQCX) in the second variable with respect to Y if − f is (−α)-DGCQCV
in the second variable with respect to Y.

Example 2.5. Let Y be a nonempty subset of a topological space X. Suppose that f : X × X → R
⋃
{±∞}

is the α-diagonally C-quasiconcave (for short, α-DCQCV) function introduced by Kim [22], i.e., for any
{y0, y1, . . . , yn} ⊆ X (n ≥ 1), there exists a continuous mapping σn : δn → Y such that α ≥ min{ f (σn(t), yi)|i ∈
Ω(t)} for all t ∈ δn. Then, it is easy to verify that f is α-DGCQCV in the second variable with respect to
Y. In fact, for any continuous mapping β : Y → δn, by Brouwer fixed point theorem, the composition
β ◦ σn : δn → δn has a fixed point.

Definition 2.6. ([Border [8]) Let X be a nonempty subset of a topological space E such that X =
⋃+∞

n=1 Kn,
where {Kn}

+∞
n=1 is a nondecreasing sequence of nonempty compact subsets of E, i.e., Kn ⊆ Kn+1 for every

n ∈ {1, 2, . . .}. A sequence {xn}
+∞
n=1 ⊆ X is called escaping from X relative to {Kn}

+∞
n=1 if for each n ∈ {1, 2, . . .}

there exists an M ∈ {1, 2, . . .} such that xk < Kn for every k ≥M.

Definition 2.7. Let α ∈ R and f : E × Y → R
⋃
{±∞} be a function, where E is a topological space and

Y is a nonempty set. Let X be a nonempty subset of E. We call f α-transfer lower (respectively, upper)
semicontinuous in the first variable with respect to X if for any (x, y) ∈ X × Y with f (x, y) > α (respectively,
f (x, y) < α), there exist ỹ ∈ Y and an open neighborhood V(x) of x in E such that f (z, ỹ) > α (respectively,
f (z, ỹ) < α) for every z ∈ V(x)

⋂
X. A function f : E×Y→ R

⋃
{±∞} is said to be transfer lower (respectively,

upper) semicontinuous in the first variable with respect to X if f is α-transfer lower (respectively, upper)
semicontinuous with respect to X for every α ∈ R.

Remark 2.8. It is easy to check that if a function f : E × Y → R
⋃
{±∞} is α-transfer lower (respectively,

upper) semicontinuous in the first variable with respect to E (see Definition 3 in Lin [23]), then f is α-
transfer lower (respectively, upper) semicontinuous in the first variable with respect to any X ⊆ E. Note
that Definition 2.7 coincides with Definition 3 in Lin [23] when X = E. Unlike Definition 3 in Lin [23], Y in
Definition 2.7 does not require topological properties.

Inspired by the work of Reny [27] and Prokopovych [26], we give the following definition of payoff
weak security.

Definition 2.9. Let E be a topological space, Y be a nonempty set, and X be a nonempty subset of E. A
function f : E × Y → R

⋃
{±∞} is said to be payoff weakly secure in the first variable with respect to X if

for any (x, y) ∈ X × Y and any ε > 0, there exist ỹ ∈ Y and an open neighborhood V(x) of x in E such that
f (z, ỹ) ≥ f (x, y) − ε for every z ∈ V(x)

⋂
X.

Remark 2.10. It is easy to see that if a function f : E × Y → R
⋃
{±∞} is payoff secure in the first variable

with respect to E, then f is payoffweakly secure in the first variable with respect to any X ⊆ E.

The following lemma illustrates the equivalence of transfer lower continuity and payoffweak security.

Lemma 2.11. Let E be a topological space, Y be a nonempty set, and X be a nonempty subset of E. Let f : E × Y→
R
⋃
{±∞} be a function. Then, the following three assertions are equivalent to each other:

(i) f is payoff weakly secure in the first variable with respect to X;
(ii) f is transfer lower semicontinuous in the first variable with respect to X;

(iii) for each α ∈ R,
⋃

y∈Y{x ∈ X| f (x, y) > α} =
⋃

y∈Y intX{x ∈ X| f (x, y) > α}.

Proof. (i) ⇒ (ii) For any α ∈ R and any (x, y) ∈ X × Y with f (x, y) > α, let 0 < ε < f (x, y) − α. Then,
it follows from Definition 2.5 that there exist ỹ ∈ Y and an open neighborhood V(x) of x in E such that
f (z, ỹ) ≥ f (x, y) − ε > α for every z ∈ V(x)

⋂
X, which implies that f is transfer lower semicontinuous with

respect to X.
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(ii)⇒ (i) For each (x, y) ∈ X×Y and each ε > 0, since f is transfer lower semicontinuous in the first variable
with respect to X, there exist ỹ ∈ Y and an open neighborhood V(x) of x in E such that f (z, ỹ) > f (x, y) − ε
for all z ∈ V(x)

⋂
X, which implies that f is payoffweakly secure in the first variable with respect to X.

(ii)⇒ (iii) Let α ∈ R be arbitrarily given. It is clear that
⋃

y∈Y intX{x ∈ X| f (x, y) > α} ⊆
⋃

y∈Y{x ∈ X| f (x, y) >
α}. Next, we show that ⋃

y∈Y

{x ∈ X| f (x, y) > α} ⊆
⋃
y∈Y

intX{x ∈ X| f (x, y) > α}.

Let x ∈
⋃

y∈Y{x ∈ X| f (x, y) > α}. Then, there exists y ∈ Y such that f (x, y) > α. By Definition 2.7, there
exist ỹ ∈ Y and an open neighborhood V(x) of x in E such that f (z, ỹ) > α for every z ∈ V(x)

⋂
X, which

implies that V(x)
⋂

X ⊆ {x ∈ X| f (x, ỹ) > α}, i.e., x ∈ intX{x ∈ X| f (x, ỹ) > α}. Thus,
⋃

y∈Y{x ∈ X| f (x, y) > α} ⊆⋃
y∈Y intX{x ∈ X| f (x, y) > α}. Therefore, we have⋃

y∈Y

{x ∈ X| f (x, y) > α} =
⋃
y∈Y

intX{x ∈ X| f (x, y) > α}.

(iii)⇒ (ii) For any α ∈ R and any (x, y) ∈ X × Y such that f (x, y) > α, we have x ∈
⋃

y∈Y{x ∈ X| f (x, y) >
α}. By (iii), there exists ỹ ∈ Y such that x ∈ intX{x ∈ X| f (x, ỹ) > α}. Therefore, there exists an open
neighborhood V(x) of x in E such that f (z, ỹ) > α for every z ∈ V(x)

⋂
X, which implies that f is transfer

lower semicontinuous in the first variable with respect to X.

Remark 2.12. Let E be a topological space, Y be a nonempty set, and X be a nonempty subset of E. Let
f : E × Y → R

⋃
{±∞} be a function. By using a method similar to that used to prove Lemma 2.11, we

can prove that f is transfer upper semicontinuous in the first variable with respect to X if and only if⋃
y∈Y{x ∈ X| f (x, y) < α} =

⋃
y∈Y intX{x ∈ X| f (x, y) < α} for every α ∈ R.

3. Minimax inequalities in topological spaces

In this section, by using α-DGCQCV (DGCQCX) condition, we give some new results on the existence of
α-equilibrium of minimax inequalities for functions with noncompact domain in topological spaces without
linear structure.

Theorem 3.1. Let α ∈ R and X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets
of a Hausdorff topological space E. Let f , 1 : X×X→ R

⋃
{±∞} be two functions such that the following assumptions

hold:

(i) f (x, y) ≤ 1(x, y) for every (x, y) ∈ X × X;
(ii) 1 is α-DGCQCV in the second variable with respect to Kn for all n ∈ {1, 2, . . .};

(iii) f |X×Kn is α-transfer lower semicontinuous in the first variable with respect to Kn for all n ∈ {1, 2, . . .};
(iv) for any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that f (xn, yn) > α.

Then, f possesses an α-equilibrium x̂ ∈ X of minimax inequality, i.e., f (̂x, y) ≤ α for all y ∈ X.

Proof. We first prove that for each n ∈ {1, 2, . . .}, there exists xn ∈ Kn such that f (xn, y) ≤ α for every y ∈ Kn.
Let n ∈ {1, 2, . . .} be fixed arbitrarily. In order to get this conclusion, we need to show that⋂

y∈Kn

{x ∈ Kn| f (x, y) ≤ α} , ∅.

Suppose that
⋂

y∈Kn
{x ∈ Kn| f (x, y) ≤ α} = ∅. Then, we have⋃

y∈Kn

{x ∈ Kn| f (x, y) > α} = Kn.
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By (iii) and Lemma 2.11, we have

Kn =
⋃
y∈Kn

{x ∈ Kn| f (x, y) > α}

=
⋃
y∈Kn

intKn {x ∈ Kn| f (x, y) > α}.

By the compactness of Kn, it is known that there exists {y0, y1, . . . , yk(n)} ⊆ Kn such that Kn =
⋃k(n)

i=0 intKn {x ∈
Kn| f (x, yi) > α}, where k(n) is a positive integer. Let {βi}

k(n)
i=0 be the continuous partition of utility subordinated

to the open cover {intKn {x ∈ Kn : f (x, yi) > α}}
k(n)
i=0 of Kn, i.e., for each i ∈ {0, 1, . . . , k(n)}, βi : Kn → [0, 1] is

a continuous function such that
∑k(n)

i=1 βi(x) = 1 for every x ∈ Kn and βi(x) > 0 implies that x ∈ intKn {x ∈
Kn| f (x, yi) > α}. Further, we define a continuous mapping β : Kn → δk(n) by β(x) = (β0(x), β1(x), . . . , βk(n)(x))
for all x ∈ Kn.

For the above finite subset {y0, y1, . . . , yk(n)} ⊆ Kn, it follows from (ii) that there exists a nonempty-valued
set-valued mapping σk(n) : δk(n) → 2Kn such that

α ≥ min{1(x, yi)|i ∈ Ω(t)}, ∀t = (t0, t1, . . . , tk(n)) ∈ δk(n) and x ∈ σk(n)(t), (3.1)

and for the continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed point
t∗ = (t∗0, t

∗

1, . . . , t
∗

k(n)) ∈ δk(n), i.e., (t∗0, t
∗

1, . . . , t
∗

k(n)) ∈ (β ◦ σk(n))(t∗). Let x∗ ∈ σk(n)(t∗) such that t∗ = β(x∗). Then, by
(3.1) and (i), we have

α ≥ min{1(x∗, yi)|i ∈ Ω(t∗)} ≥ min{ f (x∗, yi)|i ∈ Ω(t∗)}. (3.2)

Note that for every i ∈ Ω(t∗), t∗i , 0 implies that βi(x∗) > 0. Consequently, for all i ∈ Ω(t∗), we obtain

x∗ ∈ intKn {x ∈ Kn| f (x, yi) > α}
⊆ {x ∈ Kn| f (x, yi) > α}.

Thus, f (x∗, yi) > α, together with (3.2), yields the following contradiction:

α ≥ min{1(x∗, yi)|i ∈ Ω(t∗)} ≥ min{ f (x∗, yi)|i ∈ Ω(t∗)} > α.

Till now, we have reached the conclusion that for each n ∈ {1, 2, . . .}, there exists xn ∈ Kn such that f (xn, y) ≤ α
for every y ∈ Kn.

Next, we prove that there exists x̂ ∈ X such that f (̂x, y) ≤ α for every y ∈ X. We use the contradiction
method to prove that the sequence {xn}

∞

n=1 ⊆ X is not escaping from X relative to {Kn}
∞

n=1, for which we
assume that {xn}

∞

n=1 ⊆ X is escaping from X relative to {Kn}
∞

n=1. Then, by (iv), there exists n0 ∈ {1, 2, . . .} and
yn0 ∈ Kn0 such that f (xn0 , yn0 ) > α. But from the foregoing conclusion, xn0 ∈ Kn0 means f (xn0 , yn0 ) ≤ α, which
contradicts f (xn0 , yn0 ) > α. Therefore, the sequence {xn}

∞

n=1 is not escaping from X relative to {Kn}
∞

n=1. By
Definition 2.6, it is known that there exist n1 ∈ {1, 2, . . .} and a subsequence of {xn}

∞

n=1 which lies entirely in
Kn1 . Since Kn1 is a compact subset of a Hausdorff topological space E, there exist a subsequence {xnli

}
∞

i=1 of
{xn}

∞

n=1 in Kn1 and x̂ ∈ Kn1 such that xnli
→ x̂ as i→ ∞. Now, we claim that f (̂x, y) ≤ α for all y ∈ X. Suppose

to the contrary that there exists ŷ ∈ X such that f (̂x, ŷ) > α. Since ŷ ∈ X, there exists n2 ≥ n1 such that ŷ ∈ Kn2 .
Since {Kn}

+∞
n=1 is a nondecreasing sequence of nonempty compact subsets of a Hausdorff topological space

E, we have x̂ ∈ Kn1 ⊆ Kn2 . By (iii) and Lemma 2.11 again, there exists ỹ ∈ Kn2 such that

x̂ ∈ intKn2
{x ∈ Kn2 | f (x, ỹ) > α}.

Since xnli
→ x̂ as i→∞, it follows that there exists i0 such that

xnl0
∈ intKn2

{x ∈ Kn2 | f (x, ỹ) > α} and nl0 ≥ n2.

Hence, we see that f (xnl0
, ỹ) > α. Note that Kn ⊆ Kn+1 for every n ∈ {1, 2, . . .}. Then, we have ỹ ∈ Kn2 ⊆ Knl0

and thus, f (xnl0
, ỹ) ≤ αwhich contradicts f (xnl0

, ỹ) > α. Therefore, we must have f (̂x, y) ≤ α for all y ∈ X.
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Remark 3.2. (1) Theorem 3.1 generalizes Theorem 2.2 of Yuan et al. [35] in the following aspects: (a)
from topological vector spaces to Hausdorff topological spaces without linear structure. We believe that
the topological vector space involved in Theorem 2.2 of Yuan et al. [35] should have the Hausdorff
separation property. Indeed, as can be seen from the proof of this theorem, if the Hausdorff separation
property is dropped, then there will be no guarantee that the limit of a convergent subsequence falls within
some compact set; (b) concerns on the existence of the more general α-equilibrium of minimax inequality
instead of the existence of 0-equilibrium of minimax inequality; (c) the assumptions are weaker: the lower
semicontinuity of f and the quasiconcavity of 1 are replaced by α-transfer lower semicontinuity of f and
α-DGCQCV condition of 1, respectively.

(2) Similar to the above analysis, we see that Theorem 3.1 also extends Theorem 2.1 of Yu [34], Theorem
3.1 of Tan and Yu [32], and Theorem 3.1 of Ding [14] in several aspects.

(3) By Lemma 2.11, (iii) of Theorem 3.1 can be replaced by one of the following two conditions.
(iii)′ f |X×Kn is payoffweakly secure in the first variable with respect to Kn for all n ∈ {1, 2, . . .}.
(iii)′′

⋃
y∈Kn
{x ∈ Kn| f (x, y) > α} =

⋃
y∈Kn

intKn {x ∈ Kn| f (x, y) > α}.
(4) The following (iv)′ implies (iv) of Theorem 3.1.
(iv)′ For any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative
to {Kn}

∞

n=1, there exists a sequence {yn}
∞

n=1 ⊆ X such that yn ∈ Kn and limn→∞ f (xn, yn) > α.

As a direct consequence of Theorem 3.1, we have the following Ky Fan minimax inequality in topological
spaces without linear structure.

Corollary 3.3. Let X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets of a
Hausdorff topological space E. Let f , 1 : X × X → R

⋃
{±∞} be two functions and α = supx∈X 1(x, x). Suppose that

the following assumptions are fulfilled:

(i) f (x, y) ≤ 1(x, y) for every (x, y) ∈ X × X;
(ii) 1 is α-DGCQCV in the second variable with respect to Kn for all n ∈ {1, 2, . . .};

(iii) f |X×Kn is α-transfer lower semicontinuous in the first variable with respect to Kn for all n ∈ {1, 2, . . .};
(iv) for any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that f (xn, yn) > α.

Then, the Ky Fan minimax inequality infx∈X supx∈X f (x, y) ≤ supx∈X 1(x, x) holds.

The following Theorems 3.4 and 3.8 for the existence of α-equilibrium of minimax inequalities are
established in the case where no escaping sequences are introduced. Since their proofs are similar to the
first half of the proof of Theorem 3.1, we omit them here.

Theorem 3.4. Let X be a nonempty subset of a Hausdorff topological space E, K be a nonempty compact subset of X,
and α ∈ R. Let f , 1 : X × X→ R

⋃
{±∞} be two functions such that the following assumptions hold:

(i) f (x, y) ≤ 1(x, y) for every (x, y) ∈ X × X;
(ii) 1 is α-DGCQCV in the second variable with respect to K;

(iii) f is α-transfer lower semicontinuous in the first variable with respect to K.

Then, f possesses an α-equilibrium x̂ ∈ K of minimax inequality, i.e., f (̂x, y) ≤ α for all y ∈ X.

Remark 3.5. Theorem 3.4 generalizes and extends Theorem 1 of Kim [22] in the following aspects: (a) the
minimax inequality in Theorem 3.4 is more general than that in Theorem 1 of Kim [22]; (b) from DCQCV
condition to DGCQCV condition; (c) the assumption on f to be lower semicontinuous is replaced by
α-transfer lower semicontinuity, the latter being a weaker assumption.

If α = 0 in Theorem 3.4, then we have the following result on the existence of 0-equilibrium of minimax
inequality.
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Corollary 3.6. Let X be a nonempty subset of a Hausdorff topological space E and K be a nonempty compact subset
of X. Let f , 1 : X × X→ R

⋃
{±∞} be two functions such that the following assumptions hold:

(i) f (x, y) ≤ 1(x, y) for every (x, y) ∈ X × X;
(ii) 1 is 0-DGCQCV in the second variable with respect to K;

(iii) f is 0-transfer lower semicontinuous in the first variable with respect to K.

Then, f possesses a 0-equilibrium x̂ ∈ K of minimax inequality, i.e., f (̂x, y) ≤ 0 for all y ∈ X.

Remark 3.7. Corollary 3.6 generalizes and extends Theorem 3.1 of Yang and Pu [33] in the following aspects:
(a) from Hausdorff topological vector spaces to Hausdorff topological spaces without linear structure; (b)
from compact set to noncompact set; (c) from one function to two functions; (d) from the generalized
quasiconcavity to 0-DGCQCV condition. Indeed, (ii) and (iii) of Theorem 3.1 of Yang and Pu [33] imply
(ii) of Corollary 3.6 in the case that f = 1 and K = X; (e) the assumption that f is lower semicontinuous is
replaced by the weaker assumption that f is 0-transfer lower semicontinuous.

Theorem 3.8. Let X be a nonempty normal subspace of a topological space E and K be a nonempty compact subset
of X. Let α ∈ R and let f : X × X→ R

⋃
{±∞} be a function such that the following conditions hold:

(i) f is α-DGCQCX in the second variable with respect to X;
(ii) f |X×K is α-transfer upper semicontinuous in the first variable with respect to K;

(iii) for each y ∈ X \ K, f (x, y) ≥ α if and only if x ∈ K.

Then, − f possesses a (−α)-equilibrium x̂ ∈ X of minimax inequality, i.e., f (̂x, y) ≥ α for all y ∈ X.

By Theorem 3.8, we have the following minimax inequality.

Corollary 3.9. Let X be a nonempty normal subspace of a topological space E and K be a nonempty compact subset
of X. Let f : X × X→ R

⋃
{±∞} be a function and α = infx∈X f (x, x) such that the following conditions hold:

(i) f is α-DGCQCX in the second variable with respect to X;
(ii) f |X×K is α-transfer upper semicontinuous in the first variable with respect to K;

(iii) for each y ∈ X \ K, f (x, y) ≥ α if and only if x ∈ K.

Then, the miniamx inequality supx∈X infy∈X f (x, y) ≥ infx∈X f (x, x) holds.

Remark 3.10. Corollary 3.9 generalizes and extends Theorem 2 of Kim [22] in the following aspects: (a)
from DCQCX condition to DGCQCX condition; (b) the assumption on f to be lower semicontinuous is
replaced by α-transfer upper semicontinuity, the latter being a weaker assumption; (c) the assumption on
X to be a paracompact subset of a Hausdorff topological space is replaced by the weaker assumption that
X is normal subspace of a topological space.

4. Saddle points and complementarity problem

In this section, by using Theorem 3.1, we present a theorem on the existence of saddle points in topo-
logical spaces without linear structure and a theorem on the existence of solutions to the complementarity
problem in Hausdorff topological vector spaces.

Theorem 4.1. Let α ∈ R and X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets
of a Hausdorff topological space E. Let f : X×X→ R

⋃
{±∞} be a function such that the following assumptions hold:

(i) for each n ∈ {1, 2, . . .}, f is α-DGCQCV in the second variable with respect to Kn and f is α-DGCQCX in the
first variable with respect to Kn;

(ii) for each n ∈ {1, 2, . . .}, f |X×Kn is α-transfer lower semicontinuous in the first variable with respect to Kn and
f |Kn×X is α-transfer upper semicontinuous in the second variable with respect to Kn;
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(iii) for any sequence {xn}
∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that f (xn, yn) > α;

(iv) for any sequence {yn}
∞

n=1 ⊆ X with yn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and xn ∈ Kn such that f (xn, yn) < α.

Then, f has a saddle point (̂x, ŷ) ∈ X × X, i.e., f (̂x, y) ≤ α = f (̂x, ŷ) ≤ f (x, ŷ) for every (x, y) ∈ X × X. In particular,
the minimax inequality supy∈X infx∈X f (x, y) = infx∈X supy∈X f (x, y) holds.

Proof. Since for each n ∈ {1, 2, . . .}, f is α-DGCQCV in the second variable with respect to Kn, f |X×Kn is α-
transfer lower semicontinuous in the first variable with respect to Kn, and (iii) is satisfied, we see by Theorem
3.1 that there exists a point x̂ such that f (̂x, y) ≤ α for every y ∈ X. Now, let h(y, x) = − f (x, y) for every
(y, x) ∈ X×X. By the fact that f is α-DGCQCX in the first variable with respect to Kn for all n ∈ {1, 2, . . .}, we
can infer that h is (−α)-DGCQCV in the second variable with respect to Kn. Since f |Kn×X is α-transfer upper
semicontinuous in the second variable with respect to Kn for all n ∈ {1, 2, . . .}, it is easy to see that h|X×Kn is (−α)-
transfer lower semicontinuous in the first variable with respect to Kn. By (iv), for any sequence {yn}

∞

n=1 ⊆ X
with yn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}

∞

n=1, there exist n ∈ {1, 2, . . .}
and xn ∈ Kn such that h(yn, xn) > −α. Therefore, by Theorem 3.1 again for h, we have h(ŷ, x) = − f (x, ŷ) ≤ −α
and so that, f (x, ŷ) ≥ α for all x ∈ X. Thus, we have f (̂x, y) ≤ α = f (̂x, ŷ) ≤ f (x, ŷ) for every (x, y) ∈ X × X,
i.e., f has a saddle point (̂x, ŷ) ∈ X × X, which implies that infx∈X supy∈X f (x, y) ≤ supy∈X infx∈X f (x, y). The
reverse minimax inequality infx∈X supy∈X f (x, y) ≥ supy∈X infx∈X f (x, y) clearly holds. Therefore, we have
infx∈X supy∈X f (x, y) = supy∈X infx∈X f (x, y).

Remark 4.2. Compared with Theorem 3 of Kim [22], X in Theorem 4.1 does not need to be compact.
Moreover, the semicontinuity and quasiconcavity of the function in Theorem 4.1 are weaker than the
corresponding conditions of the function in Theorem 3 of Kim [22].

Let E be a Hausdorff topological vector space, E∗ be the dual space of E, X be a convex cone of E, X∗ be
the polar cone of E∗, and ξ : X → E∗ be a mapping. The complementarity problem can be summarized as
finding a point x̂ ∈ X such that ξ(̂x) ∈ X∗ and ⟨ξ(̂x), x̂⟩ = 0.

Now, we are ready to apply Theorem 3.1 to the complementarity problem in Hausdorff topological
vector spaces.

Theorem 4.3. Let X =
⋃+∞

n=1 Kn, where X is a convex cone of a Hausdorff topological vector space E and {Kn}
∞

n=1 is a
nondecreasing sequence of nonempty compact convex subsets of a Hausdorff topological space E. Let ξ : X→ E∗ be a
mapping such that the function f : X × X → R

⋃
{±∞} defined by f (x, y) = ⟨ξ(x), y − x⟩ for every (x, y) ∈ X × X,

satisfies the following assumptions:

(i) f |X×Kn is 0-transfer lower semicontinuous in the first variable with respect to Kn for all n ∈ {1, 2, . . .};
(ii) for any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that f (xn, yn) > 0.

Then, there exists a point x̂ ∈ X such that ξ(̂x) ∈ X∗ and ⟨ξ(̂x), x̂⟩ = 0.

Proof. For each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, let us define a continuous mapping σk(n) :
δk(n) → Kn by σk(n)(t0, t1, . . . , tk(n)) =

∑k(n)
j=0 t jy j =

∑
i∈Ω(t) tiyi ∈ co{yi|i ∈ Ω(t)} for all t = (t0, t1, . . . , tk(n)) ∈ δk(n).

Since each f (y, y) = 0 and f is a linear function in y, we have the following:

0 = f (σk(n)(t), σk(n)(t))

= ⟨ξ(σk(n)(t)),
∑

i∈Ω(t)

tiyi − σk(n)(t)⟩

=
∑

i∈Ω(t)

ti f (σk(n)(t), yi).
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Thus, there exists i0 ∈ Ω(t) such that f (σk(n)(t), yi0 ) ≤ 0 and so that, we get

0 ≥ min{ f (σk(n)(t0, t1, . . . , tk(n)), yi)|i ∈ Ω(t)}, ∀t ∈ δk(n).

Moreover, for any continuous mapping β : Kn → δk(n), it follows from Brouwer fixed point theorem that the
composition β ◦ σk(n) : δk(n) → δk(n) has a fixed point. This shows that f is 0-DGCQCV in the second variable
with respect to Kn for every n ∈ {1, 2, . . .}. Therefore, by Theorem 3.1 with f = 1 and α = 0, there exists a
point x̂ ∈ X such that f (̂x, y) ≤ 0 for every y ∈ X, i.e., ⟨ξ(̂x), y− x̂⟩ ≤ 0. By Lemma 1 due to Allen [3], we have
ξ(̂x) ∈ X∗ and ⟨ξ(̂x), x̂⟩ = 0.

5. Intersection theorems

In this section, we first use Theorem 3.1 to establish an intersection theorem and its equivalent forms in
topological spaces without linear structure. Next, we use Theorems 3.4 and 3.8 to obtain two intersection
theorems without introducing the escaping sequences.

Theorem 5.1. Let X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets of a
Hausdorff topological space E. Let F,G : X → 2X be two set-valued mappings such that the following assumptions
hold:

(i) for each y ∈ X, F(y) ⊆ G(y);
(ii) for each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, there exists a nonempty-valued set-valued mapping
σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and each x ∈ σk(n)(t), there is j ∈ Ω(t) with x ∈ F(y j), and for any
continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed point;

(iii) for each n ∈ {1, 2, . . .},
⋃

y∈Kn
{x ∈ Kn|x < G(y)} =

⋃
y∈Kn

intKn {x ∈ Kn|x < G(y)};
(iv) for any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that xn < G(yn).

Then,
⋂

y∈X G(y) , ∅.

Proof. Define two functions f , 1 : X × X→ R
⋃
{±∞} by setting, for every (x, y) ∈ X × X,

f (x, y) =
{
α, x ∈ G(y),
+∞, x < G(y),

1(x, y) =
{
α, x ∈ F(y),
+∞, x < F(y),

where α is an arbitrary given real number. Then, we have the following:
(a) By (i), we have f (x, y) ≤ 1(x, y) for every (x, y) ∈ X × X.
(b) By (ii), for each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, there exists a nonempty-valued set-

valued mapping σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and each x ∈ σk(n)(t), there is j ∈ Ω(t) with
x ∈ F(y j). Hence, by the definition of 1, we have

α ≥ min{1(x, y j)| j ∈ Ω(t)} = α.

Furthermore, for any continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed
point. Therefore, 1 is α-DGCQCV in the second variable with respect to Kn for all n ∈ {1, 2, . . .}.

(c) Since {x ∈ X|x < G(y)} = {x ∈ X| f (x, y) > α} for every y ∈ X, it follows from (iii) that
⋃

y∈Kn
{x ∈

Kn| f (x, y) > α} =
⋃

y∈Kn
intKn {x ∈ Kn| f (x, y) > α}. Therefore, by Lemma 2.11, f |X×Kn is α-transfer lower

semicontinuous in the first variable with respect to Kn for all n ∈ {1, 2, . . .}.
(d) For any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative
to {Kn}

∞

n=1, there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that xn < G(yn), which, together with the definition of
f , leads to f (xn, yn) = +∞ > α.

From the above arguments, we see that all the conditions of Theorem 3.1 are satisfied. Thus, there exists
a point x̂ ∈ X such that f (̂x, y) ≤ α for all y ∈ X, which means

⋂
y∈X G(y) , ∅.
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The following theorem can be regarded as a maximal element version of the above intersection theorem.

Theorem 5.2. Let X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets of a
Hausdorff topological space E. Let H,L : X → 2X be two set-valued mappings such that the following assumptions
hold:

(i) for each x ∈ X, L(x) ⊆ H(x);
(ii) for each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, there exists a nonempty-valued set-valued mapping
σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and each x ∈ σk(n)(t), there is j ∈ Ω(t) with y j < H(x), and for
any continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed point;

(iii) for each n ∈ {1, 2, . . .},
⋃

y∈Kn
{x ∈ Kn|x ∈ L−1(y)} =

⋃
y∈Kn

intKn {x ∈ Kn|x ∈ L−1(y)};
(iv) for any sequence {xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that yn ∈ L(xn).

Then, there exists a point x∗ ∈ X such that L(x∗) = ∅.

Proof. Define two set-valued mappings F,G : X → 2X by F(y) = X \H−1(y) and G(y) = X \ L−1(y) for every
y ∈ X. Then, by Theorem 5.1, we have

⋂
y∈X G(y) , ∅. Taking x∗ ∈

⋂
y∈X G(y) and combining the definition

of G, we see that y < L(x∗) for all y ∈ X, which implies that L(x∗) = ∅.

Remark 5.3. By Remark 3.2 and the fact that Theorems 2.2 and 2.2′ of Yuan et al. [35] are equivalent, we
see that Theorem 5.2 generalizes Theorem 2.2′ of Yuan et al. [35] in several aspects.

We give the geometric form of Theorem 5.2 as follows.

Theorem 5.4. Let X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets of a
Hausdorff topological space E. Let M,Q be two nonempty subsets of X ×X such that the following assumptions hold:

(i) M ⊆ Q and for each n ∈ {1, 2, . . .},
⋃

y∈Kn
{x ∈ Kn|(x, y) ∈M} =

⋃
y∈Kn

intKn {x ∈ Kn|(x, y) ∈M};
(ii) or each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, there exists a nonempty-valued set-valued mapping
σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and each x ∈ σk(n)(t), there is j ∈ Ω(t) with (x, y j) < Q, and for
any continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed point;

(iii) for any sequence {xn}
∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that (xn, yn) ∈M.

Then, there exists a point x∗ ∈ X such that (x∗, y) <M for every y ∈ X.

Proof. Define two set-valued mappings H,L : X→ 2X by H(x) = {y ∈ X|(x, y) ∈ Q} and L(x) = {y ∈ X|(x, y) ∈
M} for every x ∈ X. Then, we have the following:

(a) It follows from (i) that for each x ∈ X, L(x) ⊆ H(x) and for each n ∈ {1, 2, . . .},
⋃

y∈Kn
{x ∈ Kn|y ∈ L(x)} =⋃

y∈Kn
intKn {x ∈ Kn|y ∈ L(x)}.

(b) By (ii), for each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, there exists a nonempty-valued set-
valued mapping σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and each x ∈ σk(n)(t), there is j ∈ Ω(t) with
y j < H(x), and for any continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed
point.

(c) By (iii), for any sequence {xn}
∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X
relative to {Kn}

∞

n=1, there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that yn ∈ L(xn).
The above statements ensure that all the requirements of Theorem 5.2 are fulfilled. Therefore, by Theorem

5.2, there exists a point x∗ ∈ X such that L(x∗) = ∅, which means that (x∗, y) <M for every y ∈ X.

The following section theorem can be seen as the dual form of Theorem 5.4.

Theorem 5.5. Let X =
⋃+∞

n=1 Kn, where {Kn}
∞

n=1 is a nondecreasing sequence of nonempty compact subsets of a
Hausdorff topological space E. Let P,A be two nonempty subsets of X × X such that the following assumptions hold:

(i) A ⊆ P and for each n ∈ {1, 2, . . .},
⋃

y∈Kn
{x ∈ Kn|(x, y) < P} =

⋃
y∈Kn

intKn {x ∈ Kn|(x, y) < P};
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(ii) for each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn, there exists a nonempty-valued set-valued mapping
σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and each x ∈ σk(n)(t), there is j ∈ Ω(t) with (x, y j) ∈ A, and for
any continuous mapping β : Kn → δk(n), the composition β ◦ σk(n) : δk(n) → 2δk(n) has a fixed point;

(iii) for any sequence {xn}
∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1,
there exist n ∈ {1, 2, . . .} and yn ∈ Kn such that (xn, yn) < P.

Then, there exists a point x∗ ∈ X such that {x∗} × X ⊆ P.

Proof. Let M = X × X \ P and Q = X × X \ A. Then, it follows from Theorem 5.4 that there exists a point
x∗ ∈ X such that (x∗, y) <M for every y ∈ X, i.e., {x∗} × X ⊆ P.

Theorem 5.6. Theorems 3.1, 5.1, 5.2, 5.4 and 5.5 are equivalent.

Proof. We have showed Theorem 3.1⇒ Theorem 5.1, Theorem 5.1⇒ Theorem 5.2, Theorem 5.2⇒ Theorem
5.4, and Theorem 5.4 ⇒ Theorem 5.5. Now, we prove that Theorem 5.5 ⇒ Theorem 3.1. In fact, let P =
{(x, y) ∈ X × X| f (x, y) ≤ α} and A = {(x, y) ∈ X × X|1(x, y) ≤ α}. By (i) of Theorem 3.1, we have A ⊆ P. By
Definition 2.4 and (ii) of Theorem 3.1, one can see that for each n ∈ {1, 2, . . .} and each {y0, y1, . . . , yk(n)} ⊆ Kn,
there exists a nonempty-valued set-valued mapping σk(n) : δk(n) → 2Kn such that for each t ∈ δk(n) and
each x ∈ σk(n)(t), α ≥ min{1(x, yi)|i ∈ Ω(t)}, from which we can infer that there exists j ∈ Ω(t) such that
1(x, y j) ≤ α and thus, (x, y j) ∈ A. Furthermore, for any continuous mapping β : Kn → δk(n), the composition
β ◦ σk(n) : δk(n) → 2δk(n) has a fixed point. This shows that (ii) of Theorem 5.5 is satisfied. By using (iii) of
Theorem 3.1 and Lemma 2.11, we have

⋃
y∈Kn
{x ∈ Kn| f (x, y) > α} =

⋃
y∈Kn

intKn {x ∈ Kn| f (x, y) > α} for all
n ∈ {1, 2, . . .}. By the definition of P, we deduce that

⋃
y∈Kn
{x ∈ Kn|(x, y) < P} =

⋃
y∈Kn

intKn {x ∈ Kn|(x, y) < P}
for all n ∈ {1, 2, . . .}. Finally, by (iv) of Theorem 3.1 and the definition of P, we know that for any sequence
{xn}

∞

n=1 ⊆ X with xn ∈ Kn for every n ∈ {1, 2, . . .}, which is escaping from X relative to {Kn}
∞

n=1, there exist
n ∈ {1, 2, . . .} and yn ∈ Kn such that (xn, yn) < P. Therefore, by Theorem 5.5, there exists a point x∗ ∈ X such
that {x∗} × X ⊆ P, i.e., f (x∗, y) ≤ α for all y ∈ X.

By Theorems 3.4 and 3.8, we have the following two intersection theorems without introducing the
escaping sequences.

Theorem 5.7. Let X be a nonempty subset of a Hausdorff topological space E and K be a nonempty compact subset
of X. Let F,G : X→ 2X be two set-valued mappings such that the following assumptions hold:

(i) for each y ∈ X, F(y) ⊆ G(y);
(ii) for each {y0, y1, . . . , yn} ⊆ X, there exists a nonempty-valued set-valued mapping σn : δn → 2K such that for

each t ∈ δn and each x ∈ σn(t), there is j ∈ Ω(t) with x ∈ F(y j), and for any continuous mapping β : K → δn,
the mapping β ◦ σn : δn → 2δn has a fixed point;

(iii)
⋃

y∈X{x ∈ K|x < G(y)} =
⋃

y∈X intK{x ∈ K|x < G(y)}.

Then,
⋂

y∈X G(y) , ∅.

Proof. Let α be an arbitrary given real number. Define two functions f , 1 : X ×X→ R
⋃
{±∞} by setting, for

each (x, y) ∈ X × X,

f (x, y) =
{
α, x ∈ G(y),
+∞, x < G(y),

1(x, y) =
{
α, x ∈ F(y),
+∞, x < F(y).

By (i)-(iii), one can see that f and 1 satisfy (i)-(iii) of Theorem 3.4. Therefore, by Theorem 3.4, there exists a
point x̂ ∈ X such that f (̂x, y) ≤ α for all y ∈ X, which means

⋂
y∈X G(y) , ∅.

Theorem 5.8. Let X be a nonempty subset of a Hausdorff topological space E and K be a nonempty compact subset
of X. Let F : X→ 2X be a set-valued mapping such that the following assumptions hold:
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(i) for each {y0, y1, . . . , yn} ⊆ X, there exists a nonempty-valued set-valued mapping σn : δn → 2X such that for
each t ∈ δn and each x ∈ σn(t), there is j ∈ Ω(t) with x ∈ F(y j), and for any continuous mapping β : X → δn,
the mapping β ◦ σn : δn → 2δn has a fixed point;

(ii)
⋃

y∈K{x ∈ K|x < F(y)} =
⋃

y∈K intK{x ∈ K|x < F(y)};
(iii) for each y ∈ X \ K, x ∈ F(y) if and only if x ∈ K.

Then,
⋂

y∈X F(y) , ∅.

Proof. Let α be an arbitrary given real number. Define a function f : X×X→ R
⋃
{±∞} by setting, for every

(x, y) ∈ X × X,

f (x, y) =
{
α, x ∈ F(y),
−∞, x < F(y).

Then, we get the following:
(a) By (i), for each {y0, y1, . . . , yn} ⊆ X, there exists a nonempty-valued set-valued mapping σn : δn → 2X

such that for each t ∈ δn and each x ∈ σn(t), there is j ∈ Ω(t) with x ∈ F(y j). By the definition of f , we have

α ≤ max{ f (x, y j)| j ∈ Ω(t)} = α.

Furthermore, for any continuous mapping β : X → δn, the composition β ◦ σn : δn → 2δn has a fixed point.
Therefore, f is α-DGCQCX in the second variable with respect to X.

(b) Since {x ∈ X|x < F(y)} = {x ∈ X| f (x, y) < α} for every y ∈ X, it follows from (ii) that
⋃

y∈K{x ∈ K| f (x, y) <
α} =

⋃
y∈K intK{x ∈ K| f (x, y) < α}. Therefore, by Remark 2.12, f |X×K is α-transfer upper semicontinuous in

the first variable with respect to K.
(c) By (iii) and the definition of f , we see that for each y ∈ X \ K, f (x, y) ≥ α if and only if x ∈ K.
By the above arguments, we see that all the requirements of Theorem 3.8 are satisfied. Thus, by Theorem

3.8, there exists a point x̂ ∈ X such that f (̂x, y) ≥ α for all y ∈ X, which means
⋂

y∈X F(y) , ∅.

When X = K, Theorem 5.7 reduces to the following corollary.

Corollary 5.9. Let X be a nonempty compact subset of a Hausdorff topological space E and F,G : X → 2X be two
set-valued mappings such that the following assumptions hold:

(i) for each y ∈ X, F(y) ⊆ G(y);
(ii) for each {y0, y1, . . . , yn} ⊆ X, there exists a nonempty-valued set-valued mapping σn : δn → 2X such that for

each t ∈ δn and each x ∈ σn(t), there is j ∈ Ω(t) with x ∈ F(y j), and for any continuous mapping β : X → δn,
the mapping composition β ◦ σn : δn → 2δn has a fixed point;

(iii)
⋃

y∈X{x ∈ X|x < G(y)} =
⋃

y∈X intX{x ∈ X|x < G(y)}.

Then,
⋂

y∈X G(y) , ∅.

Remark 5.10. Corollary 5.9 generalizes and extends Theorem 2.1 of Yang and Pu [33] in the following
aspects: (a) from one set-valued mapping to two set-valued mappings; (b) from Hausdorff topological
vector spaces to Hausdorff topological spaces without linear structure; (c) (ii) of Corollary 5.9 is weaker
than the assumption that F is a generalized KKM-mapping. In fact, let F be a generalized KKM-mapping.
Then, by Definition 2.1 of Yang and Pu [33], there exists a continuous mapping σn : δn → X such that for
each t ∈ δn, there is j ∈ Ω(t) with x = σn(t) ∈ F(y j). Furthermore, by Brouwer fixed point theorem, we see
that, for any continuous mapping β : X → δn, the composition mapping β ◦ σn : δn → δn has a fixed point.
Therefore, (ii) of Corollary 5.9 is satisfied; (d) the assumption on F to be a set-valued mapping with closed
values is replaced by (iii) of Corollary 5.9, the latter being weaker; (e) the assumption that X has the fixed
point property has been dropped. Indeed, we can prove that the conclusion of Theorem 2.1 of Yang and Pu
[33] still holds without this condition.

Corollary 5.11. Let X be a nonempty compact subset of a Hausdorff topological space E and let M,Q be two nonempty
subsets of X × X such that the following assumptions hold:
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(i) M ⊆ Q;
(ii) for each {y0, y1, . . . , yn} ⊆ X, there exists a nonempty-valued set-valued mapping σn : δn → 2X such that for

each t ∈ δn and each x ∈ σn(t), there is j ∈ Ω(t) with (x, y j) < Q, and for any continuous mapping β : X→ δn,
the mapping composition β ◦ σn : δn → 2δn has a fixed point;

(iii)
⋃

y∈X{x ∈ X|(x, y) ∈M} =
⋃

y∈X intX{x ∈ X|(x, y) ∈M}.

Then, there exists a point x∗ ∈ X such that (x∗, y) <M for every y ∈ X.

Proof. Define two set-valued mappings F,G : X → 2X by F(y) = {x ∈ X|(x, y) < Q} and G(y) = {x ∈ X|(x, y) <
M} for every y ∈ X. By (i), we have F(y) ⊆ G(y) for every y ∈ X. By (ii), we see that for any {y0, y1, . . . , yn} ⊆ X,
there exists a nonempty-valued set-valued mapping σn : δn → 2X such that for each t ∈ δn and each x ∈ σn(t),
there is j ∈ Ω(t) with x ∈ F(y j), and for any continuous mapping β : X → δn, the mapping composition
β ◦ σn : δn → 2δn has a fixed point. By (iii), we have

⋃
y∈X{x ∈ X|x < G(y)} =

⋃
y∈X intX{x ∈ X|x < G(y)}.

Therefore, by Corollary 5.9, we have
⋂

y∈X G(y) , ∅, which implies that exists a point x∗ ∈ X such that
(x∗, y) <M for every y ∈ X.

Remark 5.12. (1) It is easy to see that Corollary 5.11 is equivalent to Corollary 5.9. In addition, Corollary
5.11 generalizes Theorem 3.3 of Yang and Pu [33] in the following aspects: (a) from one subset of X × X to
two subsets of X×X; (b) from Hausdorff topological vector spaces to Hausdorff topological spaces without
linear structure; (c) (ii) of Corollary 5.11 is wreaker than (ii) of Theorem 3.3 of Yang and Pu [33]; (d) (iii) of
Corollary 5.11 is weaker than (i) of Theorem 3.3 of Yang and Pu [33]; (e) the assumption that X has the fixed
point property has been removed.

(2) Corollary 5.11 also revises and generalizes Theorem 4 of Kim [22]. Indeed, if the condition that
(x, x) < B for all x ∈ X is removed from Theorem 4 of Kim [22], then the conclusion of this theorem still
holds. From this, we can further see that the condition that (x, x) ∈ N for all x ∈ X of Theorem 5 of Kim
[22] and the condition that x < G(x) for all x ∈ X of Theorem 6 of Kim [22] can be removed. Finally, we
point out that condition (3) of Theorem 7 of Kim [22] is incorrectly set. This is because, according to the
previous analysis, when conditions (1), (2) and (4) of Theorem 7 of Kim [22] are satisfied, we can deduce
the conclusion that there exists a point x∗ ∈ X such that (x∗, y) < A for all y ∈ X, which contradicts condition
(3) of this theorem.

6. Conclusions

The main purpose of this paper is to investigate the existence of α-equilibrium of minimax inequalities
for functions with noncompact domain in topological spaces without linear structure. We have achieved
this goal by replacing usual quasiconcavity (quasiconvexity) with DGCQCV (DGCQCX) condition. Sub-
sequently, by using the existence results of solutions for minimax inequalities, we prove the existence of
saddle points in topological spaces without linear structure, and the existence of solutions to the comple-
mentarity problem in topological vector spaces. Finally, by using our results, we establish some intersection
theorems in topological spaces and their equivalent forms. In our view, future research on the existence of
α-equilibrium of minimax inequalities based on further weakening transfer lower semicontinuity and DGC-
QCV (DGCQCX) condition should be of interest. On this basis, we study the existence of Nash equilibria
for generalized discontinuous games in topological spaces without linear structure.
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