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Cosine families of operators have the SVEP

Hamid Boua

Mohammed First University, Pluridisciplinary Faculty of Nador, Morocco

Abstract. Let (C(t))t∈R be a strongly continuous cosine function of operators on a Banach space X with
infinitesimal generator A. In this paper, we prouve that A has the SVEP if and only if C(t) has the SVEP for
all t ∈ R if and only if C(t0) has the SVEP for some t0 ∈ R.

1. Introduction

Throughout, X denotes a complex Banach space, let A be a closed linear operator on X with domain
D(A), we denote by A∗ and σ(A), respectively the adjoint and the spectrum of A. The operator A is said to
have the single valued extension property at λ0 ∈ C (SVEP) if for every open disc Dλ0 ⊆ C centered at λ0,
the only analytic function f : Dλ0 −→ D(A) which satisfies the equation (A− zI) f (z) = 0 for all z ∈ Dλ0 is the
function f ≡ 0. The operator A is said to have the SVEP if A has the SVEP for every λ ∈ C. Denote by

S(A) = {λ ∈ C : A has not the SVEP at λ}.

Note that µ ∈ S(A) if and only if there exists a sequence (xi)i≥0 ⊆ D(A) not all of them equal to zero
such that (A − µ)xi+1 = xi, with x0 = 0 and sup

i
||xi||

1
i < ∞. S(A) is open and contained in the interior of the

spectrum σ(A). For further information, see [1, 2].
Consider in X the well-posed Cauchy problem

(∗)


u′′(t) = Au(t), t ∈ R
u(0) = u0
u′(0) = u1 .

Where A : X −→ X is a densely defined closed operator with nonempty resolvent set ρ(A). The problem
(∗) is (see [3] and [6]) well-posed if and only if A generates a strongly continuous cosine operator function
(C(t))t∈R, i.e., a family of operators satisfying the following conditions:

1. C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R.
2. C(0) = I (the identity operator).
3. t→ C(t) is continuous on R with respect to the operator norm topology on B(X).
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There exist some M ≥ 1, ω ∈ R such that ∥C(t)∥ ≤Meωt for all t ≥ 0.
If (C(t))t∈R is a strongly continuous cosine operator function, then the infinitesimal generating operator

A is defined by

D(A) =
{

x ∈ X : lim
s→0

2(C(s)x − x)
s2 exists

}
and

Ax = lim
s→0

2(C(s)x − x)
s2 = C′′(0).

A solution of problem (∗) is given with the help of a strongly continuous cosine operator function by
the formula u(t) = C(t)u0 + S(t)u1 for all t ∈ R, where S(t) is the sine operator function associated with

the (C(t))t∈R and is defined as S(t)x :=
∫ t

0
C(s)xds, t ∈ R, x ∈ X. In this work we will use the theory of

integration in the sense of Bochner. For t ∈ R and λ ∈ C, Sλ(t)x :=
∫ t

0
sinhλ(t − s)C(s)xds, x ∈ X defines

a bounded linear operator commutes with A, and (A − λ2)Sλ(t)x = λ(C(t) − coshλt)x, for all x ∈ X, see ([5,
Lemma.4]).

If (C(t))t∈R is a uniformly continuous operator cosine function then there is an A ∈ B(X) with C(t) =

cosh t
√

A , t ∈ R. We have A = lim
s→0

2(C(s) − I)
s2 in the uniform operator topology, see [4, Theorem.2.18].

For t ∈ R, the function f : z ∈ C 7→ cosh(t
√

z) defines an entire function. Thus, according to the spectral
mapping theorem, we have cosh t

√
S(A) = S(C(t)), for all t ∈ R. Which implies that A has the SVEP if and

only if C(t) has the SVEP for all t ∈ R if and only if C(t0) has the SVEP for some t0 ∈ R. It’s normal to
ask the following question: Does this property remain true when replacing a family uniformly continuous
cosine function of operators with a family strongly continuous cosine function of operators? In this article,
we have given a positive answer to this question. More precisely, we show that if (C(t))t∈R is a strongly
continuous operator cosine function, then A has the SVEP if and only if C(t) has the SVEP for all t ∈ R if
and only if C(t0) has the SVEP for some t0 ∈ R.

2. Main results

Theorem 2.1. Let (C(t))t∈R be a strongly continuous cosine function of operators with infinitesimal generator A.
Then for all t ∈ R, we have the following equality :

S(C(t)) ∪ {−1, 1} = cosh t
√
S(A) ∪ {−1, 1}.

Proof. Suppose that cosh(λt) − C(t) has not SVEP at 0, then there exists xi ∈ X such that x0 = 0, x1 , 0,
∀i ≥ 1, (cosh(λt) − C(t))xi = xi−1 and sup

i
∥xi∥

1
i < ∞. Since (cosh(λt) − C(t))x1 = 0 and x1 , 0. Choose now

x∗1 ∈ X∗ satisfying < x1, x∗1 >, 0 and consider the t-periodic function f defined by:

f (s) =
{
< sinhλ(t − s)C(s)x1, x∗1 > if s ∈ [0, t[
sinhλt < x1, x∗1 > if s = t

For m ∈ Z, we have,

< Sλm (t)x1, x∗1 > =

∫ t

0
sinhλm(t − s) < C(s)x1, x∗1 > ds

=
1
2

eλmt
∫ t

0
e−λms < C(s)x1, x∗1 > ds −

1
2

e−λmt
∫ t

0
eλms < C(s)x1, x∗1 > ds
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=
1
2

eλt
∫ t

0
e−λms < C(s)x1, x∗1 > ds −

1
2

e−λt
∫ t

0
eλms < C(s)x1, x∗1 > ds

=
1
2

∫ t

0
eλ(t−s)e−2iπms/t < C(s)x1, x∗1 > ds −

1
2

∫ t

0
e−λ(t−s)e2iπms/t < C(s)x1, x∗1 > ds.

For n ∈N∗ we have,

n∑
m=−n

< Sλm (t)x1, x∗1 > =
1
2

∫ t

0
eλ(t−s)Dn(s/t) < C(s)x1, x∗1 > ds −

1
2

∫ t

0
e−λ(t−s)Dn(s/t) < C(s)x1, x∗1 > ds

=

∫ t

0
Dn(s/t) f (s)ds

= t
∫ 1

0
Dn(u) f (tu)ds,

where Dn(u) =
n∑

m=−n

e2inπu. Then for q ∈N∗, we have,

1
q + 1

q∑
n=0

n∑
m=−n

< Sλm (t)x1, x∗1 >= t
∫ t

0
Fq(u) f (tu)du, where Fq(s) =

1
q + 1

 q∑
n=0

Dn(s)

. We show that

lim
q→∞

∫ t

0
Fq(u) f (tu)du =

1
2

eλt < x1, x∗1 > . Indeed let ϵ > 0. Since lim
s→0+

f (s) = sinhλt < x1, x∗1 > and

lim
s→0−

f (s) = coshλt < x1, x∗1 >, then there exists η > 0, such that
∣∣∣ f (tu)du − sinhλt < x1, x∗1 >

∣∣∣ ≤ ϵ/4 for

all s ∈ [0, η] and
∣∣∣ f (tu)du − coshλt < x1, x∗1 >

∣∣∣ ≤ ϵ/4 for all s ∈ [−η, 0]. As we can decrease t without changing
the above implications, we can assume η < 1/2. Note that:∣∣∣∣∣∣

∫ 1/2

0
Fq(u) f (tu)du − 1/2 sinh(λt) < x1, x∗1 >

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 1/2

0
Fq(u)

[
f (tu) − sinh(λt) < x1, x∗1 >

]
du

∣∣∣∣∣∣
≤

∫ 1/2

0
Fq(u)

∣∣∣ f (tu) − sinh(λt) < x1, x∗1 >
∣∣∣ du

≤ ϵ/2 +
∫ 1/2

η
Fq(u)

∣∣∣ f (tu) − sinh(λt) < x1, x∗1 >
∣∣∣ du

≤ ϵ/2 + 2∥ f ∥∞

∫ 1/2

η
Fq(u)du ≤ ϵ for q ≥ q0.

Similarly, by increasing q0 if necessary, we have, for q ≥ q0:∣∣∣∣∣∣
∫ 0

−1/2
Fq(u) f (tu)du − 1/2 cosh(λt) < x1, x∗1 >

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 0

−1/2
Fq(u)

[
f (tu) − cosh(λt) < x1, x∗1 >

]
du

∣∣∣∣∣∣
≤

∫ 0

−1/2
Fq(u)

∣∣∣ f (tu) − cosh(λt) < x1, x∗1 >
∣∣∣ du

≤ ϵ/2 +
∫ 1/2

η
Fq(u)

∣∣∣ f (tu) − cosh(λt) < x1, x∗1 >
∣∣∣ du

≤ ϵ/2 + 2∥ f ∥∞

∫
−η

−1/2
Fq(u)du ≤ ϵ.



H. Boua / Filomat 37:2 (2023), 387–391 390

Therefore lim
q→∞

1
q + 1

q∑
n=0

n∑
m=−n

< Sλm (t)x1, x∗1 >=
1
2

teλt < x1, x∗1 >, 0. So necessarily, there exists p ∈ Z such

that Sλp (t)x1 , 0. Let yi = Si
λp

(t)xi, then (yi)i≥0 ⊆ D(A), y0 = x0 = 0, y1 = Sλp (t)x1 , 0, and we have, for all
i ≥ 1 :

(λ2
p − A)yi = (λ2

p − A)Sλp (t)Si−1
λp

(t)xi

= (cosh(λpt) − C(t))Si−1
λp

(t)xi

= Si−1
λp

(t)(cosh(λpt) − C(t))xi

= Si−1
λp

(t)xi−1

= yi−1.

Therefore, (λ2
p − A)yi = yi−1. On the other hand ∥yi∥ = ∥Si

λp
(t)xi∥ ≤ ∥Si

λp
(t)∥∥xi∥ ≤ Mi

∥xi∥, where M =

∥Sλp (t)∥ > 0. Then sup
i
∥yi∥

1
i < ∞. Hence λp ∈ S(A) and cosh(λt) = cosh(λpt) ∈ cosh(t

√
S(A)). Finally

S(C(t)) ⊆ cosh(t
√

S(A)).
Conversely, let cosh(λ0t) < S(C(t)) ∪ {−1, 1}, then C(t) has SVEP at cosh(λ0t). Let us show that λ2

0 < S(A).
Let Dλ2

0
the open disc centered at λ2

0, f : Dλ2
0
−→ D(A) an analytic function such that for all µ ∈ Dλ2

0
, (µ −

A) f (µ) = 0. Show that f is identically zero on Dλ2
0
. Consider the analytic functionφt : z ∈ Dλ2

0
7−→ cosh(t

√
z).

Since cosh(λ0t) , ±1, then φ′t(λ
2
0) , 0. By the inverse function theorem, there exists a neighborhood V of λ2

0
such that V ⊆ Dλ2

0
,φt(V) is open and the functionφt : V −→ φt(V) is bijective. The functionφ−1

t : φt(V) −→ V
is analytic. Then 1 : z ∈ φt(V) −→ f (φ−1

t (z)) is also analytic. Now, let z ∈ φt(V), there exists µ ∈ V such that
z = cosh(t

√
µ). Therefore we have

(z − C(t))1(z) = (µ − A)S√µ(t) f (φ−1
t (z))

= (µ − A)S√µ(t) f (µ)
= S√µ(t)(µ − A) f (µ) = 0.

Since 1 has the SVEP at cosh(λ0t), Then 1 is identically zero, so f is identically zero on V. As f is analytic
function, then f is identically zero on Dλ2

0
. which implies A has the SVEP at λ2

0. So the proof is complete.

Corollary 2.2. Let (C(t))t∈R be a strongly continuous cosine function of operators with infinitesimal generator A.
The following assertions are equivalent:

1. A has the SVEP.
2. For all t ≥ 0, C(t) has the SVEP.
3. There exists t0 ≥ 0, C(t0) has the SVEP.

Proof. (1) ⇒ (2): If A has the SVEP, then S(A) = ∅. By theorem 2.1, we have S(C(t)) ⊆ {−1, 1} for all t ∈ R.
Since S(C(t)) is open, then S(C(t)) = ∅. Which implies that C(t) has the SVEP for all t ∈ R.
(2)⇒ (3): Obvious.
(3)⇒ (1): If C(t0) has the SVEP for some t0 ∈ R, thenS(C(t0)) = ∅. By theorem 2.1, we have cosh(t0

√
S(A)) ⊆

{−1, 1}. Since S(A) is open and the function z 7→ cosh(t
√

z) is open, then cosh(t0
√
S(A)) is open. Which

implies that S(A) = ∅. Therefore A has the SVEP.

Example 2.3. Let X be the complex ℓ2 space, and for (zn)n∈N ∈ ℓ2, s ∈ R, we put C(s)(zn)n = (cos(ns)zn)n. Then

A(zn)n = (−n2zn)n with D(A) = {(zn)n ∈ ℓ
2 :

∞∑
n=1

n4
|zn|

2 < ∞} and σ(A) = {−n2 : n ∈ N∗}. So A has the SVEP.

According to corollary 2.2, C(t) has the SVEP for all t ≥ 0.

Example 2.4. Let (C(t))t∈R be a strongly continuous cosine function of operators with infinitesimal generator A. If
C(.) is is 2π-periodic, then C(2π) has the SVEP. From corollary 2.2, A and C(t) are the SVEP for all t ≥ 0.
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