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Abstract. In this paper, due to the Borel lemma and Clunie lemma, we will deduce the relationship
between an entire function f of hyper-order less than 1 and its n-th difference operator ∆n

c f (z) if they share
a finite set and f has a Borel exceptional value 0, where the set consists of two entire functions of smaller
orders. Moreover, the exact form of f is given and an example is provided to show the sharpness of the
condition.

1. Introduction and main results

The paper is mainly devoted to studying the relationship between an entire function f of hyper-order
less than 1 and its n-th difference operator ∆n

c f (z) when they share a finite set CM, which is inspired by the
famous problem of unique range set (URSE) in Nevanlinna theory. A set is called unique range set (URSE)
for a certain class of entire functions if each inverse image of the set uniquely determines a function from
the given class. Let f be an entire function, and let S be a finite set such that all elements of S are entire
functions. Then, a set E( f ,S) is defined as

E( f ,S) = {(z,m) ∈ C × Z, f (z) − a(z) = 0 with multiplicity m, a ∈ S}.

Assume that 1 is another entire function. We say that f and 1 share S CM whenever E( f ,S) = E(1,S). A set
S is called URSE if two entire functions f , 1 satisfy E( f ,S) = E(1,S), then f = 1.

It was Gross and Yang [7] who gave the first example of a unique range set {z : z+ ez = 0}. It is seen that
there exists infinitely many elements in the set. Later on, Gross in [6] posed the question: Does there exist
a finite unique range set? In 1995, the problem was solved by Yi in [19]. Since then, the problem of unique
range set has been studied in various settings, see e.g., [4, 5, 16].

As we all know, the Nevanlinna’s theory is an important part of the theory of meromorphic func-
tions. Recently, the difference analogues to Nevanlinna’s theory was established by Halburd and Korhonen
[10, 11], Chiang and Feng [1], independently, which have been a powerful theoretical tool to study the
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uniqueness problems of meromorphic functions taking into account their shifts or difference operators.
With help of this tool, there is another study direction on the unique range set of an entire function f , that
is to seek the set S such that if E( f ,S) = E(∆c f ,S), then f = ∆c f , where ∆c f (z) = f (z + c) − f (z) is the first dif-
ference operator. Recently, Liu [17] firstly paid attentions to this direction and obtained the following result.

Theorem A. Suppose that a is a nonzero complex number, f is a transcendental entire function with finite
order. If f and ∆c f share {a,−a} CM, then ∆c f (z) = f (z) for all z ∈ C.

In the same paper, Liu [17] posed the following question: Let a and b are two small function of f with
period c. When a transcendental entire function f of finite order and its difference operator ∆c f share the
set {a, b} CM, what can we say about the relationship between f and ∆c f ? The follow-up research on this
aspect was done by Li in [15]. In fact, Li proved the following theorem.

Theorem B. Suppose that a, b are two distinct entire functions, and f is a nonconstant entire function with
ρ( f ) , 1 and λ( f ) < ρ( f ) < ∞ such that ρ(a) < ρ( f ) and ρ(b) < ρ( f ). If f and ∆c f share {a, b} CM, then
∆c f (z) = f (z) for all z ∈ C.

Here, the order ρ( f ) and the exponent of convergence of zeros λ( f ) are defined as

ρ( f ) = lim sup
r→∞

log T(r, f )
log r

, λ( f ) = lim sup
r→∞

log N(r, 1
f )

log r
.

Very recently, Qi-Wang-Gu [13] further studied the above problem and showed that the theorem B still
holds without the condition ρ( f ) , 1. More precisely, they gave the specific form of f in a simple way.

Theorem C. Suppose that a, b are two distinct entire functions, and f is a nonconstant entire function of
finite order with λ( f ) < ρ( f ) < ∞ such that ρ(a) < ρ( f ) and ρ(b) < ρ( f ). If f and ∆c f share {a, b} CM, then
f (z) = Aeµz, where A, µ are two nonzero constants satisfying eµc = 2. Furthermore, ∆c f (z) = f (z).

Note that the function f is finite order in the theorems A-C. It is known that the difference analogues
to Nevanlinna theory given by Halburd and Korhonen , Chiang and Feng has been improved by Halburd,
Korhonen, and Tohge [9] from the finite order of meromorphic functions to infinite order (hyper-order
strictly less than 1). So, one may ask the question:

Question 1. Whether the theorem C still holds or not if the entire function f is of hyper-order strictly
less than 1?

After studying Theorem C carefully, we also have the follow question:

Question 2. Whether the first difference operator ∆c f would be generalized to the n-th difference
operator ∆n

c f in Theorem C, where

∆n
c f (z) = ∆n−1

c (∆c f (z)) =
n∑

i=0

(−1)n−i
(
n
i

)
f (z + ic),

c is a nonzero complex number and n is a integer. (When n = 1, ∆n
c f (z) reduces to the first difference

operator ∆c f (z).)

Unfortunately, the answer to the latter question is negative, which is showed by the following example.

Example 1. Consider f (z) = Aeλz with a nonzero constant A and eλ = 1 + i. A calculation yields
∆2

1 f (z) = −Aeλz = − f (z). Assume a is an arbitrary entire function of order less than 1. Then ∆2
1 f (z) and f (z)
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share the set {a, − a}. However, it does not satisfy the conclusion of Theorem C.

From Example 1 and Theorem C, we see that ∆n
c f (z) = f (z) or ∆n

c f (z) = − f (z) for case n = 1 or n = 2.
This observation leads us to ask the next question:

Question 3. Whether the conclusion is ∆n
c f (z) = ± f (z) in Theorem C if ∆c f is replaced by ∆n

c f (z).

In the present paper, we consider the above questions 1 and 3, and give affirmative answers to them.
More specifically, we have the following.

Main Theorem. Suppose that a, b are two distinct entire functions, and f is an entire function of hyper-
order strictly less than 1 such that λ( f ) < ρ( f ), ρ(a) < ρ( f ) and ρ(b) < ρ( f ). If f and ∆n

c f (z)(. 0) share the set
{a, b} CM, then f (z) = Aeλz,where A, λ are two nonzero constants with (eλc

− 1)n = ±1. Furthermore,
(1) if (eλc

− 1)n = 1, then ∆n
c f (z) = f (z);

(2) if (eλc
− 1)n = −1, then ∆n

c f (z) = − f (z) and b = −a.

Remark. It is easy to see that the case (eλc
− 1)n = −1 cannot occur if n = 1, since eλc , 0. So, the main

theorem is a generalization of Theorem C. We also point out both ∆n
c f (z) = f (z) and ∆n

c f (z) = − f (z) may
happen if n ≥ 2.

We give an example to show that the condition λ( f ) < ρ( f ) is sharp.

Example 2. Consider f (z) = A2z(e2πiz + B), where A, B are two nonzero constants. Obviously,
∆1 f (z) = f (z). Assume that a, b are two arbitrary entire functions of order less than 1. Then ∆1 f (z)
and f (z) share the set {a, b} CM. Therefore, the example satisfies all the assumptions of Main theorem ex-
cept forλ( f ) < ρ( f ), sinceλ( f ) = ρ( f ) = 1. And the form of f does not satisfy the conclusion of Main theorem.

Before to proceed, we assume that the reader is familiar with the basic results of Nevanlinna theory
and its standard notation (see, e.g., [8, 20]) such as the proximity function m(r, f ), the integrated counting
function N(r, f ) and the characteristic function T(r, f ), and we say a nonconstant meromorphic function a(z)
is a small function of f if T(r, a) = S(r, f ) = o(T(r, f )) as r→ ∞ outside of a possible exceptional set of finite
logarithmic measure, where f is a meromorphic function in the complex plane. And the lower order µ( f ),
the hyper-order ρ2( f ) are defined as

µ( f ) = lim inf
r→∞

log T(r, f )
log r

, ρ2( f ) = lim sup
r→+∞

log log T(r, f )
log r

.

2. Proof of Main theorem

In this section, we shall prove our theorem. Before to its proof, we first give the following results, where
the first one is Theorem 5.1 of Halburd-Korhonen-Tohge in [9], the second one is Lemma 3.3 of Bergweiler
and Langley in [18], the last one is the Borel lemma in [20].

Lemma 2.1. Let f be a nonconstant meromorphic function and c ∈ C. If f is a finite order, then

m(r,
f (z + c)

f (z)
) = O(

log r
r

T(r, f )),

for all r outside of a set E with zero logarithmic density. If the hyper-order ρ2 of f is less than one, then for
each ε > 0, we have

m(r,
f (z + c)

f (z)
) = o(

T(r, f )
r1−ρ2−ε

),
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for all r outside of a set of finite logarithmic measure.

Lemma 2.2. Let 1 be a function transcendental and meromorphic in the plane of order less than 1. Let
h > 0. Then there exists an ϵ-set E such that

1(z + η)
1(z)

→ 1, as z→∞ in C \ E,

uniformly in η for |η| ≤ h.

Lemma 2.3. Suppose that f j(z) ( j = 1, 2, ...,n) (n ≥ 2) is a meromorphic function, 1 j(z) ( j = 1, 2, ...,n) is an
entire function satisfying the following conditions:

(1)
∑n

j=1 f j(z)e1 j(z) = 0;
(2) 1 j − 1k are not constant for 1 ≤ j < k ≤ n;
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T(r, f j) = o(T(r, e1h−1k )), r → ∞, r < E, where E ⊂ (1,∞) is of finite linear

measure.
Then, f j(z) = 0 for j = 1, 2, ...,n.

Proof. [Proof of Main theorem] Based on the idea of [13], we will give the proof of the main theorem. For
the convenience of the reader, we present our proof in all detail.

Since f and ∆n
c f share the set {a, b} CM, one can assume

(∆n
c f − a)(∆n

c f − b)
( f − a)( f − b)

= eα, (2.1)

in which α is an entire function.

By the assumption λ( f ) < ρ( f ) and Hadamard factorization theorem, we suppose that f (z) = h(z)eβ(z),
where h(z)(. 0) and β are two entire functions satisfying

λ( f ) = ρ(h) < ρ( f ), ρ(eβ) = ρ( f ), ρ(β) = ρ2( f ) < 1.

In particular, the function β is a polynomial if ρ( f ) is finite.

We know that

∆n
c f =

n∑
i=0

(−1)n−i
(
n
i

)
f (z + ic) =

n∑
i=0

(−1)n−i
(
n
i

)
h(z + ic)eβ(z+ic).

Substitute the forms of f and ∆n
c f into (2.1) yields that[

n∑
i=0

(−1)n−i
(
n
i

)
h(z + ic)eβ(z+ic)−β(z)]eβ(z)

− a

[
n∑

i=0

(−1)n−i
(
n
i

)
h(z + ic)eβ(z+ic)−β(z)]eβ(z)

− b


= eα(h(z)eβ(z)

− a)(h(z)eβ(z)
− b).

(2.2)

Set ω1 =
∆n

c f
eβ =

∑n
i=0(−1)n−i

(
n
i

)
h(z + ic)eβ(z+ic)−β(z). Obviously, ω1 . 0. Using Lemma 2.1, we know for any

1 ≤ i ≤ n that

m(r, eβ(z+ic)−β(z)) = m(r,
eβ(z+ic)

eβ(z)
) = S(r, eβ(z)), (2.3)
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and

T(r, ω1) ≤
n∑

i=0

T(r, eβ(z+ic)−β(z)) +
n∑

i=0

T(r, h(z + ic)) + S(r, eβ(z))

=

n∑
i=0

m(r, eβ(z+ic)−β(z)) + S(r, eβ(z)) = S(r, eβ(z)).

Therefore ω1 is a small function of eβ. Rewrite (2.2) as

eα =
ω2

1[eβ − a
ω1

][eβ − b
ω1

]

h2[eβ − a
h ][eβ − b

h ]
. (2.4)

Note that a . b.Without loss of generality, we suppose that a . 0. Aussme that z0 is a zero of eβ − a
h , but not

a zero of ω1. It follows from (2.4) and the assumption about sharing set {a, b} that z0 is a zero of eβ − a
ω1

or
eβ − b

ω1
. Below, we denote by N1(r, eβ) the reduced counting function of those common zeros of eβ − a

h and
eβ − a

ω1
. Similarly, denote by N2(r, eβ) the reduced counting function of those common zeros of eβ − a

h and
eβ − b

ω1
.Note that h is a small function respect to eβ; applying the second fundamental theorem to eβ and the

first fundamental theorem to eβ − a
h yields that

T(r, eβ) = N̄(r,
1

eβ(z) − a
h

) + S(r, eβ) = N1(r, eβ) +N2(r, eβ) + S(r, eβ), (2.5)

which implies that either N1(r, eβ) , S(r, eβ) or N2(r, eβ) , S(r, eβ). Next, we consider two cases.

Case 1. N1(r, eβ) , S(r, eβ).

Let a0 be a zero of eβ − a
h and eβ − a

ω1
. It is clear that a0 is a zero of a

h −
a
ω1
. If a

h −
a
ω1
. 0, then

N1(r, eβ) ≤ N(r,
1

a
h −

a
ω1

) ≤ T(r,
a
h
−

a
ω1

) = S(r, eβ), (2.6)

a contradiction. Thus h = ω1. Note that ω1 =
∆n

c f
eβ and f = heβ. Then, we have the desired result f = ∆n

c f .

Next, we give the form of f . The equation f = ∆n
c f leads to

n∑
i=0

(−1)n−i
(
n
i

)
h(z + ic)

h(z)
eβ(z+ic)−β(z) = 1. (2.7)

Set Ci = (−1)n−i

(
n
i

)
h(z+ic)

h(z) . Then,

n∑
i=1

Cieβ(z+ic)−β(z) = 1 − (−1)n. (2.8)

Suppose that ρ(eβ(z+ jc)−β(z+ic)) = ∞ for any 0 ≤ i , j ≤ n. Note that Ci is a meromorphic function with
finite order and

µ(eβ(z+ jc)−β(z+ic)) = ρ(eβ(z+ jc)−β(z+ic)) = ∞,

which shows that Ci is a small function of eβ(z+ jc)−β(z+ic) for any 0 ≤ i , j ≤ n. Further, applying Borel Lemma
(Lemma 2.3) to the equation (2.8), one get Ci ≡ 0 and 1 − (−1)n = 0, which is impossible. So, there exists
indexs (i, j) such that ρ(eβ(z+ jc)−β(z+ic)) < ∞, which implies that β(z + ic) − β(z + jc) is a polynomial. We next
show that β is a polynomial.
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Without loss of generality, assume deg(β(z+ic)−β(z+ jc)) = s.Differentiating the function β(z+ic)−β(z+ jc)
(s+ 1)-times, one has β(s+1)(z+ ic)− β(s+1)(z+ jc) = 0, which yields that β(s+1)(z+ ic) is a periodic function with
period ( j − i)c. If β(s+1)(z + ic) is not constant, we know the fact that the order of β(s+1)(z + ic) is not less than
1. Further, ρ(β(z)) = ρ(β(z + ic)) = ρ(β(s+1)(z + ic)) ≥ 1. However, ρ(β(z)) = ρ2( f ) < 1, a contradiction. Thus,
β(s+1)(z + ic) is constant and β(z + ic) is a polynomial. Therefore, the above discussion yields that β(z) is a
polynomial.

Set β(z) = amzm + am−1zm−1 + ...+ a0,where am . 0, am−1, ..., a0 are constants and m is a positive integer. We
will show that m = 1. On the contrary, suppose that m ≥ 2.

Then for 1 ≤ i ≤ n,we have
β(z + ic) − β(z) = icmamzm−1 + Bi(z),

where Bi(z) is a polynomial with degree at most m − 2. Set 1 = ecmamzm−1
. Clearly, eBi(z) is a small function of

1.

Rewriting (2.7), we have

1 − (−1)n =

n∑
i=1

(−1)n−i
(
n
i

)
h(z + ic)

h(z)
eicmamzm−1

eBi(z)

=

n∑
i=1

(−1)n−i
(
n
i

)
h(z + ic)

h(z)
eBi(z)(ecmamzm−1

)i

=

n∑
i=1

(−1)n−i
(
n
i

)
h(z + ic)

h(z)
eBi(z)1i.

Then,

eBn(z) h(z + nc)
h(z)

1n = −

n−1∑
i=1

(−1)n−i
(
n
i

)
h(z + ic)

h(z)
eBi(z)1i + 1 − (−1)n. (2.9)

Rewrite (2.9) as

1n = −e−Bn(z)
n−1∑
i=1

(−1)n−i
(
n
i

)
h(z + ic)
h(z + nc)

1ieBi(z) + e−Bn(z) h(z)
h(z + nc)

(1 − (−1)n). (2.10)

For any ε > 0 and 0 ≤ i ≤ n − 1, by the first part of Lemma 2.1, we have

m(r,
h(z + ic)
h(z + nc)

) = O(rρ(h)−1+ε).

(The above fact can also be deduced by the Collorary 2.6 of Chiang and Feng in [1].) Noting that ρ(h) <
ρ( f ) = ρ(eβ) = m, we can take ε small enough such that ρ(h) − 1 + ε < ρ(eβ) − 1 = m − 1 = ρ(1). Then

m(r,
h(z + ic)
h(z + nc)

) = S(r, 1).

We may rewrite (2.10) as

1n−11 =

n−1∑
i=1

bi1
i + b0,
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where bi = (−1)n−i+1

(
n
i

)
h(z+ic)
h(z+nc) e

Bi(z)−Bn(z) and b0 = (1 − (−1)n)e−Bn(z) h(z)
h(z+nc) . Clearly,

m(r, bi) = S(r, 1), m(r, b0) = S(r, 1).

Now, we employ well-known Clunie lemma in Nevanlinna theory, which is stated as follows. It can be
found in [3] and [12, Lemma 2.4.2 and Proposition 9.2.3].

Clunie Lemma. Let f be a transcendental meromorphic solution of the difference equation f nA(z, f ) = B(z, f ),
where A(z, f ), B(z, f ) are differential polynomials in f having coefficients a∗j such that m(r, a∗j) = S(r, f ). If the total
degree of B(z, f ) is at most n, then m(r,A(z, f )) = S(r, f ).

Using the above Clunie lemma, we have m(r, 1) = S(r, 1), a contradiction. So m = 1. And we can set
f = h(z)eλz,where λ is a nonzero constant.

We substitute the form of f into (2.7) to find

1 =
n∑

i=0

(−1)n−i
(
n
i

)
h(z + ic)

h(z)
(eλc)i. (2.11)

Note that ρ(h) < ρ( f ) = ρ(eλz) = 1. Then by Lemma 2.2, we know that there exists an ε-set E, as z < E
and z→∞, such that h(z+ic)

h(z) → 1. It leads to

1 =
n∑

i=0

(−1)n−i
(
n
i

)
(eλc)i = (eλc

− 1)n. (2.12).

We rewrite (2.7) as
n∑

i=1

(−1)n−i
(
n
i

)
h(z + ic)eλci + ((−1)n

− 1)h(z) = 0. (2.13)

Below, we need a property of the meromorphic solutions of linear difference equation, which is due to Lü
etc in [14].

Lemma 2.4. Let a0, a1, ..., an be constants satisfying a0an , 0. If f is a nonconstant meromorphic solution of
difference equation

an f (z + c) + ... + a1 f (z + 1) + a0 f (z) = P(z),

where P is a polynomial, then either ρ( f ) ≥ 1 or f is a polynomial. In particular, if an , ±a0, then ρ( f ) ≥ 1.

By ρ(h) < 1 and Lemma 2.4, we obtain that h(z) is a polynomial. Set h(z) = ckzk + ck−1zk−1 + ...+ c0,where
k is an integer and (ck , 0). Suppose that k ≥ 1. Due to the idea in [2], we will finish this case. Compare the
coefficient of zk of both side of (2.13) yields

n∑
i=1

(−1)n−i
(
n
i

)
eλci + ((−1)n

− 1) = (eλc
− 1)n

− 1 = 0. (2.14)

Moreover, compare the coefficient of zk−1 of both side of (2.13) yields

n∑
i=1

(−1)n−i
(
n
i

)
eλci(kic + ak−1) + ((−1)n

− 1)ak−1 = 0. (2.15)
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Substitute (2.14) into (2.15) yields
n∑

i=1

(−1)n−i
(
n
i

)
ieλci = 0.

On the other hand

n∑
i=1

(−1)n−i
(
n
i

)
ieλci =

n∑
i=1

(−1)n−i
(
n − 1
i − 1

)
eλc(i−1)neλc = neλc(eλc

− 1)n−1 , 0,

a contradiction. So k = 0 and h is a nonzero constant, say A. Therefore, we derive the desire result
f (z) = Aeλz.

Case 2. N2(r, eβ) , S(r, eβ).

Let b0 is a zero of eβ − a
h and eβ − b

ω1
. Then it is clear that b0 is a zero of a

h −
b
ω1
. If a

h −
b
ω1
. 0, then

S(r, eβ) , N2(r, eβ) ≤ N(r,
1

a
h −

b
ω1

) ≤ T(r,
a
h
−

b
ω1

) = S(r, eβ),

a contradiction. Thus
a
h
−

b
ω1
= 0. (2.16)

If b = 0, then a
h = 0, a contradiction. Thus b , 0.

We assume that c0 is a zero of eβ − b
h , but not a zero of ω1. It follows from (2.4) and the assumption

about sharing that c0 is a zero of eβ − a
ω1

or eβ − b
ω1
.We denote by N3(r, eβ) the reduced counting function of

those common zeros of eβ − b
h and eβ − a

ω1
. Similarly, We denote by N4(r, eβ) the reduced counting function of

those common zeros of eβ − b
h and eβ − b

ω1
.Note that h is a small function respect to eβ; applying the second

fundamental theorem to eβ and the first fundamental theorem to eβ − a
h yields

T(r, eβ) = N̄(r,
1

eβ(z) − b
h

) + S(r, eβ) = N3(r, eβ) +N4(r, eβ) + S(r, eβ), (2.17)

which implies that either N3(r, eβ) , S(r, eβ) or N4(r, eβ) , S(r, eβ). If N4(r, eβ) , S(r, eβ), similar to Case 1, we
get the desire result. So we assume that N3(r, eβ) , S(r, eβ). Below, similar to Case 2, we can deduce that

b
h
−

a
ω1
= 0. (2.18)

It follows from (2.16) and (2.18) that a2 = b2. Note that a , b. Thus, a = −b. Again by (2.18), one hasω1 = −h.
We can rewrite it as

ω1 =
∆n

c f
eβ
=

n∑
i=0

(−1)n−i
(
n
i

)
h(z + ic)eβ(z+ic)−β(z) = −h(z), (2.19)

It follows from (2.19) that ∆n
c f = − f . Furthermore, the same argument as in Case 1 yields that f (z) = Aeλz

with (eλc
− 1)n = −1.

Therefore, the proof is finished.
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