Filomat 37:2 (2023), 387–391 https://doi.org/10.2298/FIL2302387B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Cosine families of operators have the SVEP

Hamid Boua

Mohammed First University, Pluridisciplinary Faculty of Nador, Morocco

Abstract. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators on a Banach space *X* with infinitesimal generator *A*. In this paper, we prouve that *A* has the SVEP if and only if C(t) has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for some $t_0 \in \mathbb{R}$.

1. Introduction

Throughout, *X* denotes a complex Banach space, let *A* be a closed linear operator on *X* with domain $\mathcal{D}(A)$, we denote by A^* and $\sigma(A)$, respectively the adjoint and the spectrum of *A*. The operator *A* is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP) if for every open disc $D_{\lambda_0} \subseteq \mathbb{C}$ centered at λ_0 , the only analytic function $f : D_{\lambda_0} \longrightarrow D(A)$ which satisfies the equation (A - zI)f(z) = 0 for all $z \in D_{\lambda_0}$ is the function $f \equiv 0$. The operator *A* is said to have the SVEP if *A* has the SVEP for every $\lambda \in \mathbb{C}$. Denote by

 $\mathcal{S}(A) = \{\lambda \in \mathbb{C} : A \text{ has not the SVEP at } \lambda\}.$

Note that $\mu \in S(A)$ if and only if there exists a sequence $(x_i)_{i\geq 0} \subseteq D(A)$ not all of them equal to zero such that $(A - \mu)x_{i+1} = x_i$, with $x_0 = 0$ and sup $||x_i||^{\frac{1}{i}} < \infty$. S(A) is open and contained in the interior of the

spectrum $\sigma(A)$. For further information, see [1, 2].

Consider in X the well-posed Cauchy problem

$$(*) \begin{cases} u''(t) = Au(t), & t \in \mathbb{R} \\ u(0) = u_0 \\ u'(0) = u_1 \\ . \end{cases}$$

Where $A : X \longrightarrow X$ is a densely defined closed operator with nonempty resolvent set $\rho(A)$. The problem (*) is (see [3] and [6]) well-posed if and only if *A* generates a strongly continuous cosine operator function $(C(t))_{t \in \mathbb{R}}$, i.e., a family of operators satisfying the following conditions:

1. C(t+s) + C(t-s) = 2C(t)C(s) for all $t, s \in \mathbb{R}$.

2. C(0) = I (the identity operator).

3. $t \to C(t)$ is continuous on \mathbb{R} with respect to the operator norm topology on $\mathcal{B}(X)$.

2020 Mathematics Subject Classification. Primary 47A10, Secondary 47D62.

Keywords. Cosine; Generator; SVEP.

Received: 12 October 2020; Accepted: 30 December 2020

Communicated by Dragan S. Djordjević

Email address: h.boua@ump.ac.ma (Hamid Boua)

There exist some $M \ge 1$, $\omega \in \mathbb{R}$ such that $||C(t)|| \le Me^{\omega t}$ for all $t \ge 0$.

If $(C(t))_{t \in \mathbb{R}}$ is a strongly continuous cosine operator function, then the infinitesimal generating operator *A* is defined by

$$\mathcal{D}(A) = \left\{ x \in X : \lim_{s \to 0} \frac{2(C(s)x - x)}{s^2} \text{ exists} \right\}$$

and

$$Ax = \lim_{s \to 0} \frac{2(C(s)x - x)}{s^2} = C''(0).$$

A solution of problem (*) is given with the help of a strongly continuous cosine operator function by the formula $u(t) = C(t)u_0 + S(t)u_1$ for all $t \in \mathbb{R}$, where S(t) is the sine operator function associated with the $(C(t))_{t\in\mathbb{R}}$ and is defined as $S(t)x := \int_0^t C(s)xds$, $t \in \mathbb{R}$, $x \in X$. In this work we will use the theory of integration in the sense of Bochner. For $t \in \mathbb{R}$ and $\lambda \in \mathbb{C}$, $S_\lambda(t)x := \int_0^t \sinh \lambda(t-s)C(s)xds$, $x \in X$ defines a bounded linear operator commutes with A, and $(A - \lambda^2)S_\lambda(t)x = \lambda(C(t) - \cosh \lambda t)x$, for all $x \in X$, see ([5, Lemma.4]).

If $(C(t))_{t \in \mathbb{R}}$ is a uniformly continuous operator cosine function then there is an $A \in \mathcal{B}(X)$ with $C(t) = \cosh t \sqrt{A}$, $t \in \mathbb{R}$. We have $A = \lim_{s \to 0} \frac{2(C(s) - I)}{s^2}$ in the uniform operator topology, see [4, Theorem.2.18]. For $t \in \mathbb{R}$, the function $f : z \in \mathbb{C} \mapsto \cosh(t \sqrt{z})$ defines an entire function. Thus, according to the spectral mapping theorem, we have $\cosh t \sqrt{S(A)} = S(C(t))$, for all $t \in \mathbb{R}$. Which implies that A has the SVEP if and only if C(t) has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for some $t_0 \in \mathbb{R}$. It's normal to ask the following question: Does this property remain true when replacing a family uniformly continuous cosine function of operators with a family strongly continuous cosine function of operators? In this article, we have given a positive answer to this question. More precisely, we show that if $(C(t))_{t \in \mathbb{R}}$ is a strongly continuous operator cosine function, then A has the SVEP if and only if C(t) has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for all $t \in \mathbb{R}$ if and only if $C(t_0)$ has the SVEP for some $t_0 \in \mathbb{R}$.

2. Main results

Theorem 2.1. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators with infinitesimal generator *A*. *Then for all t* $\in \mathbb{R}$ *, we have the following equality :*

$$S(C(t)) \cup \{-1, 1\} = \cosh t \sqrt{S(A)} \cup \{-1, 1\}.$$

Proof. Suppose that $\cosh(\lambda t) - C(t)$ has not SVEP at 0, then there exists $x_i \in X$ such that $x_0 = 0$, $x_1 \neq 0$, $\forall i \ge 1$, $(\cosh(\lambda t) - C(t))x_i = x_{i-1}$ and $\sup_i ||x_i||^{\frac{1}{t}} < \infty$. Since $(\cosh(\lambda t) - C(t))x_1 = 0$ and $x_1 \neq 0$. Choose now $x_1^* \in X^*$ satisfying $\langle x_1, x_1^* \rangle \neq 0$ and consider the *t*-periodic function *f* defined by:

$$f(s) = \begin{cases} < \sinh \lambda (t - s)C(s)x_1, x_1^* > & \text{if } s \in [0, t[\\ \sinh \lambda t < x_1, x_1^* > & \text{if } s = t \end{cases}$$

For $m \in \mathbb{Z}$, we have,

$$< S_{\lambda_m}(t)x_1, x_1^* > = \int_0^t \sinh \lambda_m(t-s) < C(s)x_1, x_1^* > ds$$

= $\frac{1}{2}e^{\lambda_m t} \int_0^t e^{-\lambda_m s} < C(s)x_1, x_1^* > ds - \frac{1}{2}e^{-\lambda_m t} \int_0^t e^{\lambda_m s} < C(s)x_1, x_1^* > ds$

388

H. Boua / Filomat 37:2 (2023), 387–391

$$= \frac{1}{2}e^{\lambda t} \int_0^t e^{-\lambda_m s} < C(s)x_1, x_1^* > ds - \frac{1}{2}e^{-\lambda t} \int_0^t e^{\lambda_m s} < C(s)x_1, x_1^* > ds$$
$$= \frac{1}{2} \int_0^t e^{\lambda(t-s)}e^{-2i\pi ms/t} < C(s)x_1, x_1^* > ds - \frac{1}{2} \int_0^t e^{-\lambda(t-s)}e^{2i\pi ms/t} < C(s)x_1, x_1^* > ds.$$

For $n \in \mathbb{N}^*$ we have,

$$\sum_{m=-n}^{n} < S_{\lambda_{m}}(t)x_{1}, x_{1}^{*} > = \frac{1}{2} \int_{0}^{t} e^{\lambda(t-s)} D_{n}(s/t) < C(s)x_{1}, x_{1}^{*} > ds - \frac{1}{2} \int_{0}^{t} e^{-\lambda(t-s)} D_{n}(s/t) < C(s)x_{1}, x_{1}^{*} > ds$$
$$= \int_{0}^{t} D_{n}(s/t) f(s) ds$$
$$= t \int_{0}^{1} D_{n}(u) f(tu) ds,$$

where $D_n(u) = \sum_{m=-n}^n e^{2in\pi u}$. Then for $q \in \mathbb{N}^*$, we have,

$$\frac{1}{q+1}\sum_{n=0}^{q}\sum_{m=-n}^{n} < S_{\lambda_{m}}(t)x_{1}, x_{1}^{*} >= t\int_{0}^{t}F_{q}(u)f(tu)du, \text{ where } F_{q}(s) = \frac{1}{q+1}\left(\sum_{n=0}^{q}D_{n}(s)\right).$$
 We show that
$$\lim_{q\to\infty}\int_{0}^{t}F_{q}(u)f(tu)du = \frac{1}{2}e^{\lambda t} < x_{1}, x_{1}^{*} > \text{. Indeed let } \epsilon > 0.$$
 Since
$$\lim_{s\to0^{+}}f(s) = \sinh\lambda t < x_{1}, x_{1}^{*} > \text{ and } \lim_{s\to0^{-}}f(s) = \cosh\lambda t < x_{1}, x_{1}^{*} > \text{, then there exists } \eta > 0, \text{ such that } \left|f(tu)du - \sinh\lambda t < x_{1}, x_{1}^{*}\right| \le \epsilon/4 \text{ for all } s \in [0, \eta] \text{ and } \left|f(tu)du - \cosh\lambda t < x_{1}, x_{1}^{*}\right| \le \epsilon/4 \text{ for all } s \in [-\eta, 0].$$
 As we can decrease t without changing the above implications, we can assume $\eta < 1/2$. Note that:

$$\begin{split} \left| \int_{0}^{1/2} F_{q}(u) f(tu) du - 1/2 \sinh(\lambda t) < x_{1}, x_{1}^{*} > \right| &= \left| \int_{0}^{1/2} F_{q}(u) \left[f(tu) - \sinh(\lambda t) < x_{1}, x_{1}^{*} > \right] du \right| \\ &\leq \int_{0}^{1/2} F_{q}(u) \left| f(tu) - \sinh(\lambda t) < x_{1}, x_{1}^{*} > \right| du \\ &\leq \epsilon/2 + \int_{\eta}^{1/2} F_{q}(u) \left| f(tu) - \sinh(\lambda t) < x_{1}, x_{1}^{*} > \right| du \\ &\leq \epsilon/2 + 2 ||f||_{\infty} \int_{\eta}^{1/2} F_{q}(u) du \leq \epsilon \text{ for } q \geq q_{0}. \end{split}$$

Similarly, by increasing q_0 if necessary, we have, for $q \ge q_0$:

$$\begin{aligned} \left| \int_{-1/2}^{0} F_{q}(u) f(tu) du - 1/2 \cosh(\lambda t) < x_{1}, x_{1}^{*} > \right| &= \left| \int_{-1/2}^{0} F_{q}(u) \left[f(tu) - \cosh(\lambda t) < x_{1}, x_{1}^{*} > \right] du \right| \\ &\leq \int_{-1/2}^{0} F_{q}(u) \left| f(tu) - \cosh(\lambda t) < x_{1}, x_{1}^{*} > \right| du \\ &\leq \epsilon/2 + \int_{\eta}^{1/2} F_{q}(u) \left| f(tu) - \cosh(\lambda t) < x_{1}, x_{1}^{*} > \right| du \\ &\leq \epsilon/2 + 2 ||f||_{\infty} \int_{-1/2}^{-\eta} F_{q}(u) du \leq \epsilon. \end{aligned}$$

389

Therefore $\lim_{q \to \infty} \frac{1}{q+1} \sum_{n=0}^{q} \sum_{m=-n}^{n} \langle S_{\lambda_m}(t) x_1, x_1^* \rangle = \frac{1}{2} t e^{\lambda t} \langle x_1, x_1^* \rangle \neq 0$. So necessarily, there exists $p \in \mathbb{Z}$ such that $S_{\lambda_p}(t) x_1 \neq 0$. Let $y_i = S_{\lambda_p}^i(t) x_i$, then $(y_i)_{i \ge 0} \subseteq D(A)$, $y_0 = x_0 = 0$, $y_1 = S_{\lambda_p}(t) x_1 \neq 0$, and we have, for all $i \ge 1$:

$$\begin{aligned} (\lambda_p^2 - A)y_i &= (\lambda_p^2 - A)S_{\lambda_p}(t)S_{\lambda_p}^{i-1}(t)x_i \\ &= (\cosh(\lambda_p t) - C(t))S_{\lambda_p}^{i-1}(t)x_i \\ &= S_{\lambda_p}^{i-1}(t)(\cosh(\lambda_p t) - C(t))x_i \\ &= S_{\lambda_p}^{i-1}(t)x_{i-1} \\ &= y_{i-1}. \end{aligned}$$

Therefore, $(\lambda_p^2 - A)y_i = y_{i-1}$. On the other hand $||y_i|| = ||S_{\lambda_p}^i(t)x_i|| \le ||S_{\lambda_p}^i(t)||||x_i|| \le M^i ||x_i||$, where $M = ||S_{\lambda_p}(t)|| > 0$. Then $\sup_i ||y_i||^{\frac{1}{i}} < \infty$. Hence $\lambda_p \in S(A)$ and $\cosh(\lambda t) = \cosh(\lambda_p t) \in \cosh(t \sqrt{S(A)})$. Finally $S(C(t)) \subseteq \cosh(t \sqrt{S(A)})$.

Conversely, let $\cosh(\lambda_0 t) \notin S(C(t)) \cup \{-1, 1\}$, then C(t) has SVEP at $\cosh(\lambda_0 t)$. Let us show that $\lambda_0^2 \notin S(A)$. Let $D_{\lambda_0^2}$ the open disc centered at λ_0^2 , $f : D_{\lambda_0^2} \longrightarrow D(A)$ an analytic function such that for all $\mu \in D_{\lambda_0^2}$, $(\mu - A)f(\mu) = 0$. Show that f is identically zero on $D_{\lambda_0^2}$. Consider the analytic function $\varphi_t : z \in D_{\lambda_0^2} \longmapsto \cosh(t \sqrt{z})$. Since $\cosh(\lambda_0 t) \neq \pm 1$, then $\varphi'_t(\lambda_0^2) \neq 0$. By the inverse function theorem, there exists a neighborhood V of λ_0^2 such that $V \subseteq D_{\lambda_0^2}, \varphi_t(V)$ is open and the function $\varphi_t : V \longrightarrow \varphi_t(V)$ is bijective. The function $\varphi_t^{-1} : \varphi_t(V) \longrightarrow V$ is analytic. Then $g : z \in \varphi_t(V) \longrightarrow f(\varphi_t^{-1}(z))$ is also analytic. Now, let $z \in \varphi_t(V)$, there exists $\mu \in V$ such that $z = \cosh(t \sqrt{\mu})$.

$$\begin{aligned} (z - C(t))g(z) &= (\mu - A)S_{\sqrt{\mu}}(t)f(\varphi_t^{-1}(z)) \\ &= (\mu - A)S_{\sqrt{\mu}}(t)f(\mu) \\ &= S_{\sqrt{\mu}}(t)(\mu - A)f(\mu) = 0. \end{aligned}$$

Since *g* has the SVEP at $\cosh(\lambda_0 t)$, Then *g* is identically zero, so *f* is identically zero on *V*. As *f* is analytic function, then *f* is identically zero on $D_{\lambda_2^2}$. which implies *A* has the SVEP at λ_0^2 . So the proof is complete. \Box

Corollary 2.2. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators with infinitesimal generator *A*. *The following assertions are equivalent:*

- 1. A has the SVEP.
- 2. For all $t \ge 0$, C(t) has the SVEP.
- 3. There exists $t_0 \ge 0$, $C(t_0)$ has the SVEP.

Proof. (1) \Rightarrow (2): If *A* has the SVEP, then $S(A) = \emptyset$. By theorem 2.1, we have $S(C(t)) \subseteq \{-1, 1\}$ for all $t \in \mathbb{R}$. Since S(C(t)) is open, then $S(C(t)) = \emptyset$. Which implies that C(t) has the SVEP for all $t \in \mathbb{R}$. (2) \Rightarrow (3): Obvious.

(3) ⇒ (1): If $C(t_0)$ has the SVEP for some $t_0 \in \mathbb{R}$, then $S(C(t_0)) = \emptyset$. By theorem 2.1, we have $\cosh(t_0 \sqrt{S(A)}) \subseteq \{-1, 1\}$. Since S(A) is open and the function $z \mapsto \cosh(t \sqrt{z})$ is open, then $\cosh(t_0 \sqrt{S(A)})$ is open. Which implies that $S(A) = \emptyset$. Therefore *A* has the SVEP. □

Example 2.3. Let X be the complex ℓ^2 space, and for $(z_n)_{n \in \mathbb{N}} \in \ell^2$, $s \in \mathbb{R}$, we put $C(s)(z_n)_n = (\cos(ns)z_n)_n$. Then $A(z_n)_n = (-n^2 z_n)_n$ with $\mathcal{D}(A) = \{(z_n)_n \in \ell^2 : \sum_{n=1}^{\infty} n^4 |z_n|^2 < \infty\}$ and $\sigma(A) = \{-n^2 : n \in \mathbb{N}^*\}$. So A has the SVEP. According to corollary 2.2, C(t) has the SVEP for all $t \ge 0$.

Example 2.4. Let $(C(t))_{t \in \mathbb{R}}$ be a strongly continuous cosine function of operators with infinitesimal generator A. If C(.) is is 2π -periodic, then $C(2\pi)$ has the SVEP. From corollary 2.2, A and C(t) are the SVEP for all $t \ge 0$.

References

- [1] P. Aiena, C. Trapani, S. Triolo, SVEP and local specral radius formula for unbounded operators, Filomat 28:2 (2014), 263–273.
- [2] I. Erdelyi and Wang Shengwang, A local spectral theory for closed operators, Cambridge University Press (London-New York-New Rochelle-Melbourne-Sydney), 1985.
- [3] H. O. Fattorini, Ordinary differential equations in linear topological space, II, J. Differential Equations 6 (1969), 50–70.
- [4] D. Lutz, Strongly continuous operator cosine functions, Functional Analysis (Dubrovnik, 1981). (Lecture Notes in Math., Vol. 948), Springer, Berlin-New York, 1982, 73–97.
- [5] B. Nagy, On cosine operator functions on Banach spaces, Acta Sci. Math. Szeged 36 (1974), 281–290.
- [6] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), 75–96.