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Abstract. In this paper, we define and study analogous of some new types of convergence for double-
indexed sequence and the inter-relation among them is investigated. Also, their certain basic properties are
discussed.

1. Introduction

Much of classical probability theory and its applications to statistics concerns limit theorems, i.e.,
the asymptotic behavior of a sequence of random variables. In [4], for the first time, P. Hsu and Robbins
proposed the new concept of complete convergence and had led to many follow-up studies. Baum and Katz
[2] extended the idea to the case of fractional moments and higher-order moments. Asmussen and Katz [1]
studied the complete convergence of subsequences of partial sums of i.i.d. random variables in 1980. After
that, Gut [3] improved the results in [1] and simplified the proof, and obtained the equivalent conditions for
the existence of first-order moments with complete convergence of a certain class of subsequence. Rosalsky
[8] studied on complete convergence in mean of normed sums of independent random elements in Banach
spaces. Sung [9] presented a note on the complete convergence of moving average processes. Zhou [11]
investigated complete moment convergence of moving processes under ϕ-mixing assumptions. Wang et
al. in [10] studied the complete moment convergence of double-indexed randomly weighted sums of NSD
random variables and the almost sure convergence and mean square convergence of the state observers of
linear-time-invariant systems. Motivated by the above work, in [5] Hu and Sun gave some new concepts of
convergence of random variables and discussed some properties. In this paper, we extend these concepts
of convergence to double-indexed sequence and prove some analogues.

Suppose we are given a probability space (Ω,F ,P). Let {X(i, j), (i, j) ∈ N2
} be a filed of random variables

whereN denotes the set of nature number. Firstly, recall some basic definitions and notations for double-
indexed sequence. As everyone knows, there are different type definitions for limit of double-indexed
series, in this paper we only consider the following three definitions.

Definition 1.1. (See [7]) We say that a double-indexed series {x(i, j), (i, j) ∈N2
} lim(min)-converges to a number

x(0,0) if, for all positive ε, there exists a positive integer n0 such that |x(i, j) − x(0,0)| < ε for all elements (i, j) whose
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coordinates are such that
i ∧ j ⩾ n0,

and we write lim(min)x(i, j) = x(0,0).

Definition 1.2. (See [7]) We say that a double-indexed series {x(i, j), (i, j) ∈N2
} lim(max)-converges to a number

x(0,0) if, for all positive ε, there exists a positive integer n0 such that |x(i, j) − x(0,0)| < ε for all elements (i, j) whose
coordinates are such that

i ∨ j ⩾ n0,

and we write lim(max)x(i, j) = x(0,0).

Both modes of convergence discussed above are particular cases of the following general concept.

Definition 1.3. (See [7]) Let a function f of 2 arguments be defined for all (i, j) ∈ N2. We say that a field
{x(i, j), (i, j) ∈N2

} is f -convergent to x(0,0) if, for all positive ε, there exists a positive integer n0 such that |x(i, j)−x(0,0)| < ε
for all elements (i, j) whose coordinates are such that

f (i, j) ⩾ n0,

where f is non-decreasing with respect to each of its arguments and we write lim( f )x(i, j) = x(0,0).

Based on the Definition 1.1, 1.2 and 1.3, we define the analogues of different types of convergence for
double-indexed random sequence as follows:
• {X(i, j), (i, j) ∈N2

} is said to f -almost surely converge to X(0,0), if there exists a set N ∈ F such that P(N) = 0
and ∀ω ∈ Ω\N, lim( f )X(i, j)(ω) = X(0,0)(ω) (resp. lim(min)X(i, j)(ω) = X(0,0)(ω), lim(max)X(i, j)(ω) = X(0,0)(ω)),

and we write X(i, j)
f−a.s.
−→ X(0,0) (resp. X(i, j)

min−a.s.
−→ X(0,0), X(i, j)

max−a.s.
−→ X(0,0)).

Each of the following definitions has three forms. For the sake of brevity, only one form of definition is
given here, and the other two definitions are completely similar, which are omitted.
• {X(i, j), (i, j) ∈N2

} is said to min−converge to X(0,0) in probability, if for any ε > 0, lim(min)P({|X(i, j) −

X(0,0)| ≥ ε}) = 0, and we write X(i, j)
min−P
−→ X(0,0).

• {X(i, j), (i, j) ∈N2
} is said to min−LP

− conver1e to X(0,0) (p > 0) if lim(min)E[|X(i, j) − X(0,0)|
p] = 0, and we

write X(i, j)
min−LP

−→ X(0,0).
• {X(i, j), (i, j) ∈N2

} is said to min−L∞ − conver1e to X(0,0) if lim(min)∥X(i, j) − X(0,0)∥∞ = 0, and we write

X(i, j)
min−L∞
−→ X(0,0).

• {X(i, j), (i, j) ∈N2
} is said to min-converge to X(0,0) in distribution, if for any bounded continuous function

f , lim(min)E[ f (X(i, j))] = E[ f (X(0,0))], and we write X(i, j) min−d
−→ X(0, 0).

Definition 1.4. (See [7]) The limit of the field {s(m,n), (m,n) ∈ N2
} in the sense of lim(min)-convergence (if exists)

is called the sum of the limit of the double-indexed series constructed from the field {x(i, j), (i, j) ∈N2
}. The sum of a

double sequence is defined by ∑
(i, j)∈N2

x(i, j) = lim(min)s(m,n),

where s(m,n) =
∑

(i, j)⩽(m,n)
x(i, j), (m,n) ∈ N2 ((i, j) ⩽ (m,n) means that i ⩽ m and j ⩽ n). If the limit exists, we say that

the double-indexed sequence ∑
(i, j)∈N2

x(i, j) =
∑

x(i, j)

converges. If the lim(min)-limit for {s(m,n), (m,n) ∈ N2
} does not exist, we say that the double-indexed sequence

diverges.

We are now consider some new type concepts of convergence for double sequence of random variables.
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Definition 1.5. {X(i, j), (i, j) ∈N2
} is said to completely min−conver1e to X(0,0), if for any ε > 0,

∑
(i, j)∈N2

P({|X(i, j) −

X(0,0)| ⩾ ε}) < ∞, and we write X(i, j)
min−c.c.
−→ X(0,0).

Definition 1.6. Let α > 0, {X(i, j), (i, j) ∈N2
} is said to strongly almost surely min−conver1e to X(0,0) with order α,

if ∑
(i, j)∈N2

|X(i, j) − X(0,0)|
α < ∞ a.s.

and we write X(i, j)
min−Sα−a.s.
−→ X(0,0).

Definition 1.7. {X(i, j), (i, j) ∈N2
} is said to min−S−LP

−conver1e to X(0,0) (p > 0) if
∑

(i, j)∈N2
E[|X(i, j)−X(0,0)|

p] < ∞,

and we write X(i, j)
min−S−LP

−→ X(0,0).

Definition 1.8. {X(i, j), (i, j) ∈N2
} is said to strongly min−L∞ − conver1e to X(0,0) if∑

(i, j)∈N2

∥X(i, j) − X(0,0)∥∞ < ∞

and we write X(i, j)
min−S−L∞
−→ X(0,0).

Definition 1.9. {X(i, j), (i, j) ∈N2
} is said to min−S1 − d converge to X(0,0), if for any bounded Lipschitz continuous

function f , ∑
(i, j)∈N2

|E[ f (X(i, j)) − f (X(0,0))]| < ∞

and we write X(i, j)
min−S1−d
−→ X(0,0).

Definition 1.10. Let F(i, j) and F(0,0) be the distribution functions of X(i, j) and X(0,0), respectively. {X(i, j), (i, j) ∈N2
}

is said to min−S2 − d converge to X(0,0), if for any continuous point x of F,∑
(i, j)∈N2

|F(i, j)(x) − F(0,0)(x)| < ∞

and we write X(i, j)
min−S2−d
−→ X(0,0).

Definition 1.11. Let {X(0,0),X(i, j), (i, j) ∈N2
} be a field of random variables. If for any bounded Lipschitz continuous

function f ,
∑

(i, j)∈N2
E[| f (X(i, j))− f (X(0,0))|] < ∞ holds, then {X(i, j), (i, j) ∈N2

} is said to min−S∗1−d converge to X(0,0),

and we write X(i, j)
min−S∗1−d
−→ X(0,0).

Definition 1.12. Let {X(0,0),X(i, j), (i, j) ∈N2
} be a field of random variables. If for any real number t, it holds that∑

(i, j)∈N2
|E[eitX(i, j) ] − E[eitX(0,0) ]| < ∞, then {X(i, j), (i, j) ∈ N2

} is said to min−S3 − d converge to X(0,0), and we write

X(i, j)
min−S3−d
−→ X(0,0).

The rest of this paper is organized as follows. In Section 2, we prove the relations among some types
of convergence for double-indexed sequences we proposed. In section 3, we present some examples to
compare the relations between any two types of convergence.
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2. Main results and Proofs

With the preliminary preparation, we now state and prove some analogues for double-indexed random
variables. For single sequence such results have been proved by Hu et al. [5, 6].

Proposition 2.1. If X(i, j)
f−P
−→ X(0,0), then there exists a subsequence {X(ik , jk)} of {X(i, j)} such that X(ik , jk)

f−a.s.
−→ X(0,0) as

k→∞.

Proof. Noticing that X(i, j)
f−P
−→ X(0,0), then we have, for any ε > 0, lim( f )P(|X(i, j) − X(0,0)| ⩾ ε) = 0. Denote,

for each i, j ∈N, E(i, j) = {|X(i, j) − X(0,0)| >
1

f (i, j) }, choose a subsequence (i1, j1), (i2, j2), · · · such that P{|X(ik , jk) −

X(0,0)| >
1

f (ik , jk) } <
1
2k . It is easy to see that

∞∑
k=1

P{|X(ik , jk) −X(0,0)| >
1

ik jk
} < 1, hence we have by the Borel-Cantelli

lemma that P{∩∞s=1 ∪
∞

k=s E(ik, jk)} = 0. Therefore, X(ik , jk)
f−a.s.
−→ X(0,0) as k→∞.

Proposition 2.2. Let C be a constant. Then, X(i, j)
f−d
−→ C⇔ X(i, j)

f−P
−→ C.

Proof. ”⇐ ” Obviously.
”⇒ ” The distribution function of the random variable degenerated to C is

F(0,0)(x) = 1[x>C] =

{
0, x ⩽ C,
1, x > C,

where x = C is the unique discontinuity point of F(0,0). Since X(i, j)
f−d
−→ C, we have

lim( f )F(i, j)(x) =
{

0, x < C,
1, x > C.

Thus, for any ε > 0, we have

lim( f )P(|X(i, j) − C| ⩾ ε) = lim( f )[P(X(i, j) ⩾ C + ε) + P(X(i, j) ⩽ C − ε)]
= lim( f )[1 − F(i, j)(C + ε) + F(i, j)(C − ε + 0)]
= 0.

Hence, X(i, j)
f−P
−→ C.

Proposition 2.3. Let {X(0,0),X(i, j), (i, j) ∈N2
} be a double-indexed sequence of random variables. Then, X(i, j)

f−LP

−→

X(0,0) ⇒ X(i, j)
f−P
−→ X(0,0).

Proof. By the Chebyshev’s inequality

P(|X(i, j) − X(0,0)| ⩾ ε) ⩽
E|X(i, j) − X(0,0)|

p

εp ,

X(i, j)
f−P
−→ X(0,0) follows immediately.

Proposition 2.4. X(i, j)
f−P
−→ X(0,0) ⇒ X(i, j)

f−d
−→ X(0,0).
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Proof. Assume that 1 is a bounded Lipschitz continuous function, such that |1| ⩽ M, and exists a positive
constant C such that |1(x) − 1(y)| ⩽ C|x − y|,∀x, y ∈ R. Note that

|E[1(X(i, j)) − 1(X(0,0))]|(1(|X(i, j)−X(0,0) |⩾ε) + 1(|X(i, j)−X(0,0) |<ε)) ⩽E|1(X(i, j)) − 1(X(0,0))|(1(|X(i, j)−X(0,0) |⩾ε) + 1(|X(i, j)−X(0,0) |<ε))

⩽2ME1(|X(i, j)−X(0,0) |⩾ε) + CE1(|X(i, j)−X(0,0) |<ε)

⩽2MP(|X(i, j) − X(0,0)| ⩾ ε) + CεP(|X(i, j) − X(0,0)| < ε).

Thus, X(i, j)
f−d
−→ X(0,0).

Proposition 2.5. X(i, j)
f−L∞
−→ X(0,0) ⇒ X(i, j)

f−Lp

−→ X(0,0).

Proof. Since E|X(i, j) − X(0,0)|
p ⩽ ∥X(i, j) − X(0,0)∥

p
∞, it follows directly.

Proposition 2.6. X(i, j)
f−a.s.
−→ X(0,0) ⇒ X(i, j)

f−P
−→ X(0,0).

Proof. Since X(i, j)
f−a.s.
−→ X(0,0), we have P{

⋂
∞

k=1
⋃
∞

n=1
⋂

f (i, j)⩾n{ω : |X(i, j)(ω)−X(0,0)(ω)| ⩾ 1
k }=⇒P{ω :

⋃
f (i, j)⩾n(|X(i, j)(ω)−

X(0,0)(ω)| ⩾ ε)}, therefore, X(i, j)
f−P
−→ X(0,0).

Proposition 2.7. X(i, j)
f−L∞
−→ X(0,0) ⇒ X(i, j)

f−a.s.
−→ X(0,0).

Proof. Note that |X(i, j) − X(0,0)| ⩽ ∥X(i, j) − X(0,0)∥∞, X(i, j)
f−a.s.
−→ X(0,0) follows immediately.

Remark 2.8. Put f = i ∧ j or f = i ∨ j(i, j ∈ N), the above results also true for min-convergence and max-
convergence.

Remark 2.9. f -convergence is often considered for f (i, j) =
√

i2 + j2. For this particular function, we use a special
notation for the f -convergence, namely ∥ · ∥-convergence. In what follows, we also deal with vol-convergence, which
corresponds to the function f (i, j) = i j. Note that the three types of convergence, namely max−, ∥·∥−, vol-convergence
are equivalent in the spaceN2, since for (i, j) ∈N2

max{i, j} ⩽
√

i2 + j2 ⩽
√

d max{i, j}, max{i, j} ⩽ i j ⩽ (max{i, j})d.

Theorem 2.10. Let {X(0,0),X(i, j), (i, j) ∈N2
} be a double-indexed sequence of random variables. Then,

(i) For p ⩾ 1, we have X(i, j)
min−S−L∞
−→ X(0,0) ⇒ X(i, j)

min−S−LP

−→ X(0,0).

(ii) For α > 0, we have X(i, j)
min−S−Lα
−→ X(0,0) ⇒ X(i, j)

min−Sα−a.s.
−→ X(0,0).

(iii) For α ⩾ 1, we have X(i, j)
min−S−L∞
−→ X(0,0) ⇒ X(i, j)

min−Sα−a.s.
−→ X(0,0).

Proof. (i) If ∥X(i, j) − X(0,0)∥∞ < 1 and p ⩾ 1, we have

E[|X(i, j) − X(0,0)|
p] ⩽ ∥X(i, j) − X(0,0)∥

p
∞ ⩽ ∥X(i, j) − X(0,0)∥∞. (2.1)

According to Definition 1.7 and 1.8 and Eq. (2.1), we have X(i, j)
min−S−L∞
−→ X(0,0) ⇒ X(i, j)

min−S−LP

−→ X(0,0).

(ii) Let α > 0, if X(i, j)
min−S−Lα
−→ X(0,0), then

∑
(i, j)∈N2

E[|X(i, j) − X(0,0)|
α] < ∞. By the monotone convergence

theorem, we have ∑
(i, j)∈N2

E[|X(i, j) − X(0,0)|
α] = E[

∑
(i, j)∈N2

|X(i, j) − X(0,0)|
α].

It follows that E[
∑

(i, j)∈N2
|X(i, j) − X(0,0)|

α] < ∞ and thus
∑

(i, j)∈N2
|X(i, j) − X(0,0)|

α < ∞ a.s., i.e.,

X(i, j)
min−Sα−a.s.
−→ X(0,0).

(iii) It is a direct consequence of (i) and (ii).
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Theorem 2.11. X(i, j)
min−S−L1

−→ X(0,0) ⇒ X(i, j)
min−S1−d
−→ X(0,0).

Proof. Suppose that f is a bounded Lipschitz continuous function. Then, there exists a positive constant C
such that

| f (x) − f (y)| ⩽ C|x − y|, ∀x, y ∈ R.

It follows that

|E[ f (X(i, j)) − f (X(0,0))]| ⩽ E[| f (X(i, j)) − f (X(0,0))|] ⩽ CE[|X(i, j) − X(0,0)|]. (2.2)

Based on the Definition 1.7 and 1.9, Eq. (2.2) implies that X(i, j)
min−S−L1

−→ X(0,0) ⇒ X(i, j)
min−S1−d
−→ X(0,0).

Theorem 2.12. Let C be a constant. Then, X(i, j)
min−S2−d
−→ C⇔ X(i, j)

min−c.c.
−→ C.

Proof. ′′ ⇒′′ For any ε > 0, we have

P{|X(i, j) − X(0,0)| ⩾ ε} = 1 − P{X(i, j) < C + ε} + P{X(i, j) ⩽ C − ε}

⩽ 1 − F(i, j)(C +
ε
2

) + F(i, j)(C − ε), (2.3)

where F(i, j)(·) denotes the distribution function of X(i, j).

If X(i, j)
min−S2−d
−→ C, then for any ε > 0,∑

(i, j)∈N2

|F(i, j)(C +
ε
2

) − 1| < ∞ and
∑

(i, j)∈N2

|F(i, j)(C − ε) − 0| < ∞

these together with Eq. (2.3) imply that for any ε > 0,∑
(i, j)∈N2

P{|X(i, j) − C| ⩾ ε} < ∞.

That is, X(i, j)
min−c.c.
−→ X(0,0).

′′
⇐
′′ Let X(0,0) ≡ C and F(0,0) be the distribution of X(0,0). For any ε > 0 and x ∈ R, we have

F(0,0)(x − ε) − P{|X(i, j) − X(0,0)| ⩾ ε} ⩽ F(i, j)(x)
⩽ P{|X(i, j) − X(0,0)| ⩾ ε} + F(0,0)(x + ε). (2.4)

If x > C, set ε = (x−C)
2 in Eq. (2.4), we have

1 − P{|X(i, j) − X(0,0)| ⩾ ε} ⩽ F(i, j)(x) ⩽ P{|X(i, j) − X(0,0)| ⩾ ε} + 1,

i.e.,
−P{|X(i, j) − X(0,0)| ⩾ ε} ⩽ F(i, j)(x) − 1 ⩽ P{|X(i, j) − X(0,0)| ⩾ ε}.

If x < C, set ε = (C−x)
2 in Eq. (2.4), we have

0 − P{|X(i, j) − X(0,0)| ⩾ ε} ⩽ F(i, j)(x) ⩽ P{|X(i, j) − X(0,0)| ⩾ ε} + 0,

i.e.,
−P{|X(i, j) − X(0,0)| ⩾ ε} ⩽ F(i, j)(x) − 0 ⩽ P{|X(i, j) − X(0,0)| ⩾ ε}.

Note that X(i, j)
min−c.c.
−→ X(0,0), we have for any x , C,∑

(i, j)∈N2

|F(i, j)(x) − F(0,0)(x)| < ∞.

Thus, X(i, j)
min−S2−d
−→ C.
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Theorem 2.13. Assume that X(i, j)
min−S1−d
−→ X(0,0) and Y(i, j)

min−S−L1

−→ C. Then,

(i). X(i, j) + Y(i, j)
min−S1−d
−→ X(0,0) + C.

(ii). If {X(i, j), (i, j) ∈N2
} is a double-indexed sequence of bounded random variables, then X(i, j)Y(i, j)

S1−d
−→ CX(0,0).

(iii). If {X(i, j), (i, j) ∈ N2
} and { 1

Y(i, j)
} are two double-indexed sequence of bounded random variables and C , 0,

then X(i, j)

Y(i, j)

S1−d
−→

X(0,0)

C .

Proof. Suppose that f is a bounded Lipschitz continuous function. Then, there exits a positive constant K
such that

| f (x) − f (y)| ⩽ K|x − y|, ∀x, y ∈ R.

(i) We have

|E[ f (X(i, j) + Y(i, j))] − E[ f (X(0,0) + C)]| ⩽ |E[ f (X(i, j) + Y(i, j))] − E[ f (X(i, j) + C)]
+ E[ f (X(i, j) + C)] − E[ f (X(0,0) + C)]|
⩽ KE[|Y(i, j) − C|] + |E[ f (X(i, j) + C)] − E[ f (X(0,0) + C)]|.

Noticing that Y(i, j)
min−S−L1

−→ C, i.e., ∑
(i, j)∈N2

E[Y(i, j) − C] < ∞.

Define 1(x) = f (x + C). Then, 1 is a bounded Lipschitz continuous function and thus by the assumption

that X(i, j)
min−S1−d
−→ X(0,0), we have∑

(i, j)∈N2

|E[ f (X(i, j) + C)] − E[ f (X(0,0) + C)]| < ∞.

According the definition of S1 − d convergence, we have X(i, j) + Y(i, j)
min−S1−d
−→ X(0,0) + C.

The proofs for (ii) and (iii) are quite similar to that of (i) and so are omitted.

Theorem 2.14. Let {X(0,0),X(i, j), (i, j) ∈N2
} be a double-indexed sequence of random variables and {F(0,0),F(i, j), (i, j) ∈

N2
} be the corresponding distribution functions. Then, X(i, j)

min−S2−d
−→ X(0,0) if one of the following conditions is

fulfilled.
(1). X(0,0) is a discrete random variable such that {x ∈ R : P(X(0,0) = x) = 0} is an open subset of R and

X(i, j)
min−c.c.
−→ X(0,0).

(2). X(0,0) has a bounded density function and
∑

(i, j)∈N2
P{i j(log i j)1+β

|X(i, j) − X(0,0)| ⩾ δ} < ∞ for two positive

constants β and δ.

Proof. (1) Assume that x ∈ Rwith P(X(0,0) = x) = 0. Noticing that {x ∈ R : P(X(0,0) = x) = 0} is an open subset
of R, there exists ε > 0 such that

F(0,0)(x) = F(0,0)(x + ε) = F(0,0)(x − ε),

which implies that

|F(i, j)(x) − F(0,0)(x)| ⩽ P{|X(i, j) − X(0,0)| ⩾ ε} + |F(0,0)(x + ε) − F(0,0)(x)| + |F(0,0)(x − ε) − F(0,0)(x)|
= P{|X(i, j) − X(0,0)| ⩾ ε}.
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It follows that∑
(i, j)∈N2

|F(i, j)(x) − F(0,0)(x)| ⩽
∑

(i, j)∈N2

P{|X(i, j) − X(0,0)| ⩾ ε}. (2.5)

Eq. (2.5) together with the definition of complete convergence in the sense of lim(min)-convergence and

min−S2 − d imply that X(i, j)
min−S2−d
−→ X(0,0).

(2) By the assumption, we know that there exists a positive constant C such that | f (x)| ⩽ C, ∀x ∈ R. It
follows that for any x, y ∈ R,

|F(0,0)(x) − F(0,0)(y)| = |
∫ y

x
f (u)du| ⩽ C|y − x|.

So we have

|F(i, j)(x) − F(0,0)(x)| ⩽ P{|X(i, j) − X(0,0)| ⩾ ε} + |F(0,0)(x + ε) − F(0,0)(x)| + |F(0,0)(x − ε) − F(0,0)(x)|
⩽ P{|X(i, j) − X(0,0)| ⩾ ε} + 2Cε. (2.6)

Take ε = δ
i j(log i j)1+β in Eq. (2.6), we have

∑
(i, j)∈N2

|F(i, j)(x) − F(0,0)(x)| ⩽
∑

(i, j)∈N2

[P{|X(i, j) − X(0,0)| ⩾
δ

i j(log i j)1+β } + 2C
δ

i j log(i j)1+β ]

=
∑

(i, j)∈N2

P{i j(log i j)1+β
|X(i, j) − X(0,0)| ⩾ δ} + 2Cδ

∑
(i, j)∈N2

1
i j log(i j)1+β

< ∞

and thus, X(i, j)
min−S2−d
−→ X(0,0).

Theorem 2.15. Let {X(0,0),X(i, j), (i, j) ∈N2
} be a double-indexed sequence of random variables and {F(0,0),F(i, j, (i, j) ∈

N2
} be the corresponding distribution functions. If F(0,0) is locally Lipschitz continuous at each continuous point x of

F(0,0) and X(i, j)
min−S−L∞
−→ X(0,0), then X(i, j)

min−S2−d
−→ X(0,0).

Proof. Assume that X(i, j)
min−S−L∞
−→ X(0, 0). Put α(i, j) = ∥X(i, j) − X(0,0)∥∞. Then, α(i, j) ⩾ 0 and

∑
(i, j)∈N2

α(i, j) < ∞.

For any x ∈ R, we have

F(i, j)(x) − F(0,0)(x) = P(X(i, j) ⩽ x) − F(0,0)(x) = P(X(0,0) + X(i, j) − X(0,0) ⩽ x) − F(0,0)(x)
⩽ P(X(0,0) ⩽ x + α(i, j)) − F(0,0)(x) = F(0,0)(x + α(i, j)) − F(0,0)(x)

and

F(i, j)(x) − F(0,0)(x) = 1 − P(X(i, j) > x) − F(0,0)(x) = 1 − P(X(0,0) + X(i, j) − X(0,0) > x) − F(0,0)(x)
⩾ P(X(0,0) ⩽ x − α(i, j)) − F(0,0)(x) = F(0,0)(x − α(i, j)) − F(0,0)(x)
= −[F(0,0)(x) − F(0,0)(x + α(i, j))].

It follows that

|F(i, j)(x) − F(0,0)(x)| ⩽ [F(0,0)(x + α(i, j)) − F(0,0)(x)] + [F(0,0)(x) − F(0,0)(x − α(i, j))].
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Let x be a continuous point of F(0,0). By the assumption, there exists two constants K and δ such that for any
u, v ∈ (x − δ, x + δ),

|F(0,0)(u) − F(0,0)(v)| ⩽ K|u − v|.

Since lim(min)α(i, j) = 0, there exists N0 ∈ N such that α(i, j) < δ for any i, j > N0. Then, we have for any
i, j > N0,

F(0,0)(x + α(i, j)) − F(0,0)(x) ⩽ Kα(i, j).

So we have

∑
(i, j)∈N2

[F(0,0)(x + α(i, j)) − F(0,0)(x)] ⩽
(N0,N0)∑

(i, j)

[F(0,0)(x + α(i, j)) − F(0,0)(x)] + K
∞∑

(i, j)=(N0+1,N0+1)

α(i, j) < ∞.

Similarly, we have ∑
(i, j)∈N2

[F(0,0)(x) − F(0,0)(x + α(i, j))] < ∞

and so, ∑
(i, j)∈N2

|F(i, j)(x) − F(0,0)(x)| < ∞

which follows that X(i, j)
min−S2−d
−→ X(0,0).

Theorem 2.16. If X(i, j)
min−c.c.
−→ X(0,0) and

∑
(i, j)∈N2

E[|X(i, j) − X(0,0)|1{|X(i, j)−X(0,0) |<ε}] < ∞ for some positive number ε,

then X(i, j)
min−S∗1−d
−→ X(0,0), and thus X(i, j)

min−S1−d
−→ X(0,0). Where 1A denotes the indicator function of set A.

Proof. Assume that f is a bounded Lipschitz continuous function, then there exist two constants K, M such
that for any x, y ∈ R such that | f (x)| ⩽M and | f (x) − f (y)| ⩽ K|x − y|. Note that∑

(i, j)∈N2

E[| f (X(i, j)) − f (X(0,0))|] =
∑

(i, j)∈N2

E[| f (X(i, j)) − f (X(0,0))|1{|X(i, j)−X(0,0) |<ε}]

+
∑

(i, j)∈N2

E[| f (X(i, j)) − f (X(0,0))|1{|X(i, j)−X(0,0) |⩾ε}]

⩽ K
∑

(i, j)∈N2

E[|X(i, j) − X(0,0)|1{|X(i, j)−X(0,0) |<ε}] + 2M
∑

(i, j)∈N2

P(|X(i, j) − X(0,0)| ⩾ ε)

< ∞.

Thus, X(i, j)
min−S1−d
−→ X(0,0).

3. Examples and Remarks

In this section we always assume that Ω = (0, 1] × (0, 1], F = B(Ω) (the Borel field of Ω) and P be the
Lebesgue measure on Ω.

The following Example 3.1 shows that, in general, X(i, j)
min−S−L∞
−→ X(0,0) is stronger than X(i, j)

min−S−LP

−→ X(0,0).

Example 3.1. For (i, j) ∈N2, we define random variables X(i, j) by

X(i, j)(ω) =
{

1, i fω ∈ (0, 1
i2 ] × (0, 1

j2 ],
0, otherwise.
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For any p > 0, we have

∑
(i, j)∈N2

E[|X(i, j) − 0|p] =
∞∑
j=1

∞∑
i=1

∫ 1
j2

0

∫ 1
i2

0
1pdP =

∞∑
j=1

∞∑
i=1

1
i2 j2
< ∞.

Therefore, X(i, j)
min−S−LP

−→ 0. Obviously, we have ∥X(i, j) − 0∥∞ = 1 for any (i, j) ∈N2. Thus, ∥X(i, j) − 0∥∞
min−S−L∞
↛ 0,

which implies that X(i, j)
min−S−L∞
↛ 0.

The following example shows that, in general, X(i, j)
min−S−Lα
−→ X(0,0) is stronger than X(i, j)

min−Sα−a.s.
−→ X(0,0).

Example 3.2. Let α > 0. For (i, j) ∈N2, define random variables X(i, j) by

X(i, j)(ω) =
{

(i j)α, i fω ∈ (0, 1
i1+α ] × (0, 1

j1+α ],
0, otherwise.

Clearly, ∑
(i, j)∈N2

P{|X(i, j) − 0|α ⩾ ε} ⩽
∑

(i, j)∈N2

1
(i j)1+α < ∞.

By Borel-Cantelli lemma, we have P(|X(i, j) − 0|α ⩾ ε, i.o.) = 0. Thus,
∑

(i, j)∈N2
|X(i, j) − 0|α < ∞ a.s..

Noticing that

∑
(i, j)∈N2

E[|X(i, j) − 0|α] =
∞∑
j=1

∞∑
i=1

∫ 1
j1+α

0

∫ 1
i1+α

0
(i j)αdP =

∞∑
j=1

∞∑
i=1

1
i j
= ∞.

The Example 3.2 shows that X(i, j)
min−Sα−a.s.
−→ 0 but X(i, j)

min−S−Lα
↛ 0.

The next example shows that X(i, j)
min−c.c.
−→ X(0,0) does not imply X(i, j)

min−Sα−a.s.
−→ X(0,0) in general.

Example 3.3. Let α > 0. For (i, j) ∈N2, define a random variable X(i, j) by

X(i, j)(ω) =

 1, i fω ∈ (0, 1
i2 ] × (0, 1

j2 ],
1

i j
1
α
, otherwise.

For any ε > 0, there exists N0 such that 1

N
2
α

0

< ε, for any i, j > N0, we have 1
i j

2
α
⩽ 1

N
2
α

0

< ε and thus,

∑
(i, j)∈N2

P{|X(i, j) − 0| ⩾ ε} ⩽
(N0−1,N0−1)∑

(i, j)=(1,1)

P{|X(i, j) − 0| ⩾ ε} +
∞∑

(i, j)=(N0,N0)

1
i2 j2
< ∞.

Hence, X(i, j)
min−c.c.
−→ 0.

Note that for any ω ∈ (0, 1] × (0, 1], we have
∑

(i, j)∈N2
|X(i, j) − 0|α =

∑
(i, j)∈N2

|X(i, j)|
α = ∞.

This shows that X(i, j)
min−Sα−a.s.
↛ 0.

The following two examples give the relationship between the min−S1−d convergence and the min−S2−

d convergence.
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Example 3.4. Let α > 0. For (i, j) ∈N2, we define random variables X(i, j) by

X(i, j)(ω) =

 1, i fω ∈ (0, 1
i2 ] × (0, 1

j2 ],
1

i j
1
α
, otherwise.

It is easy to see that X(i, j)
min−c.c.
−→ 0. Therefore, X(i, j)

min−S2−d
−→ 0.

In the following, we will show that when α > 1, X(i, j)
min−S1−d
↛ 0. Let f (x) = sin x. It is obvious that f (x) is a

bounded Lipschitz continuous function. Note that∑
(i, j)∈N2

|E f (X(i, j) − f (0))| =
∑

(i, j)∈N2

|E[sin X(i, j) − sin 0]|

=
∑

(i, j)∈N2

|[
1

i2 j2
sin 1 + (

1
i2
− 1)(

1
j2
− 1) sin

1

(i j)
1
α

]|

= sin 1
∑

(i, j)∈N2

1
i2 j2
+
∑

(i, j)∈N2

1
i2 j2

sin
1

(i j)
1
α

−

∑
(i, j)∈N2

1
i2

sin
1

(i j)
1
α

−

∑
(i, j)∈N2

1
j2

sin
1

(i j)
1
α

+
∑

(i, j)∈N2

sin
1

(i j)
1
α

.

It is easy to check that the first two sums are convergent. Noticing that

lim
i, j→∞

sin 1
(i j)

1
α

1
(i j)

1
α

= 1

and the fact that for α > 1,
∑

(i, j)∈N2

1
(i j)

1
α
= ∞, we know that the sum

∑
(i, j)∈N2

sin 1
(i j)

1
α

is divergent. Hence,

∑
(i, j)∈N2

|E[ f (X(i, j)) − f (0)]| = ∞.

It follows that X(i, j)
min−S1−d
↛ 0.

Example 3.5. Let α, β be two constants satisfying 0 < α < 1, β > 1. Let X(0,0) be a random variable defined on
(Ω,F ,P) with the density function f (u, v) = (1−α)(1−u)−α, (u, v) ∈ (0, 1]× (0, 1]. For any i, j ∈N, define random
variables

X(i, j) := X(0,0) +
1

(i j)β
i, j ∈N.

Then, we have ∑
(i, j)∈N2

∥X(i, j) − X(0,0)∥∞ =
∑

(i, j)∈N2

1
(i j)β

< ∞,

which implies that X(i, j)
min−S−L∞
−→ X(0,0).
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Denote by F(i, j) and F(0,0) the distribution functions of X(i, j) and X(0,0), respectively. Suppose that (1− α)β ⩽ 1. Then,∑
(i, j)∈N2

|F(i, j)(1) − F(0,0)(1)| =
∑

(i, j)∈N2

|F(i, j)(1 −
1

(i j)β
) − F(0,0)(1)|

=
∑

(i, j)∈N2

|F(0,0)(1) − F(i, j)(1 −
1

(i j)β
)|

=
∑

(i, j)∈N2

∫ 1

1− 1
(i j)β

(1 − α)(1 − u)−αdu

= (1 − α)
∑

(i, j)∈N2

∫ 1
(i j)β

0
t−αdt

=
∑

(i, j)∈N2

1
(i j)β(1−α)

= ∞.

Obviously, X(i, j)
min−S2−d
↛ 0.

Remark 3.6. (i) By Example 3.4, we get that X(i, j)
min−S2−d
−→ X(0,0) ⇏ X(i, j)

min−S1−d
−→ X(0,0). By Example 3.5 and the

fact that X(i, j)
min−S−L∞
−→ X(0,0) ⇒ X(i, j)

min−S−L1

−→ X(0,0) ⇒ X(i, j)
min−S1−d
−→ X(0,0), we obtain that X(i, j)

min−S1−d
−→ X(0,0) ⇏

X(i, j)
min−S2−d
−→ X(0,0).

(ii) By Example 3.5, we know that X(i, j)
min−S−L∞
−→ X(0,0) ⇏ X(i, j)

min−S2−d
−→ X(0,0).

(iii) By Example 3.5 and the fact that X(i, j)
min−S−L∞
−→ X(0,0) ⇒ X(i, j)

min−S−L1

−→ X(0,0), we have X(i, j)
min−S−L1

−→ X(0,0) ⇏

X(i, j)
min−S2−d
−→ X(0,0).

(iv) By Example 3.4, we get that X(i, j)
min−c.c.
−→ X(0,0) ⇏ X(i, j)

min−S1−d
−→ X(0,0). By Example 3.5 and the fact

that X(i, j)
min−S−L∞
−→ X(0,0) ⇒ X(i, j)

min−S−L1

−→ X(0,0) ⇒ X(i, j)
min−c.c.
−→ X(0,0), we obtain that X(i, j)

min−c.c.
−→ X(0,0) ⇏

X(i, j)
min−S2−d
−→ X(0,0).

Example 3.7. Let α > 0. For (i, j) ∈N2, define random variables X(i, j) by

X(i, j)(ω) =
{

(i j)α, i fω ∈ (0, 1
i1+α ] × (0, 1

j1+α ],
0, otherwise.

From [Example 3.2.], we have that X(i, j)
min−Sα−a.s.
−→ 0.

Let f (x) = x. It is easy to see that f is a bounded Lipschitz continuous function. We have∑
(i, j)∈N2

|E[ f (X(i, j)) − f (0)]| =
∑

(i, j)∈N2

|E[X(i, j)]|

=
∑

(i, j)∈N2

|

∫ 1
j1+α

0

∫ 1
i1+α

0
(i j)αdP|

=
∑

(i, j)∈N2

1
i1+α
·

1
j1+α

(i j)α

=
∑

(i, j)∈N2

1
i
·

1
j

= ∞,
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and thus, X(i, j)
min−S1−d
↛ 0.

Remark 3.8. By Example 3.7, we have X(i, j)
min−Sα−a.s.
−→ X(0,0)(α > 0)⇏ X(i, j)

min−S1−d
↛ X(0,0).
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