Cosine families of operators have the SVEP

Hamid Boua
Mohammed First University, Pluridisciplinary Faculty of Nador, Morocco

Abstract

Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators on a Banach space X with infinitesimal generator A. In this paper, we prouve that A has the SVEP if and only if $C(t)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C\left(t_{0}\right)$ has the SVEP for some $t_{0} \in \mathbb{R}$.

1. Introduction

Throughout, X denotes a complex Banach space, let A be a closed linear operator on X with domain $\mathcal{D}(A)$, we denote by A^{*} and $\sigma(A)$, respectively the adjoint and the spectrum of A. The operator A is said to have the single valued extension property at $\lambda_{0} \in \mathbb{C}$ (SVEP) if for every open disc $D_{\lambda_{0}} \subseteq \mathbb{C}$ centered at λ_{0}, the only analytic function $f: D_{\lambda_{0}} \longrightarrow D(A)$ which satisfies the equation $(A-z I) f(z)=0$ for all $z \in D_{\lambda_{0}}$ is the function $f \equiv 0$. The operator A is said to have the SVEP if A has the SVEP for every $\lambda \in \mathbb{C}$. Denote by

$$
\mathcal{S}(A)=\{\lambda \in \mathbb{C}: A \text { has not the SVEP at } \lambda\} .
$$

Note that $\mu \in S(A)$ if and only if there exists a sequence $\left(x_{i}\right)_{i \geq 0} \subseteq D(A)$ not all of them equal to zero such that $(A-\mu) x_{i+1}=x_{i}$, with $x_{0}=0$ and $\sup \left\|x_{i}\right\|^{\frac{1}{i}}<\infty$. $\mathcal{S}(A)$ is open and contained in the interior of the spectrum $\sigma(A)$. For further information, see [1, 2].

Consider in X the well-posed Cauchy problem

$$
(*)\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t), \quad t \in \mathbb{R} \\
u(0)=u_{0} \\
u^{\prime}(0)=u_{1}
\end{array}\right.
$$

Where $A: X \longrightarrow X$ is a densely defined closed operator with nonempty resolvent set $\rho(A)$. The problem $(*)$ is (see [3] and [6]) well-posed if and only if A generates a strongly continuous cosine operator function $(C(t))_{t \in \mathbb{R}}$, i.e., a family of operators satisfying the following conditions:

1. $C(t+s)+C(t-s)=2 C(t) C(s)$ for all $t, s \in \mathbb{R}$.
2. $C(0)=I$ (the identity operator).
3. $t \rightarrow C(t)$ is continuous on \mathbb{R} with respect to the operator norm topology on $\mathcal{B}(X)$.
[^0]There exist some $M \geq 1, \omega \in \mathbb{R}$ such that $\|C(t)\| \leq M e^{\omega t}$ for all $t \geq 0$.
If $(C(t))_{t \in \mathbb{R}}$ is a strongly continuous cosine operator function, then the infinitesimal generating operator A is defined by

$$
\mathcal{D}(A)=\left\{x \in X: \lim _{s \rightarrow 0} \frac{2(C(s) x-x)}{s^{2}} \text { exists }\right\}
$$

and

$$
A x=\lim _{s \rightarrow 0} \frac{2(C(s) x-x)}{s^{2}}=C^{\prime \prime}(0)
$$

A solution of problem $(*)$ is given with the help of a strongly continuous cosine operator function by the formula $u(t)=C(t) u_{0}+S(t) u_{1}$ for all $t \in \mathbb{R}$, where $S(t)$ is the sine operator function associated with the $(C(t))_{t \in \mathbb{R}}$ and is defined as $S(t) x:=\int_{0}^{t} C(s) x d s, t \in \mathbb{R}, x \in X$. In this work we will use the theory of integration in the sense of Bochner. For $t \in \mathbb{R}$ and $\lambda \in \mathbb{C}, S_{\lambda}(t) x:=\int_{0}^{t} \sinh \lambda(t-s) C(s) x d s, x \in X$ defines a bounded linear operator commutes with A, and $\left(A-\lambda^{2}\right) S_{\lambda}(t) x=\lambda(C(t)-\cosh \lambda t) x$, for all $x \in X$, see ([5, Lemma.4]).

If $(C(t))_{t \in \mathbb{R}}$ is a uniformly continuous operator cosine function then there is an $A \in \mathcal{B}(X)$ with $C(t)=$ $\cosh t \sqrt{A}, t \in \mathbb{R}$. We have $A=\lim _{s \rightarrow 0} \frac{2(C(s)-I)}{s^{2}}$ in the uniform operator topology, see [4, Theorem.2.18]. For $t \in \mathbb{R}$, the function $f: z \in \mathbb{C} \mapsto \cosh (t \sqrt{z})$ defines an entire function. Thus, according to the spectral mapping theorem, we have $\cosh t \sqrt{\mathcal{S}(A)}=\mathcal{S}(C(t))$, for all $t \in \mathbb{R}$. Which implies that A has the SVEP if and only if $C(t)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C\left(t_{0}\right)$ has the SVEP for some $t_{0} \in \mathbb{R}$. It's normal to ask the following question: Does this property remain true when replacing a family uniformly continuous cosine function of operators with a family strongly continuous cosine function of operators? In this article, we have given a positive answer to this question. More precisely, we show that if $(C(t))_{t \in \mathbb{R}}$ is a strongly continuous operator cosine function, then A has the SVEP if and only if $C(t)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C\left(t_{0}\right)$ has the SVEP for some $t_{0} \in \mathbb{R}$.

2. Main results

Theorem 2.1. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators with infinitesimal generator A. Then for all $t \in \mathbb{R}$, we have the following equality :

$$
\mathcal{S}(C(t)) \cup\{-1,1\}=\cosh t \sqrt{\mathcal{S}(A)} \cup\{-1,1\}
$$

Proof. Suppose that $\cosh (\lambda t)-C(t)$ has not SVEP at 0 , then there exists $x_{i} \in X$ such that $x_{0}=0, x_{1} \neq 0$, $\forall i \geq 1,(\cosh (\lambda t)-C(t)) x_{i}=x_{i-1}$ and $\sup \left\|x_{i}\right\|^{\frac{1}{i}}<\infty$. Since $(\cosh (\lambda t)-C(t)) x_{1}=0$ and $x_{1} \neq 0$. Choose now $x_{1}^{*} \in X^{*}$ satisfying $\left\langle x_{1}, x_{1}^{*}\right\rangle \neq 0$ and consider the t-periodic function f defined by:

$$
f(s)= \begin{cases}\left\langle\sinh \lambda(t-s) C(s) x_{1}, x_{1}^{*}\right\rangle & \text { if } s \in[0, t[\\ \left.\sinh \lambda t<x_{1}, x_{1}^{*}\right\rangle & \text { if } s=t\end{cases}
$$

For $m \in \mathbb{Z}$, we have,

$$
\begin{aligned}
\left.<S_{\lambda_{m}}(t) x_{1}, x_{1}^{*}\right\rangle & =\int_{0}^{t} \sinh \lambda_{m}(t-s)<C(s) x_{1}, x_{1}^{*}>d s \\
& =\frac{1}{2} e^{\lambda_{m} t} \int_{0}^{t} e^{-\lambda_{m} s}<C(s) x_{1}, x_{1}^{*}>d s-\frac{1}{2} e^{-\lambda_{m} t} \int_{0}^{t} e^{\lambda_{m} s}<C(s) x_{1}, x_{1}^{*}>d s
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} e^{\lambda t} \int_{0}^{t} e^{-\lambda \lambda_{m} s}<C(s) x_{1}, x_{1}^{*}>d s-\frac{1}{2} e^{-\lambda t} \int_{0}^{t} e^{\lambda_{m} s}<C(s) x_{1}, x_{1}^{*}>d s \\
& =\frac{1}{2} \int_{0}^{t} e^{\lambda(t-s)} e^{-2 i \pi m s / t}<C(s) x_{1}, x_{1}^{*}>d s-\frac{1}{2} \int_{0}^{t} e^{-\lambda(t-s)} e^{2 i \pi m s / t}<C(s) x_{1}, x_{1}^{*}>d s .
\end{aligned}
$$

For $n \in \mathbb{N}^{*}$ we have,

$$
\begin{aligned}
\sum_{m=-n}^{n}<S_{\lambda_{m}}(t) x_{1}, x_{1}^{*}> & =\frac{1}{2} \int_{0}^{t} e^{\lambda(t-s)} D_{n}(s / t)<C(s) x_{1}, x_{1}^{*}>d s-\frac{1}{2} \int_{0}^{t} e^{-\lambda(t-s)} D_{n}(s / t)<C(s) x_{1}, x_{1}^{*}>d s \\
& =\int_{0}^{t} D_{n}(s / t) f(s) d s \\
& =t \int_{0}^{1} D_{n}(u) f(t u) d s
\end{aligned}
$$

where $D_{n}(u)=\sum_{m=-n}^{n} e^{2 i n \pi u}$. Then for $q \in \mathbb{N}^{*}$, we have,
$\frac{1}{q+1} \sum_{n=0}^{q} \sum_{m=-n}^{n}<S_{\lambda_{m}}(t) x_{1}, x_{1}^{*}>=t \int_{0}^{t} F_{q}(u) f(t u) d u$, where $F_{q}(s)=\frac{1}{q+1}\left(\sum_{n=0}^{q} D_{n}(s)\right)$. We show that $\lim _{q \rightarrow \infty} \int_{0}^{t} F_{q}(u) f(t u) d u=\frac{1}{2} e^{\lambda t}<x_{1}, x_{1}^{*}>$. Indeed let $\epsilon>0$. Since $\lim _{s \rightarrow 0^{+}} f(s)=\sinh \lambda t<x_{1}, x_{1}^{*}>$ and $\lim _{s \rightarrow 0^{-}} f(s)=\cosh \lambda t<x_{1}, x_{1}^{*}>$, then there exists $\eta>0$, such that $\left|f(t u) d u-\sinh \lambda t<x_{1}, x_{1}^{*}>\right| \leq \epsilon / 4$ for all $s \in[0, \eta]$ and $\left|f(t u) d u-\cosh \lambda t<x_{1}, x_{1}^{*}>\right| \leq \epsilon / 4$ for all $s \in[-\eta, 0]$. As we can decrease t without changing the above implications, we can assume $\eta<1 / 2$. Note that:

$$
\begin{aligned}
\left|\int_{0}^{1 / 2} F_{q}(u) f(t u) d u-1 / 2 \sinh (\lambda t)<x_{1}, x_{1}^{*}>\right| & =\left|\int_{0}^{1 / 2} F_{q}(u)\left[f(t u)-\sinh (\lambda t)<x_{1}, x_{1}^{*}>\right] d u\right| \\
& \leq \int_{0}^{1 / 2} F_{q}(u)\left|f(t u)-\sinh (\lambda t)<x_{1}, x_{1}^{*}>\right| d u \\
& \leq \epsilon / 2+\int_{\eta}^{1 / 2} F_{q}(u)\left|f(t u)-\sinh (\lambda t)<x_{1}, x_{1}^{*}>\right| d u \\
& \leq \epsilon / 2+2\|f\|_{\infty} \int_{\eta}^{1 / 2} F_{q}(u) d u \leq \epsilon \text { for } q \geq q_{0}
\end{aligned}
$$

Similarly, by increasing q_{0} if necessary, we have, for $q \geq q_{0}$:

$$
\begin{aligned}
\left|\int_{-1 / 2}^{0} F_{q}(u) f(t u) d u-1 / 2 \cosh (\lambda t)<x_{1}, x_{1}^{*}>\right| & =\left|\int_{-1 / 2}^{0} F_{q}(u)\left[f(t u)-\cosh (\lambda t)<x_{1}, x_{1}^{*}>\right] d u\right| \\
& \leq \int_{-1 / 2}^{0} F_{q}(u)\left|f(t u)-\cosh (\lambda t)<x_{1}, x_{1}^{*}>\right| d u \\
& \leq \epsilon / 2+\int_{\eta}^{1 / 2} F_{q}(u)\left|f(t u)-\cosh (\lambda t)<x_{1}, x_{1}^{*}>\right| d u \\
& \leq \epsilon / 2+2\|f\|_{\infty} \int_{-1 / 2}^{-\eta} F_{q}(u) d u \leq \epsilon .
\end{aligned}
$$

Therefore $\lim _{q \rightarrow \infty} \frac{1}{q+1} \sum_{n=0}^{q} \sum_{m=-n}^{n}<S_{\lambda_{m}}(t) x_{1}, x_{1}^{*}>=\frac{1}{2} t e^{\lambda t}<x_{1}, x_{1}^{*}>\neq 0$. So necessarily, there exists $p \in \mathbb{Z}$ such that $S_{\lambda_{p}}(t) x_{1} \neq 0$. Let $y_{i}=S_{\lambda_{p}}^{i}(t) x_{i}$, then $\left(y_{i}\right)_{i \geq 0} \subseteq D(A), y_{0}=x_{0}=0, y_{1}=S_{\lambda_{p}}(t) x_{1} \neq 0$, and we have, for all $i \geq 1$:

$$
\begin{aligned}
\left(\lambda_{p}^{2}-A\right) y_{i} & =\left(\lambda_{p}^{2}-A\right) S_{\lambda_{p}}(t) S_{\lambda_{p}}^{i-1}(t) x_{i} \\
& =\left(\cosh \left(\lambda_{p} t\right)-C(t)\right) S_{\lambda_{p}}^{i-1}(t) x_{i} \\
& =S_{\lambda_{p}}^{i-1}(t)\left(\cosh \left(\lambda_{p} t\right)-C(t)\right) x_{i} \\
& =S_{\lambda_{p}}^{i-1}(t) x_{i-1} \\
& =y_{i-1} .
\end{aligned}
$$

Therefore, $\left(\lambda_{p}^{2}-A\right) y_{i}=y_{i-1}$. On the other hand $\left\|y_{i}\right\|=\left\|S_{\lambda_{p}}^{i}(t) x_{i}\right\| \leq\left\|S_{\lambda_{p}}^{i}(t)\right\|\left\|x_{i}\right\| \leq M^{i}\left\|x_{i}\right\|$, where $M=$ $\left\|S_{\lambda_{p}}(t)\right\|>0$. Then sup $\left\|y_{i}\right\|^{\frac{1}{i}}<\infty$. Hence $\lambda_{p} \in S(A)$ and $\cosh (\lambda t)=\cosh \left(\lambda_{p} t\right) \in \cosh (t \sqrt{S(A)})$. Finally $S(C(t)) \subseteq \cosh (t \sqrt{S(A)})$.

Conversely, let $\cosh \left(\lambda_{0} t\right) \notin S(C(t)) \cup\{-1,1\}$, then $C(t)$ has SVEP at $\cosh \left(\lambda_{0} t\right)$. Let us show that $\lambda_{0}^{2} \notin S(A)$. Let $D_{\lambda_{0}^{2}}$ the open disc centered at $\lambda_{0}^{2}, f: D_{\lambda_{0}^{2}} \longrightarrow D(A)$ an analytic function such that for all $\mu \in D_{\lambda_{0}^{2}}(\mu-$ A) $f(\mu)=0$. Show that f is identically zero on $D_{\lambda_{0}}$. Consider the analytic function $\varphi_{t}: z \in D_{\lambda_{0}^{2}} \longmapsto \cosh (t \sqrt{z})$. Since $\cosh \left(\lambda_{0} t\right) \neq \pm 1$, then $\varphi_{t}^{\prime}\left(\lambda_{0}^{2}\right) \neq 0$. By the inverse function theorem, there exists a neighborhood V of λ_{0}^{2} such that $V \subseteq D_{\lambda_{0}^{2}}, \varphi_{t}(V)$ is open and the function $\varphi_{t}: V \longrightarrow \varphi_{t}(V)$ is bijective. The function $\varphi_{t}^{-1}: \varphi_{t}(V) \longrightarrow V$ is analytic. Then $g: z \in \varphi_{t}(V) \longrightarrow f\left(\varphi_{t}^{-1}(z)\right)$ is also analytic. Now, let $z \in \varphi_{t}(V)$, there exists $\mu \in V$ such that $z=\cosh (t \sqrt{\mu})$. Therefore we have

$$
\begin{aligned}
(z-C(t)) g(z) & =(\mu-A) S_{\sqrt{\mu}}(t) f\left(\varphi_{t}^{-1}(z)\right) \\
& =(\mu-A) S_{\sqrt{\mu}}(t) f(\mu) \\
& =S_{\sqrt{\mu}}(t)(\mu-A) f(\mu)=0 .
\end{aligned}
$$

Since g has the SVEP at $\cosh \left(\lambda_{0} t\right)$, Then g is identically zero, so f is identically zero on V. As f is analytic function, then f is identically zero on $D_{\lambda_{0}^{2}}$. which implies A has the SVEP at λ_{0}^{2}. So the proof is complete.
Corollary 2.2. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators with infinitesimal generator A. The following assertions are equivalent:

1. A has the SVEP.
2. For all $t \geq 0, C(t)$ has the SVEP.
3. There exists $t_{0} \geq 0, C\left(t_{0}\right)$ has the SVEP.

Proof. (1) \Rightarrow (2): If A has the SVEP, then $\mathcal{S}(A)=\emptyset$. By theorem 2.1, we have $\mathcal{S}(C(t)) \subseteq\{-1,1\}$ for all $t \in \mathbb{R}$. Since $\mathcal{S}(C(t))$ is open, then $\mathcal{S}(C(t))=\emptyset$. Which implies that $C(t)$ has the SVEP for all $t \in \mathbb{R}$.
$(2) \Rightarrow(3)$: Obvious.
$(3) \Rightarrow(1)$: If $C\left(t_{0}\right)$ has the SVEP for some $t_{0} \in \mathbb{R}$, then $\mathcal{S}\left(C\left(t_{0}\right)\right)=\emptyset$. By theorem 2.1, we have $\cosh \left(t_{0} \sqrt{\mathcal{S}(A)}\right) \subseteq$ $\{-1,1\}$. Since $\mathcal{S}(A)$ is open and the function $z \mapsto \cosh (t \sqrt{z})$ is open, then $\cosh \left(t_{0} \sqrt{\mathcal{S}(A)}\right)$ is open. Which implies that $\mathcal{S}(A)=\emptyset$. Therefore A has the SVEP.
Example 2.3. Let X be the complex ℓ^{2} space, and for $\left(z_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}, s \in \mathbb{R}$, we put $C(s)\left(z_{n}\right)_{n}=\left(\cos (n s) z_{n}\right)_{n}$. Then $A\left(z_{n}\right)_{n}=\left(-n^{2} z_{n}\right)_{n}$ with $\mathcal{D}(A)=\left\{\left(z_{n}\right)_{n} \in \ell^{2}: \sum_{n=1}^{\infty} n^{4}\left|z_{n}\right|^{2}<\infty\right\}$ and $\sigma(A)=\left\{-n^{2}: n \in \mathbb{N}^{*}\right\}$. So A has the SVEP. According to corollary 2.2, $C(t)$ has the SVEP for all $t \geq 0$.
Example 2.4. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators with infinitesimal generator A. If $C($.$) is is 2 \pi$-periodic, then $C(2 \pi)$ has the SVEP. From corollary 2.2, A and $C(t)$ are the SVEP for all $t \geq 0$.

References

[1] P. Aiena, C. Trapani, S. Triolo, SVEP and local specral radius formula for unbounded operators, Filomat 28:2 (2014), 263-273.
[2] I. Erdelyi and Wang Shengwang, A local spectral theory for closed operators, Cambridge University Press (London-New York-New Rochelle-Melbourne-Sydney), 1985.
[3] H. O. Fattorini, Ordinary differential equations in linear topological space, II, J. Differential Equations 6 (1969), 50-70.
[4] D. Lutz, Strongly continuous operator cosine functions, Functional Analysis (Dubrovnik, 1981). (Lecture Notes in Math., Vol. 948), Springer, Berlin-New York, 1982, 73-97.
[5] B. Nagy, On cosine operator functions on Banach spaces, Acta Sci. Math. Szeged 36 (1974), 281-290.
[6] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96.

[^0]: 2020 Mathematics Subject Classification. Primary 47A10, Secondary 47D62. Keywords. Cosine; Generator; SVEP.
 Received: 12 October 2020; Accepted: 30 December 2020
 Communicated by Dragan S. Djordjević
 Email address: h.boua@ump.ac.ma (Hamid Boua)

