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Abstract. In this paper, we prove a result of existence and uniqueness of solutions for the following class
of problem of initial value for differential equations with maxima and Caputo’s fractional order on the time
scales:

c∆ωa u(ϑ) = ζ(ϑ,u(ϑ),max
ς∈[a,ϑ]

u(ς)), ϑ ∈ J := [a, b]T, 0 < ω ≤ 1,

u(a) = ϕ,

We used the techniques of the Picard and weakly Picard operators to obtain some data dependency on the
parameters results.

1. Introduction and Preliminaries

During the last decades, the theory of differential equations on time scales has developed very intensively
(see for example [2, 3, 7–10, 17–20, 23] and the references therein). Indeed, it was in 1988 that Hilger [13, 24]
introduced the concept of ”calculation of chains of measures” in order to unify the discrete and continuous
analysis. On the other hand, the differential equations of fractional order has become very important in
recent years due to their applications in various fields, in : physiology, rheology, control, viscoelasticity,
electrochemistry, electromagnetism, etc. For moor details, see [4–6, 11, 15, 16, 37] and the references therein.
Many authors have considered fractional differential equations (FDE) with maxima (see [1, 14, 21, 25–29]).
In [27], Otrocol discussed the following system: u′(t) = f (t,u(t)) + 1(t,max

ς∈[0,t]
u(ς)),

u(0) = ϕ,

where t ∈ [0, b], b ∈ Rp, ϕ ∈ Rp, and f , 1 ∈ [0, b] ×Rp
−→ Rp.
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In this article, a result of existence and uniqueness has been established through Banach’s principle of
contraction. In addition, we used the Picard and weakly Picard operator [27, 29–36]) techniques to obtain
data dependency results on the parameters. We considered the following FDE on time scale with maxima

c∆ωa u(ϑ) = ζ(ϑ,u(ϑ),U(ϑ)), ϑ ∈ J := [a, b]T = [a, b] ∩ T, 0 < ω ≤ 1, (1)

u(a) = ϕ, (2)

where U(ϑ) = max
ς∈[a,ϑ]

u(ς), b > a, c∆ωa is the Caputo fractional derivative operator or order ω defined on T,

ζ : J ×R ×R→ R is a given function and ϕ is a real constant.

The expressionC(J ,R) denotes Banach space of continuous functions y with the norm ∥y∥∞ = sup
{
|y(ϑ)| : ϑ ∈ J

}
,

where J is a bounded interval. A time scale T is an arbitrary nonempty closed subset of R (see [19, 20]).

Definition 1.1. A function h : T → R is called rd-continuous provided it is continuous at right-dense points in T
and its left-sided limits exist (finite) at left-dense points in T. Crd denote the set of rd-continuous functions h : T→ R.

Definition 1.2. A function H from a closed bounded interval of T toR is called a delta antiderivative of h : [κ, µ)→ R
provided F is continuous on [κ, µ], delta differentiable on [κ, µ), and H∆(ϑ) = f (ϑ) for all ϑ ∈ [κ, µ). Then, we define
the ∆-integral of h from a to b by ∫ µ

κ
h(ϑ)∆ϑ := H(µ) −H(κ).

Lemma 1.3. [12] Suppose T is a time scale and h is an increasing continuous function on the time-scale interval
[κ, µ]. If H is the extension of h to the real interval [κ, µ] given by

H(ϑ) :=

h(ϑ) if ϑ ∈ T,
h(s) if ϑ ∈ (s, σ(s)) < T,

then ∫ µ

κ
h(ϑ)∆ϑ ≤

∫ µ

κ
H(ϑ)dϑ.

Definition 1.4 (Fractional integral on time scales). Suppose T is a time scale, [a, b] ⊂ T, and ζ is an integrable
function on [a, b]. Let 0 < ω < 1. Then the fractional integral of order ω of ζ is defined by

TI
ω
a ζ(ϑ) :=

1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s)∆s.

Definition 1.5 (Caputo fractional derivative on time scales). Let T be a time scale, ϑ ∈ T, 0 < ω < 1, and
ζ : T→ R. The Caputo ∆− fractional derivative of order ω of ζ is defined by

c∆ωa+ζ(ϑ) :=
1

Γ(n − ω)

∫ ϑ

a
(ϑ − s)n−ω−1ζ∆

n
(s)∆s, (3)

where n = [ω] + 1 and [ω] denotes the integer part of ω.

Theorem 1.6. (semigroup property) Let ω,ϖ > 0, and ζ is an integrable function on [a, b]. Then

TI
ω
a

TI
ϖ
a ζ(ϑ) = TI

ω+ϖ
a ζ(ϑ).
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Let (X, d) be a metric space and N : X→ X be an operator. Let Fix(N) the set of the fixed points of N, i.e.

Fix(N) := {x ∈ X : x = N(x)}.

We denote by P(N) the family of all nonempty subsets of X, i.e.

P(N) := {Y ⊆ X,Y , ∅},

and by I(N) the family of the nonempty invariant subsets of N, i.e.

I(N) := {Y ⊂ X,N(y) ⊂ Y,Y , ∅}.

We also denote N0 := 1X, N1 := N, . . . ,Nn+1 := N ◦Nn; n ∈N the iterations of the operator N.

Definition 1.7. (Picard operator: ([31, 33, 35])) The operator N : X → X is a Picard operator (P.o.) if there exists
p ∈ X such that:

(i) Fix(N) = {p};
(ii) The sequence (Nn(x0))n∈N converges to p for all x0 ∈ X.

Example 1.8. [30] Let (X, d) be a metric space and Φ,Ψ : X→ X such that

d(Φ(u),Ψ(v)) ≤ κ[d(u,Φ(u)) + d(v,Ψ(v)]

for all u, v ∈ X and for some κ ∈ (0, 1). Then Φ andΨ are Picard operators.

Definition 1.9. (Weakly Picard operator: Rus 1993) The operator N : X→ X is a weakly Picard operator (w.P.o.)
if the sequence (Nn(x))n∈N converges for all x ∈ X, and its limit (which may depend on x) is a fixed point of N.

Example 1.10. [30] Let X = C[0, 1], d(u, v) = ∥u − v∥∞,

Υ(u)(t) = u(0) +
∫ t

0
K(t, s)u(s)ds, t ∈ [0, 1],

where K ∈ C([0, 1] × [0, 1]). Then Υ is w.P.o..

If N is weakly Picard operator then we consider the operator N∞ defined by

N∞ : X→ X; N∞(x) = lim
n→∞
Nn(x).

Remark 1.11. It is clear that N∞(X) = Fix(N).

Definition 1.12. (c-weakly Picard operator) LetN be a weakly Picard operator and c > 0. The operatorN is c-weakly
Picard operator (c-w.P.o.) if

d(x,N∞(x)) ≤ c d(x,N(x)); x ∈ X.

Example 1.13. [33] Let (X, d) be a complete metric space. If N : X→ X is an κ-contraction then the operator N is
(c-w.P.o.) with c = (1 − κ)−1.

Lemma 1.14. [33, 34] Let (X, d,≤) be an ordered metric space and N : X→ X be an operator. If

(i) N is monotone increasing,
(ii) N is w.P.o.,

then N∞ is monotone increasing.
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Theorem 1.15. (Rus 1993 [32]) Let (X, d,≤) be an ordered metric space andN : X→ X be an operator. The operator
N is w.P.o. (c-w.P.o.) if and only if there exists a partition of X,

X =
⋃
ϕ∈Λ

Xϕ,

where Λ is the indices’set of partition, such that

1) Xϕ ∈ I(N);
2) N | Xϕ : Xϕ → Xϕ is a Picard (c-Picard) operator, for all ϕ ∈ Λ.

Lemma 1.16. (Abstract comparison principle [33, 34]). Let (X, d,≤) be an ordered metric space and N,M,P : X→
X operators. If

(i) N ≤M ≤ P,
(ii) N,M,P are w.P.o.s,

(iii) M is monotone increasing,

then
u ≤ v ≤ v⇒ N∞(u) ≤M∞(v) ≤ P∞(w).

Theorem 1.17. (General data dependence theorem: Rus 2001 [36]) Let (X, d) be a complete metric space and
M,N : X→ X two operators. We suppose that such that

(i) M is a κ-contraction;
(ii) Fix(N) , ∅;

(iii) there exists ν > 0 such that d(M(x),N(x)) ≤ ν, for all x ∈ X.

Then, if Fix(M) = {pM} and pN ∈ Fix(N), we have

d(pM, pN) ≤
ν

1 − κ
.

2. Existence of Solutions

Definition 2.1. A function u ∈ C1
rd(J ,R) is said a solution of (1)-(2) if u satisfies the condition u(a) = ϕ, and the

equations c∆ωa u(ϑ) = ζ(ϑ,u(ϑ), max
ς∈[a,ϑ]

u(ς)) on J .

Lemma 2.2. Let 0 < ω < 1, and ζ : J × R × R → R be rd-continuous. Function u ∈ C1
rd(J ,R) is a solution of

problem (1)-(2) if and only if it is a solution of the following integral equation:

u(ϑ) = ϕ +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),U(s))∆s,

where U(ϑ) = max
ς∈[a,ϑ]

u(ς).

Proof. We have TIωa ◦
(c∆ωa (u(ϑ))

)
= u(ϑ) − u(a). Then, from (3) we have

u(ϑ) = ϕ +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),U(s))∆s,

where U(ϑ) = max
ς∈[a,ϑ]

u(ς).

Set Crd = Crd(J ,R).

Theorem 2.3. Assume
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(AxI) The function ζ : J ×R ×R→ R is rd-continuous.
(AxII) There exists a constant kζ > 0 such that

|ζ(ϑ,u, v) − ζ(ϑ,u, v)| ≤ kζ max(|u − u|, |v − v|)

for all u, u, v, v ∈ R, and ϑ ∈ J .

(AxIII)

π :=
(b − a)ω

Γ(1 + ω)
kζ < 1. (4)

Then the problem (1) − (2) has unique a unique solution û in Crd(J ,R).

Proof. Let the Banach space Ω = (Crd, ∥ · ∥∞) and consider the operator Φ : Ω→ Ω, defined by

Φu(ϑ) = ϕ +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),U(s))∆s, (5)

where U(ϑ) = max
ξ∈[a,ϑ]

u(ξ).

We show that the operator Φ defined in (5) has a unique fixed point û in Crd. Let u,w ∈ Crd, and ϑ ∈ J .
Then

Φu(ϑ) = ϕ +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),U(s))∆s,

and

Φw(ϑ) = ϕ +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,w(s),W(s))∆s,

where U(t) = max
ξ∈[a,t]

u(ξ), and W(t) = max
ξ∈[a,t]

w(ξ).

By (AxII) we get

|Φu(ϑ) −Φw(ϑ)|

≤
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1

| ζ(s,u(s),U(s)) − ζ(s,w(s),W(s)) | ∆s

≤
kζ
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1max

s∈[a,b]
(| u(s) − w(s) |, |U(s) −W(s)|)∆s.

(6)

According to ”max” property, (see [29])

max
s∈[a,b]
|max
τ∈[a,s]

u(τ) −max
τ∈[a,s]

v(τ)| ≤ max
s∈[a,b]
|u(s) − v(s)|,

we obtain

max
s∈[a,b]

(| u(s) − w(s) |, |U(s) −W(s)|)

= max
s∈[a,b]

(
| u(s) − w(s) |, |max

τ∈[a,s]
u(τ) −max

τ∈[a,s]
w(τ)|

)
≤ max

s∈[a,b]
|u(s) − w(s)|.
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So, by (6) and Lemma 1.3, we get

|Φu(ϑ) −Φw(ϑ)| ≤
kζ
Γ(ω)

max
s∈[a,b]
|u(s) − w(s)|

∫ ϑ

a
(ϑ − s)ω−1∆s

≤

kζmax
s∈[a,b]
|u(s) − w(s)|

Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ds

≤
(ϑ − a)ωkζ
Γ(1 + ω)

max
s∈[a,b]
|u(s) − w(s)|

≤
(b − a)ωkζ
Γ(1 + ω)

max
s∈[a,b]
|u(s) − w(s)|.

Then

∥Φu −Φw∥ ≤
(b − a)ωkζ
Γ(1 + ω)

∥u − w∥.

By (AIII), the operator Φ is a π−contraction. Hence, by Banach’s contraction principle, Φ has a unique fixed
point û which is a unique solution of the problem (1)–(2). □

Remark 2.4. It is clear that equation (1) is equivalent to the integral equation

u(ϑ) = u(a) +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),U(s))∆s,

and problem (1)-(2) is equivalent to the integral equation

u(ϑ) = ϕ +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),U(s))∆s,

where U(t) = max
ξ∈[a,t]

u(ξ), and u ∈ C1
rd.

Define the operatorΨ : Ω→ Ω by

Ψ(u)(ϑ) = u(a) +
1
Γ(ω)

∫ ϑ

a
(ϑ − s)ω−1ζ(s,u(s),max

ξ∈[a,s]
u(ξ))∆s.

Put
Ωϕ := {u ∈ Crd,u(a) = ϕ}.

Note that
Ω =

⋃
ϕ∈R

Ωϕ,

is a partition of Ω.We deduce the following auxiliary lemma

Lemma 2.5. [29] If (AI) is satisfied, then for each ϕ ∈ R :
(i) Φ(Ω) ⊂ Ωϕ and Φ(Ωϕ) ⊂ Ωϕ;

(ii) Φ | (Ωϕ) = Ψ | (Ωϕ).

Remark 2.6. Φ is (P.o.), and for all ϕ ∈ R,
(i) Φ | (Ωϕ) = Ψ | (Ωϕ), and

(ii) Ω = Crd =
⋃
ϕ∈R
Ωϕ, and

(ii) Ωϕ ∈ I(Ψ),

we deduce thatΨ is (w.P.o.). Moreover
Fix(Ψ) ∩Ωϕ = {û},

for all ϕ ∈ R, where û is the unique solution of the problem (1)–(2).
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2.1. Data dependance
Let the operators Φ and Ψ on the ordered Banach space (Crd, ∥ · ∥,≤), and consider the following

differential inequality
c∆ωa v(ϑ) ≤ ζ(ϑ, v(ϑ),V(ϑ)), ϑ ∈ J , 0 < ω ≤ 1, (7)

where V(ϑ) = max
ξ∈[a,ϑ]

v(ξ).

Lemma 2.7. Let ζ ∈ Crd(J ×R ×R), and assume
(i) (AxI) − (AxIII) hold;

(ii) ζ(ϑ, ·, ·) : R ×R→ R, is increasing, for all ϑ ∈ J .

If û is the unique solution of equation (1) and v̂ a solution of inequality (7), then

v̂(a) ≤ û(a)⇒ v ≤ u.

Proof. We have, in the terms of the operatorΨ : u = Ψ(u) and v ≤ Ψ(v), and u(a) ≤ v(a). By Remark 2.6
the operatorΨ is (w.P.o.). Moreover, from Lemma 1.14 and condition (ii)Ψ∞ is increasing.
For ϕ ∈ R we define the constant function

ϕ̃ : J → R, ϕ̃(ϑ) = ϕ, for all ϑ ∈ J .

So, we have
v̂ ≤ Ψ(̂v) ≤ Ψ2 (̂v) ≤ · · · ≤ Ψ∞ (̂v).

But
Ψ∞ (̂v) = Ψ∞(˜̂v(a)) ≤ Ψ∞(˜̂u(a)) = û.

Thus
v̂ ≤ û. □

We present the following monotonicity result.

Theorem 2.8. Let ζk ∈ Crd(J ×R ×R), where k ∈ {1, 2, 3}, and assume (AxI) − (AxIII) hold, and
(i) ζ1 ≤ ζ2 ≤ ζ3;

(ii) ζ2(ϑ, ·, ·) : R ×R→ R is increasing, for all ϑ ∈ J .

Let ûk ∈ C
1
rd(J) be a solution of equation

c∆ωa uk(ϑ) = ζk(ϑ,uk(ϑ), max
ς∈[a,ϑ]

uk(ς)), k ∈ {1, 2, 3}, ϑ ∈ J , 0 < ω ≤ 1.

Then we have

û1(a) ≤ û2(a) ≤ û3(a)⇒ û1 ≤ û2 ≤ û3,

i.e. the unique solution of problem (1)–(2) is increasing with respect to ϕ, and ζ.

Proof. Ψk, k ∈ {1, 2, 3} is w.P.o. (see proof. of Lemma 2.7). Moreover, from (ii)Ψ2 is a monotone increasing
operator. By (i) we deduceΨ1 ≤ Ψ2 ≤ Ψ3.
Let ũk(a) ∈ Crd defined by ũk(a) = uk(a) for ϑ ∈ J , and k ∈ {1, 2, 3}. Note that

ũ1(a) ≤ ũ2(a) ≤ ũ3(a), for all ϑ ∈ J .

By abstract comparison principle (Lemma 1.16), we deduce

Ψ∞1 (̃û1(a)) ≤ Ψ∞2 (̃û2(a)) ≤ Ψ∞3 (̃û3(a)).

And asΨ∞k (̃ûk(a)) = ûk,where k ∈ {1, 2, 3},we deduce

û1 ≤ û2 ≤ û3.
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□

In the following result, we prove the continuous dependence of the solution for problem (1)–(2).

Theorem 2.9. Let ϕk ∈ R, and ζk ∈ Crd(J ×R ×R), where k ∈ {1, 2}, and assume (AxI) − (AxIII) hold, and

(i) |ϕ1(ϑ) − ϕ2(ϑ)| ≤ ℵ1, for all ϑ ∈ J ;
(ii) |ζ1(ϑ,u1,u2) − ζ2(ϑ,u1,u2)| ≤ ℵ2 , for all ϑ ∈ J , uk ∈ R, k ∈ {1, 2}.

Then

∥û(ϑ;ϕ1, ζ1) − û(ϑ;ϕ2, ζ2)∥ ≤
ℵ1Γ(1 + ω) + ℵ2(b − a)ω

Γ(1 + ω) − Kζ(b − a)ω
,

where û(t;ϕk, ζk), k ∈ {1, 2}, are the solutions of problem (1)–(2) with respect to ϕk, ζk, k ∈ {1, 2}, and Kζ =
max(kζ1 , kζ2 ).

Proof. Let the operators Φϕk ,ζk where k ∈ {1, 2}. By Theorem 2.3, Φϕk ,ζk are a π−contraction. Then, for all
u, v ∈ R we deduce

∥Φϕ1,ζ1 (u) −Φϕ1,ζ1 (v)∥ ≤ π∥u − v∥

=
(b − a)ωkζ
Γ(1 + ω)

∥u − v∥. (8)

On the other hand,

|Φϕ1,ζ1 (u) −Φϕ2,ζ2 (u)|
≤ |ϕ1 − ϕ2|

+

∫ ϑ

a

(ϑ − s)ω−1

Γ(ω)
|ζ1(s,u(s),U(s)) − ζ2(s,u(s),U(s))|∆s,

where U(t) = max
ξ∈[a,t]

u(ξ).

Then by Lemma 1.3 we get

|Φϕ1,ζ1 (u) −Φϕ2, f2 (u)|
≤ |ϕ1 − ϕ2|

+

∫ ϑ

a

(ϑ − s)ω−1

Γ(ω)
|ζ1(s,u(s),U(s)) − ζ2(s,u(s),U(s))| ds

≤ ℵ1 +
ℵ2(b − a)ω

Γ(1 + ω)
,

(9)

where U(t) = max
ξ∈[a,t]

u(ξ). Then

∥û(ϑ,ϕ1, f1) − û(ϑ,ϕ2, f2)∥ = ∥Φϕ1,ζ1 (û(ϑ,ϕ1,ζ1)) −Φϕ2,ζ2 (û(ϑ,ϕ2,ζ2))∥
≤ ∥Φϕ1,ζ1 (û(ϑ,ϕ1,ζ1)) −Φϕ1,ζ1 (û(ϑ,ϕ2,ζ2))∥
+ ∥Φϕ1,ζ1 (û(ϑ,ϕ2,ζ2)) −Φϕ2,ζ2 (û(ϑ,ϕ2,ζ2))∥.

Thus, by (8) and (9) we get

∥û(ϑ,ϕ1,ζ1) − û(ϑ,ϕ2,ζ2)∥ ≤ π∥û(ϑ,ϕ1,ζ1)) − û(ϑ,ϕ2,ζ2))∥ + ℵ1 +
ℵ2(b − a)ω

Γ(1 + ω)
.

Put, in Theorem 1.17
M := Φϕ1,ζ1 , N := Φϕ2,ζ2 ,

and

ν := ℵ1 +
ℵ2(b − a)ω

Γ(1 + ω)
, κ :=

(b − a)ω

Γ(1 + ω)
Kζ,
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where Kζ = max(kζ1 , kζ2 ),we get

∥û(t;ϕ1, ζ1) − û(t;ϕ2, ζ2)∥ ≤
ν

1 − κ
=
ℵ1Γ(1 + ω) + ℵ2(b − a)ω

Γ(1 + ω) − Kζ(b − a)ω
.

□
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