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Abstract. In this paper, we study topological equicontinuity, topological uniform rigidity and their
properties. For a dynamical system, on a compact, T3 space, we study relations among the set of recurrent
points of the map, the set of non-wandering points of the map and the intersection of the range sets of all
iterations of the map. We define topological version of uniform rigidity and show that on a compact and
T3 space any dynamical system is topologically uniformly rigid if it is first countable, almost topologically
equicontinuous and transitive or it is second countable, topologically equicontinuous and has a dense set of
periodic points. We show that a topologically uniformly rigid dynamical system, on a compact, Hausdorff
space, has zero topological entropy. Moreover, we provide necessary examples and counterexamples.

1. Introduction

Sensitivity plays an important role in defining almost all types of chaos. Equicontinuous systems are
supposed to have simple chaotic behaviours. Roughly speaking, sensitivity predicts that nearby points will
go far away after a long time and equicontinuity says that points nearby will remain nearby at any given
point of time. Many authors consider equicontinuity as an almost inverse of sensitivity. A generalization
of concept of equicontinuity is the concept of even continuity, which says, in a rough way, if the image of
a point in domain goes nearby to some point in codomain then the image of points nearby to the point in
domain goes nearby to the point in codomain [13]. The definition of generalized topological equicontinuity,
as defined by Royden (he called it topological equicontinuity) says that if some point nearby to a point in
domain goes nearby to a point in codomain then the points nearby to the point in domain goes nearby to
the point in codomain[21]. This definition (however called topological equicontinuity in the book [21]) does
not seem to be a topological version of equicontinuity, rather it appears to be a generalization of topological
version of equicontinuity. As mentioned earlier, equicontinuity can be considered as an almost inverse of
sensitivity. In the same way, we define topological equicontinuity as the inverse of topological sensitivity.

Since equicontinuity is important in the study of dynamical systems, so many authors studied concepts
which are close to the concept of equicontinuous families[3, 4, 11, 18, 19]. Akin et. al localized the
concept of equicontinuity to a point[1]. Many authors have proved results concerning transitivity and
equicontinuity[1, 7]. Akin et. al proved that a transitive system is either almost equicontinuous or sensitive
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The first author is supported by CSIR-SRF Sr. No. 09/045(1799)/2020-EMR-I for carrying out this research work.
Email addresses: kalgandevender@gmail.com (Devender Kumar), rdasmsu@gmail.com (Ruchi Das)



D. Kumar, R. Das / Filomat 37:20 (2023), 6813–6822 6814

and a minimal system is either equicontinuous or sensitive[1]. Many analogues of this dichotomy result
have been proved[5, 8, 10, 16, 19]. Results relating equicontinuity of subspaces and product spaces with the
corresponding base spaces are also studied[4, 17, 20]. Royden defined the concept of generalized topological
equicontinuity (he called it topological equicontinuity)[21]. Many authors have studied equicontinuity on
uniform spaces[8, 13, 14]. For equicontinuous dynamical systems, Mai has studied relations among set
of recurrent points, almost periodic points and non-wandering points of a map on metric spaces. He
proved that for any dynamical system on a metric space the set of recurrent points is same as the set
of non-wandering points and if the space is compact also then the set of recurrent points, the set of
non-wandering points and the set of almost periodic points are same[20]. Since equicontinuous systems
are supposed to have simple chaotic behaviours, many authors relate equicontinuity and entropy of a
dynamical system[6, 9, 22]. Glasner and Maon introduced the concept of rigidity of a dynamical system
and proved that any rigid dynamical system has zero entropy[6].

Inspired by above work, in this paper, we study topological equicontinuity, topological rigidity and
topological entropy of a dynamical system. Our main results are Theorem 1, Theorem 2 and Theorem 3.
In Theorem 1, we prove that on a first countable, compact and T3 space any almost topologically equicon-
tinuous and transitive dynamical system is topologically uniformly rigid. On a second countable, compact
and uniform space any topologically equicontinuous dynamical system having dense set of periodic points
is topologically uniformly rigid is proved in Theorem 2. Theorem 3 says that any topologically uniformly
rigid dynamical system on a compact Hausdorff topological space has zero topological entropy. In Section
2, we provide necessary definitions required for the remaining sections of the paper. In Section 3, we
introduce notions of almost topological equicontinuity and topological equicontinuity. We study relation
between topological equicontinuity and generalized topological equicontinuity. We prove dichotomy re-
sult that a minimal dynamical system is either topologically equicontinuous or topologically sensitive. We
also show that the product dynamical system is topologically equicontinuous if and only if both the base
dynamical systems are topologically equicontinuous. We prove that if X is compact and T3 space then the
set of recurrent points of f is same as the set of non-wandering points of f and intersection of image sets
of f n is same as the set of recurrent points of f . In Section 4, we define topological version of uniform
rigidity. We show that any almost topologically equicontinuous and transitive system over a first countable,
compact and T3 space is topologically uniformly rigid and if a dynamical system over a second countable,
compact and Hausdorff space is topologically equicontinuous and has dense set of periodic points then the
system is topologically uniformly rigid. We also show that any topologically uniformly rigid dynamical
system over a compact Hausdorff space has zero topological entropy. We provide necessary examples and
counterexamples.

2. Preliminaries

We denote the set of natural numbers by N. A subset A of natural numbers is called syndetic if there
exists a k ∈N such that for any n ∈N, {n,n+ 1,n+ 2, . . . ,n+ k} ∩A , ∅. Let X be any topological space. If X
is a metric space then for any set A ⊂ X, diameter of A is diam(A) = sup{d(x, y) : x, y ∈ A}. For any set A ⊂ X
closure of A is denoted by A. A topological space X is called T3 if {x} is closed for every x ∈ X and for any
x ∈ X and any open set G containing x there exists an open set G1 such that x ∈ G1 ⊂ G1 ⊂ G. A space X
is called completely regular if for any closed set A ⊂ X and any element x < A there exists a continuous map
f : X→ R such that f (x) = 1 and f (A) = {0}where f (A) = { f (a) : a ∈ A}.

For any x ∈ X letNx denotes the collection of all open sets containing x. Let F be a family of continuous
functions from a topological space X to a topological space Y. We say that F is generalized topologically
equicontinuous at (x, y) ∈ X × Y if for any O ∈ Ny there exist neighbourhoods U of x and V of y such
that for any f ∈ F if f (U) ∩ V , ∅ then f (U) ⊂ O. If F is generalized topologically equicontinuous at
(x, y) ∈ X × Y for every y ∈ Y then we say that F is generalized topologically equicontinuous at x and if F is
generalized topologically equicontinuous at x for every x ∈ X then we say that F is generalized topologically
equicontinuous[21]. Let (X, d1) and (Y, d2) be metric spaces then a point x ∈ X is called an equicontinuity point
if given any ϵ > 0 there exists a δ > 0 such that for any y ∈ Y, d1(x, y) < δ implies d2( f (x), f (y)) < ϵ for every
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f ∈ F [1]. A family F of continuous maps is called almost equicontinuous if there exists an equicontinuity
point in X. A family F of continuous functions is called equicontinuous if for any ϵ > 0 there exists a
δ > 0 such that if d1(x, y) < δ then d2( f (x), f (y)) < ϵ for every f ∈ F and for all (x, y) ∈ X × Y. A map
f : X → X is called sensitive if there exists a δ > 0 such that for any ϵ > 0 and any x ∈ X there exists a
y ∈ B(x, ϵ) = {z ∈ X|d1(x, z) < ϵ} and n ∈N such that d1( f n(x), f n(y)) > δ[2].

Let X be a topological space and T : X→ X be a continuous map then (X,T) is called a dynamical system.
We say that (X,T) is transitive if for any pair of nonempty open sets U,V ⊂ X there exists an n ∈ N such
that Tn(U) ∩ V , ∅. A point x ∈ X is called a transitive point if the set {Tn(x) : n ∈ N} is dense in X. The
set containing all transitive points of (X,T) is denoted by Trans(T) = {x : x ∈ X and x is a transitive point}.
For a dynamical system (X,T), with X being a metric space, we say (X,T) is uniformly rigid if there exists a
sequence nk ↗ ∞ such that lim Tnk = Identity uniformly [6]. For two dynamical systems (X,T) and (Y,S)
the product dynamical system is (X×Y,T× S) where (T× S)(x, y) = (T(x),S(y)) and X×Y is equipped with the
product topology. For any topological space X orbit of x ∈ X, is O(x, f ) = { f n(x) : n ∈N∪{0}} andω limit set of

x is ω(x, f ) =
∞⋂

n=0
O( f n(x), f ). The set of recurrent points of f is R( f ) = {x : x ∈ ω(x, f )}, the set of non-wandering

points of f is Ω( f ) = {x : for any open set G containing x there exists an m ∈N such that f m(G) ∩ G , ∅} and
the set of almost periodic points of f is AP( f ) = {x : for any open set G containing x there exists an m ∈N such
that for any i ∈ N,G ∩ { f j+i(x) : j ∈ {1, 2, . . . ,m}} , ∅. For any set A ⊂ X, we say that A is f− invariant if
f (A) ⊂ A. A closed and f− invariant set A is called a minimal set if O(a) is dense in A for every a ∈ A where
A is considered with the subspace topology. Let (X,T) and (Y,S) be two dynamical systems, we say that
(Y,S) is a factor of (X,T) (or (X,T) is an extension of (Y,S)) if there exists an onto continuous map π : X→ Y
such that π ◦ T = S ◦ π. If the map π is a homeomorphism then we say that (X,T) and (Y,S) are conjugate
dynamical systems.

For any sets A,B ⊂ X×X, A◦B = {(x, z) : there exists a y ∈ X such that (x, y) ∈ A and (y, z) ∈ B}. Diagonal
of X × X is defined as ∆X = {(x, x) : x ∈ X} and DX = {A ⊂ X × X : ∆X ⊂ A and A = A−1

} where for any set
A ⊂ X × X, A−1 = {(y, x) : (x, y) ∈ A}

Definition 2.1. ([13]) For any set X, a uniformity on X is a nonempty collection U of subsets of X × X
satisfying the following conditions:

1. U ⊂ DX;

2. If A1 ∈ U and A1 ⊂ A2 ∈ Dx then A2 ∈ U;

3. For any A1,A2 ∈ U, A1 ∩ A2 ∈ U;

4. For any A ∈ U there exists a B ∈ U such that B ◦ B ⊂ A.

The pair (X,U) is called a uniform space and the elements ofU are called entourages. Any uniform space
(X,U) induces a topology on X, called uniform topology generated by basic open sets A[x] = {y : (x, y) ∈
A where A ∈ U} and we say that the topology is induced by uniformityU.

Let X be any topological space and U and V be any open covers of X then U ∨ V = {U ∩ V :
U ∈ U ,V ∈ V }. For a topological space X, an open cover U of X and a continuous map f : X → X,
f−1(U ) = { f−1(U) : U ∈ U } and for any n ∈ N, f−(n+1)(U ) = { f−1( f−n(U)) : U ∈ U }. Let X be any compact
topological space and U be any open cover of X then the minimum cardinality of U that covers X is
denoted by N(U ). For any compact topological space X, an open cover U of X and a continuous map
f : X→ X, h( f ,U ) is defined as h( f ,U ) = lim

n→∞
1
n log N(U ∨ f−1(U )∨ · · · ∨ f−(n−1)(U )) and topological entropy

of f is denoted by h( f ) and is defined by h( f ) = sup{h( f ,U ) : U is an open cover of X}.

3. Topological equicontinuity and some properties

Definition 3.1. Let X and Y be any topological spaces. For any x ∈ X, a family F of continuous maps
from X to Y is said to be topologically equicontinuous at x ∈ X if for every open cover V of Y there exists
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an open set G containing x such that for every f ∈ F there exists a V ∈ V such that f (G) ⊂ V. A point
x ∈ X is called a topologically equicontinuous point. We say that F is almost topologically equicontinuous if
F is topologically equicontinuous at x for some x ∈ X. F is said to be topologically equicontinuous if F is
topologically equicontinuous at x for every x ∈ X.

For any family F of continuous functions from X to Y, in case X is compact, we can easily observe that
if F is generalized topologically equicontinuous then F is topologically equicontinuous. Next example
justifies that the converse is not true.

Example 1. Let X = Y = {0, 1, 2} with topology τ = {∅,X, {0, 1}, {0, 2}, {0}}. Define f : X → Y by f (0) =
0, f (1) = 2, f (2) = 1 and family F = { f n : n ∈ N} = {e, f } where e is the identity map then F is topologically
equicontinuous. For (1, 1) ∈ X × Y, take open set O = {0, 1} ⊂ Y then for any open set U ⊂ X containing 1
and V ⊂ Y containing 1, f (U)∩V , ∅, but f (U) 1 O. So, F is not generalized topologically equicontinuous
at (1, 1) and hence not generalized topologically equicontinuous.

Next we see relations between topological equicontinuity and equicontinuity in case X and Y are metric
spaces.

Proposition 1. Let (X, d1) and (Y, d2) be metric spaces and F be a family of continuous functions from X to Y.

1. If Y is compact then equicontinuity of F implies topological equicontinuity of F

2. If X is compact then topological equicontinuity of F implies equicontinuity of F .

Proof. 1. Assume F is equicontinuous and x ∈ X be any element. Let V be any open cover of Y then as Y is
a compact metric space, so there exists a Lebesgue number ϵ > 0 of V . By definition of equicontinuity, for
above ϵ > 0 there exists a δ > 0 such that for any y ∈ Y if d1(x, y) < δ then d2( f (x), f (y)) < ϵ for every f ∈ F .
Take G = B(x, δ/2) then for any x1, x2 ∈ G, d1(x1, x2) < δ and hence d2( f (x1), f (x2)) < ϵ for every f ∈ F and
so diam( f (G)) < ϵ implying that f (G) ⊂ V for some V ∈ V . Hence, F is topologically equicontinuous at x
for every x ∈ X. Therefore, F is topologically equicontinuous.

2. Assume that F is topologically equicontinuous and ϵ > 0 be arbitrary. By definition of topological
equicontinuity, for any x ∈ X there exists a nonempty open set Gx such that for any f ∈ F there exists a
V ∈ V such that f (Gx) ⊂ V where V = {B(y, ϵ/2) : y ∈ Y} is an open cover of Y. Note that U = {Gx : x ∈ X}
is an open cover of X and as X is a compact metric space, so there exists a Lebesgue number, say δ of
U , such that for any x1, x2 ∈ X if d1(x1, x2) < δ then x1, x2 ∈ Gx for some x ∈ X and hence for any f ∈ F ;
f (x1), f (x2) ∈ f (Gx) ⊂ V for some V ∈ V . Therefore, d2( f (x1), f (x2)) < ϵ. Thus, for any ϵ > 0 there exists a
δ > 0 such that if d1(x1, x2) < δ then d2( f (x1), f (x2)) < ϵ for every f ∈ F implying thatF is equicontinuous.

From above proposition it is clear that if X and Y are compact metric spaces then any family F of
continuous functions from X to Y is topologically equicontinuous if and only if it is equicontinuous.
However, in general, the above result need not be true. Next example justifies this.

Example 2. Let X = R with usual metric and define f : X → X by f (x) = x + α where α is a real number.
Now, consider open cover U = {B(0, 1),B(±(1 + 1

2 + · · · +
1
n ), 1

n ) : n ∈ N} where B(x, r) denotes the open
ball of radius r centred at x. Let x ∈ X be any element and G be any open set containing x then there
exists an ϵ > 0 such that B(x, ϵ) ⊂ G. As for any n ∈ N diam( f n(G)) = diam(G), so there exists an n ∈ N
such that f n(G) 1 U for any U ∈ U . Hence, (X, f ) cannot be topologically equicontinuous at x and since
x was arbitrary, therefore (X, f ) is not almost topologically equicontinuous. But (X, f ) is equicontinuous as
f : X→ X is an isometry.

Next we provide dichotomy results for transitive and minimal systems.

Proposition 2. Any dynamical system (X,T) is either almost topologically equicontinuous or topologically sensitive
and if (X,T) is a transitive dynamical system with X being a T3 space then almost topological equicontinuity of (X,T)
implies that the set of topologically equicontinuous points of (X,T) is same as the set of transitive points of (X,T).
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Proof. From definition of almost topological equicontinuity and definition of topological sensitivity, it is
clear that a dynamical system is either almost topologically equicontinuous or topologically sensitive.

Now assume that (X,T) is almost topologically equicontinuous and transitive. Let z be any transitive
point of (X,T) and V be any open cover of X. By definition of almost topological equicontinuity, there exists
a nonempty open set G, containing a point of topological equicontinuity, such that for every n ∈ N there
exists a V ∈ V such that Tn(G) ⊂ V and by definition of a transitive point, {Tn(z) : n ∈ N} is dense in X. So,
there exists an n0 ∈ N such that Tn0 (z) ∈ G. For any i ∈ N, let Vi ∈ V be an open set such that Ti(z) ∈ Vi,

define U =
n0⋂
i=1

T−i(Vi) ∩ T−n0 (G). Then U is an open set containing z and Tn(U) ⊂ Vn for n ∈ {1, 2, . . . ,n0}

and Tn0 (U) ⊂ G. Now, as we know that for every k ∈ N there exists a V ∈ V such that Tk(G) ⊂ V so, for
every k ∈N, Tn0+k(U) ⊂ Tk(G) ⊂ V for some V ∈ V . Hence, for every m ∈N, there exists a V ∈ V such that
Tm(U) ⊂ V. Thus, z ∈ X is a topologically equicontinuous point.

Now, assume z ∈ X be any topologically equicontinuous point and U1 be any nonempty open subset
of X. Since X is a T3 space, so there exists a nonempty open set U such that U ⊂ U ⊂ U1. Define open
cover V ′ = {U1,X/U}. For open cover V ′ there exists an open set G′ containing z such that for any n ∈ N
there exists a V ∈ V ′ such that Tn(G′) ⊂ V′. Since (X,T) is transitive, so there exists an n ∈ N such that
Tn(G′)∩U , ∅. By definition of equicontinuous point Tn(G′) ⊂ U1 or Tn(G′) ⊂ X/U but since Tn(G′)∩U , ∅
that is Tn(x) < X/U for some x ∈ G′. Therefore, Tn(G′) ⊂ U1 and since z ∈ G′ so Tn(z) ∈ U1. Hence,
{Tn(z) : n ∈N} is dense in X that is z is a transitive point. Thus, the set of equicontinuous points is same as
the set of transitive points.

Proposition 3. Let (X,T) be a minimal dynamical system. Then either (X,T) is topologically equicontinuous or
(X,T) is topologically sensitive.

Proof. Let (X,T) be topologically sensitive then there exists an open cover V of X such that for any nonempty
open set G there exists an n ∈ N such that Tn(G) 1 V for any V ∈ V which contradicts the definition of
topological equicontinuity. So, (X,T) is not topologically equicontinuous.

Now, assume that (X,T) is not topologically sensitive then by Proposition 2, (X,T) is almost topologically
equicontinuous and the set of transitive points is same as the set of topologically equicontinuous points.
Since (X,T) is minimal, so the set of transitive points is X and hence, every point is a topologically
equicontinuous point implying that (X,T) is topologically equicontinuous.

It is an obvious concern to check the behaviour of topological equicontinuity on product of two dynamical
systems and on conjugate dynamical systems. Our next propositions justify the behaviour of topological
equicontinuity under product dynamical systems and conjugate dynamical systems.

Lemma 3.1. ([15]) Let X,Y be compact spaces and V be any open cover of X then there exist open covers U1 of X
and U2 of Y such that for any U1 ∈ U1 and U2 ∈ U2 there exists a V ∈ V such that U1 ×U2 ⊂ V.

Proposition 4. Let (X,T) and (Y,S) be two dynamical systems, where X and Y are compact topological spaces, then
the product dynamical system (X × Y,T × S) is topologically equicontinuous if and only if (X,T) and (Y,S) both are
topologically equicontinuous.

Proof. Suppose that (X,T) and (Y,S) both are topologically equicontinuous and V be any open cover of
X × Y then there exist open covers U1 of X and U2 of Y such that for any U1 ∈ U1 and U2 ∈ U2 there exists
a V ∈ V satisfying U1 × U2 ⊂ V. For any (x, y) ∈ X × Y there exist open sets G1 ⊂ X containing x and
G2 ⊂ Y containing y such that for any n ∈N there exists a U1 ∈ U1 and a U2 ∈ U2 such that Tn(G1) ⊂ U1 and
Sn(G2) ⊂ U2. Let V ∈ V be an open set such that U1 ×U2 ⊂ V, then for any n ∈N there exists a V ∈ V such
that (T × S)n(G1 × G2) ⊂ V and hence (X × Y,T × S) is topologically equicontinuous.

Conversely, assume that (X × Y,T × S) is topologically equicontinuous and U be any open cover of X.
Let (x, y) ∈ X × Y. For open cover V = {U × Y : U ∈ U } of X × Y, we have an open set G1 × G2 containing
(x, y) such that for any n ∈ N there exists a U ∈ U such that (T × S)n(G1 × G2) ⊂ U × Y and hence for any
n ∈ N there exists a U ∈ U such that Tn(G1) ⊂ U. Therefore, (X,T) is topologically equicontinuous and
similarly (Y,S) is also topologically equicontinuous.
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Consider a dynamical system (X,T) and Z a T−invariant closed subspace of X then it is easy to verify
that topological equicontinuity of (X,T) implies the same for (Z,T). Next, we prove that for any factor (Y,S)
of (X,T) topological equicontinuity of (X,T) implies the same for (Y,S) whenever factor map is open.

Proposition 5. Let (X,T) be any topologically equicontinuous dynamical system and (Y,S) be any factor of (X,T)
such that the factor map is an open map then (Y,S) is also topologically equicontinuous.

Proof. Let π : X → Y be the factor map which is open and onto and V be any open cover of Y. Then
U = {π−1(V) : V ∈ V } is an open cover of X. For any y ∈ Y there exists an x ∈ X such that π(x) = y and
as (X,T) is topologically equicontinuous, so for open cover U of X there exists an open set G1 containing x
such that for every n ∈N there exists a U ∈ U such that Tn(G1) ⊂ U that is for some V ∈ V , Tn(G1) ⊂ π−1(V)
and as π is a factor map, so π ◦ T = S ◦ π and hence π ◦ Tn = Sn

◦ π for every n ∈N. As Tn(G1) ⊂ π−1(V), so
Sn(π(G1)) = π(Tn(G1)) ⊂ V and y = π(x) ∈ π(G1) = G2(say). As π is open so, π(G1) is an open set containing
y. Hence, for any open cover V of Y there exists an open set G2 containing y such that for every n ∈ N
there exists a V ∈ V such that Sn(G2) ⊂ V implying that (Y,S) is a topologically equicontinuous dynamical
system.

If (X,T) and (Y,S) are conjugate dynamical systems then map π : X → Y such that π ◦ T = S ◦ π is
a homeomorphism and hence, π is an open, onto map. So, by above proposition, (X,T) is topologically
equicontinuous if and only if (Y,S) is also topologically equicontinuous.

Next few propositions show that for topologically equicontinuous maps on compact, T3 space the set of
recurrent points of f , the set of non-wandering points of f and intersection of image set of all iterations of
f are same. These propositions are proved in [20] for metric spaces.

Proposition 6. Let X be a compact and T3 space and f : X → X be any topologically equicontinuous map then
R( f ) = Ω( f )

Proof. From definitions it is clear that R( f ) ⊂ Ω( f ). Now, let x ∈ Ω( f ) and O be any open set containing
x then as space X is T3, so there exists an open set O1, containing x, such that O1 ⊂ O1 ⊂ O. Therefore,
{O,X/O1} is an open cover of X. Now let U1 be an open cover of X such that for any U1,U2 ∈ U1 if U1∩U2 , ∅
then U1 ∪U2 ⊂ U for some U ∈ U . Since U1 is an open cover of X, so there exists an open set O′ ⊂ U1(for
some U1 ∈ U1) such that x ∈ O′ and for any n ∈N there exists a U′ ∈ U1 such that f n(O′) ⊂ U′. Now, as x is
a non-wandering point, so there exists an m ∈ N such that f m(O′) ∩O′ , ∅ and say f m(O′) ⊂ U′′ ∈ U1. As
O′ ⊂ U1, hence U′′ ∩U1 , ∅which implies U1 ∪U′′ ⊂ U for some U ∈ U . As x ∈ U′′ ∪U1 and x < X/O1, so
U′′ ∪ U1 ⊂ O. Therefore, x, f m(x) ∈ O. Hence, for any open set O containing x there exists an m ∈ N such
that f m(x) ∈ O implying that x ∈ ω(x, f ). Therefore, x ∈ R( f ). So, R( f ) = Ω( f ).

Proposition 7. Let f : X → X be a topologically equicontinuous map where X is a compact and T3 space. Then
ω(x, f ) is minimal.

Proof. Let a ∈ ω(x, f ). Take any point z ∈ ω(x, f ) and O′ any open set containing z. As X is a T3 space so there
exists an open set O1 containing z such that O1 ⊂ O1 ⊂ O′ then U = {O′,X/O1} is an open cover of X. For
open cover U there exists an open cover U1 such that, for any U1,U2 ∈ U1 if U1 ∩U2 , ∅ then U1 ∪U2 ⊂ U
for some U ∈ U . Now, there exists an open set G containing a such that for any n ∈N there exists a U1 ∈ U1
such that f n(G) ⊂ U1. As a ∈ ω(x, f ), so there exists a y ∈ O(x, f ) = { f n(x) : n ∈ N ∪ {0}} such that y ∈ G.
Therefore, for any n ∈N there exists a U1 ∈ U1 such that ( f n(a), f n(y)) ∈ U1 ×U1. Since ω(x, f ) = ω(y, f ), so
there exists an n ∈ N such that f n(y) ∈ U′ where U′ ∈ U1 be such that z ∈ U′. Then for n; f n(a), f n(y) ∈ U1
and f n(y), z ∈ U′ implying that U1 ∩U′ , ∅. Therefore, there exists a U ∈ U such that U1 ∪U′ ⊂ U and as
z < X/O1, so f n(a), f n(y), z ∈ O′. Hence, O(a, f ) ∩O′ , ∅. Therefore, ω(x, f ) is minimal.

If ω(x, f ) is a minimal set then for any y ∈ ω(x, f ), y ∈ ω(y, f ). Therefore, y is a recurrent point of f . Using
this we prove our next Proposition.
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Proposition 8. Let f : X → X be a topologically equicontinuous map where X is a compact and T3 space then
∞⋂

n=0
f n(X) = R( f ).

Proof. Since f is a continuous map, so f (R( f )) ⊂ R( f ) and if x ∈ R( f ) then there exists a sequence {nk : k ∈N}
of natural numbers such that f nk (x) → x. Now, as X is compact, so sequence { f nk−1(x) : k ∈ N} has a
convergent subsequence. Let y be a limit point of this sequence. Then y ∈ ω(x, f ) and by Proposition 7
ω(x, f ) is a minimal set, so y ∈ R( f ) and note that, because of our construction, f (y) = x that is x ∈ f (R( f )).

Hence, f (R( f )) = R( f ) which implies that R( f ) ⊂
∞⋂

i=0
f n(X).

Conversely, assume that x ∈
∞⋂

i=0
f n(X). Then for any n ∈ N there exists a yn ∈ X such that f n(yn) = x.

As X is compact, so (yn)n∈N has a convergent subsequence, say (ynk )k∈N converges to y0 ∈ X. Let G be any
open set containing x, as X is a T3 space, so there exists an open set G1 such that G1 ⊂ G1 ⊂ G and x ∈ G1.
Therefore, U = {G,X/G1} is an open cover of X and by topological equicontinuity of f , there exists an open
set O containing y0 such that for every n ∈ N there exists a U ∈ U such that f n(O) ⊂ U. As (ynk )k∈N is
converging to y0. So, there exists an n0 ∈ N such that for all k ≥ n0, ynk ∈ O and since f nk (O) ⊂ U for some
U ∈ U and x < X/G1, so f nk (O) ⊂ G for all k ≥ n0. Hence, x ∈ ω(y0, f ) and so, x ∈ ω(x, f ), implying that

x ∈ R( f ). Hence,
∞⋂

i=0
f n(X) = R( f ).

4. Topological uniform rigidity, topological entropy and their relations

We start this section with the definition of topological version of uniform rigidity, called topological
uniform rigidity and then we show that any almost topologically equicontinuous and transitive dynamical
system over a compact, first countable and T3 space is topologically uniformly rigid.

Definition 4.1. For some sequence (nk)k∈N of natural numbers, a dynamical system (X,T) is called topolog-
ically uniformly rigid with respect to (nk)k∈N if for any open cover U of X there exists an nk0 in our sequence
such that for every nk ≥ nk0 and for every x ∈ X there exists an open set U ∈ U such that (Tnk (x), x) ∈ U ×U
and the dynamical system is called topologically uniformly rigid if there exists a sequence (nk)k∈N of natural
numbers such that (X,T) is topologically uniformly rigid with respect to (nk)k∈N.

First we provide some lemmas which will be used in next propositions and theorems.

Lemma 4.1. Let U be any open cover of X where X is a compact uniform space then there exists an entourage W
such that for any y ∈ X there exists a U ∈ U such that W[y] ⊂ U.

Proof. Let U be any open cover of X then for any x ∈ X there exists an entourage Ax such that Ax[x] ⊂ U for
some U ∈ U . Now, by definition of uniform spaces there exists an entourage Bx such that Bx ◦ Bx ⊂ Ax. As
{Bx[x] : x ∈ X} is an open cover of X. So, there exists a finite subcover, say, {B1[x1],B2[x2], . . . ,Bn[xn]}. Define

W =
n⋂

i=1
Bi then as for any y ∈ X, y ∈ Bi[xi] for some i ∈ {1, 2, . . . ,n}, so W[y] ⊂ W ◦ Bi[xi] ⊂ Bi ◦ Bi[xi] ⊂ U.

Hence, for any y ∈ X there exists a U ∈ U such that W[y] ⊂ U.

Lemma 4.2. Let X be any uniform space and W be any entourage then there exists an entourage E such that if
E[x] ∩ E[y] , ∅ then E[x] ∪ E[y] ⊂W[z] for some z ∈ X.

Proof. By definition of uniform spaces, for entourage W there exists an entourage E such that E ◦ E ⊂ W.
Now, let for some x, y ∈ X, E[x] ∩ E[y] , ∅ and say, z ∈ E[x] ∩ E[y] for some z ∈ X. For any z′ ∈ E[x] ∪ E[y],
without loss of generality, we can assume that z′ ∈ E[x]. So, (z′, x) ∈ E and as (x, z) ∈ E, so (z′, z) ∈ E ◦E ⊂W.
Hence, z′ ∈W[z]. Therefore, if E[x] ∩ E[y] , ∅ then E[x] ∪ E[y] ⊂W[z] for some z ∈ X.
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Remark 4.1. From above two lemmas we can deduce that for a compact uniform space X and any open
cover U of X there exists an open cover {E[x] : x ∈ X} such that if E[x] ∩ E[y] , ∅ then E[x] ∪ E[y] ⊂ U for
some U ∈ U .

In next two theorems, we obtain conditions under which a topologically equicontinuous dynamical
system becomes topologically uniformly rigid.

Theorem 1. Let (X,T) be an almost topologically equicontinuous and transitive dynamical system with X being a
first countable, compact and T3 space then (X,T) is topologically uniformly rigid.

Proof. Since (X,T) is almost topologically equicontinuous, so let x ∈ X be an equicontinuous point of (X,T).
Then there exists a neighbourhood basis {G j : j ∈ N and G j+1 ⊂ G j for every j ∈ N} of x. Since x is a
topologically equicontinuous point of (X,T), so by Proposition 2, x ia a transitive point also and hence
{Tn(x) : n ∈N} is dense in X. Therefore, there exists a strictly increasing sequence (k j) j∈N of natural numbers
such that Tk j (x) ∈ G j for every j ∈N. Note that Tkt (x) ∈ G j for every t ≥ j because Gt ⊂ G j.

Now, let U be any open cover of X. As X is a T3 space, so for every y ∈ X and any U ∈ U containing y
there exists an open set Uy such that y ∈ Uy ⊂ Uy ⊂ U then V = {Uy : y ∈ X,U ∈ U } is an open cover of X
and let V1 = {Uy1 ,Uy2 , . . . ,Uyk } be a finite subcover. As x is a topologically equicontinuous point of (X,T), so
there exists a j ∈ N such that for every n ∈ N, Tn(G j) ⊂ Uyi for some i ∈ {1, 2, . . . , k}. Hence, for every t ≥ j,
(Tn+kt (x),Tn(x)) ∈ Uyi ×Uyi for some i ∈ {1, 2, . . . , k}. Since {Tn(x) : n ∈N} is dense in X and Tkt is continuous,
so for any z ∈ X, there exists an i ∈ {1, 2, . . . , k} such that (Tkt (z), z) ∈ Uyi ×Uyi ⊂ U ×U for some U ∈ U that
is for any open cover U and any z ∈ X there exists a j ∈N such that for any t ≥ j there exists a U ∈ U such
that (Tkt (z), z) ∈ U ×U. Therefore, (X,T) is topologically uniformly rigid.

Theorem 2. Let (X,T) be a second countable, compact uniform dynamical system. If (X,T) is topologically equicon-
tinuous and has a dense set of periodic points then (X,T) is topologically uniformly rigid.

Proof. Let B = {Bi : i ∈ N} be a countable basis for X. As periodic points are dense in X, so for every i ∈ N
there exists a pi ∈ Bi and a ki ∈N such that Tki (p j) = p j for every j ≤ i, j ∈N and ki < ki+1 for every i ∈N.

Now, let U be any open cover of X. Then there exists an open cover V such that for any V1,V2 ∈ V , if
V1 ∩ V2 , ∅ then V1 ∪ V2 ⊂ U for some U ∈ U . Since, (X,T) is topologically equicontinuous, so for every
x ∈ X there exists a Bx ∈ B containing x such that for every n ∈ N ∪ {0} there exists a V ∈ V such that
Tn(Bx) ⊂ V. Let {Bt : t ∈ F}where F is a finite subset ofN be a finite subcover of {Bx : x ∈ X} and say t′ be the
largest element of F. Now, for any i ≥ t′, Tki (pt) = pt for every t ∈ F. Since, for every x ∈ X x ∈ Bt for some
t ∈ F and for every n ∈ N there exists a V ∈ V such that Tn(Bt) ⊂ V, so for every i ≥ t′ and every x ∈ X,
there exists some t ∈ F and V ∈ V such that (Tki (x),Tki (pt)) = (Tki (x), pt) ∈ V ×V and (x, pt) ∈ V ×V for some
V ∈ V . Hence, for every i ≥ t′ and any x ∈ X there exists a U ∈ U such that (Tki (x), x) ∈ U×U implying that
(X,T) is topologically uniformly rigid.

From [6] we know that topological entropy of a rigid dynamical system is zero. Next result shows that
the same is true for a topologically uniformly rigid dynamical system on compact T3 spaces.

Lemma 4.3. ([12]) A space is uniform if and only if it is completely regular

Note that any compact and Hausdorff space is completely regular, and hence uniform. We will use this
fact in our next lemma.

Lemma 4.4. Let X be any compact and Hausdorff space and U be any open cover of X then for any t ∈ N, t ≥ 2
there exists an open cover V t such that if for any Vt

1,V
t
2, . . . ,V

t
t ∈ V t, Vt

i ∩ Vt
i+1 , ∅ for every i ∈ {1, 2, . . . , t − 1}

then Vt
1 ∪ Vt

2 ∪ · · · ∪ Vt
t ⊂ U for some U ∈ U .

Proof. We will prove it by using induction on t. For t = 2, by using Lemma 4.2 and Lemma 4.1 we get there
exists an entourage E such that if E[x] ∩ E[y] , ∅ then E[x] ∪ E[y] ⊂ U for some U ∈ U . Hence, taking
V 2 = {E[x] : x ∈ X}, we get an open cover V 2 such that if V2

1 ∩V2
2 , ∅ for any V2

1 ,V
2
2 ∈ V 2 then V2

1 ∪V2
2 ⊂ U

for some U ∈ U .
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Now, assume for t ∈N there exists an open cover V t such that if for any Vt
1,V

t
2, . . . ,V

t
t ∈ V t, Vt

i ∩Vt
i+1 , ∅

for every i ∈ {1, 2, . . . , t − 1} then Vt
1 ∪ Vt

2 ∪ · · · ∪ Vt
t ⊂ U for some U ∈ U .

Now, since V t is an open cover of X, so there exists an open cover V t+1 such that if for any V′,V′′ ∈ V t+1,
V′∩V′′ , ∅ then V′∪V′′ ⊂ Vt for some Vt

∈ V t. Now, let Vt+1
1 ,V

t+1
2 , . . . ,V

t+1
t+1 ∈ V t+1 such that Vt+1

i ∩Vt+1
i+1 , ∅

for every i ∈ {1, 2, . . . , t}. Then there exist Vt
i ∈ V t such that Vt+1

i ∪ Vt+1
i+1 ⊂ Vt

i for any i ∈ {1, 2, . . . , t}. Note
that for any i ∈ {1, 2, . . . , t}, Vt

i ∈ V t and Vt
i ∩Vt

i+1 , ∅ for every i ∈ {1, 2, . . . , t− 1}. Hence, by our assumption
there exists a U ∈ U such that Vt

1 ∪ Vt
2 ∪ · · · ∪ Vt

t ⊂ U and as Vt+1
i ∪ Vt+1

i+1 ⊂ Vt
i for all i ∈ {1, 2, . . . , t}, so

Vt+1
1 ∪Vt+1

2 ∪ · · · ∪Vt+1
t+1 ⊂ U for some U ∈ U . Therefore, there exists an open cover V t+1 such that if for any

Vt+1
1 ,V

t+1
2 , . . . ,V

t+1
t+1 ∈ V t+1, Vt+1

i ∩Vt+1
i+1 , ∅ for every i ∈ {1, 2, . . . , t} then Vt+1

1 ∪Vt+1
2 ∪ · · · ∪Vt+1

t+1 ⊂ U for some
U ∈ U .

Hence, by using principle of mathematical induction, we can say that for any open cover U and for
every t ∈ N there exists an open cover V t such that for any Vt

1,V
t
2, . . . ,V

t
t ∈ V t if Vt

i ∩ Vt
i+1 , ∅ for every

i ∈ {1, 2, . . . , t − 1} then Vt
1 ∪ Vt

2 ∪ · · · ∪ Vt
t ⊂ U for some U ∈ U .

Theorem 3. Let (X,T) be a topologically uniformly rigid dynamical system where X is a compact and Hausdorff
space, then (X,T) has zero topological entropy.

Proof. Let U be any open cover of X and k be cardinality of U . For any t ∈ N by Lemma 4.4 there exists
an open cover V t such that if for any Vt

1,V
t
2, . . . ,V

t
t ∈ V t, Vt

i ∩ Vt
i+1 , ∅ for all i ∈ {1, 2, . . . , t − 1} then

Vt
1 ∪ Vt

2 ∪ · · · ∪ Vt
t ⊂ U for some U ∈ U .

Now, by using the definition of topologically uniformly rigid dynamical system there exists an nt ∈ N
such that for any x ∈ X, there exists a Vt

1 ∈ V t such that (x,Tnt (x)) ∈ Vt
1 × Vt

1 and similarly for every
i ∈ {1, 2, . . . , t} there exists a Vt

i ∈ V t such that (T(i−1)nt (x),T(i)nt (x)) ∈ Vt
i × Vt

i . Then Vt
i ∩ Vt

i+1 , ∅ for any
i ∈ {1, 2, . . . , t − 1} and so there exists a U ∈ U such that Vt

1 ∪ Vt
2 ∪ · · · ∪ Vt

t ⊂ U for some U ∈ U . So,
(x,Tnt (x),T2nt (x), . . . ,Ttnt (x)) ∈ U × U × · · · × U. Therefore, x ∈ U ∩ T−nt (U) ∩ · · · ∩ T−tnt (U) and hence,
V t

0 = {U ∩ T−nt (U) ∩ · · · ∩ T−tnt (U) : U ∈ U } is an open cover of X with cardinality k. Now, define V t
i =

{T−i(U∩T−nt (U)∩· · ·∩T−tnt (U)) : U ∈ U } for every i ∈ {1, 2, . . . ,nt−1}, then V t
0 ∨V t

1 ∨· · ·∨V t
nt−1 is a subcover of

U ∨T−1(U )∨· · ·∨T−((t+1)nt−1)(U ) and hence, N(U ∨T−1(U )∨· · ·∨T−((t+1)nt−1)(U )) ≤ N(V t
0 ∨V t

1 ∨· · ·∨V t
nt−1) ≤ knt .

Therefore, h(T,U ) = lim
n→∞

1
n log N(U ∨ T−1(U ) ∨ · · · ∨ T−(n−1)(U )) = lim

nt→∞

1
(t+1)nt

log N(U ∨ T−1(U ) ∨ · · · ∨

T−((t+1)nt−1)(U )) ≤ lim
t→∞

log(knt )
(t+1)nt

= 0.

Hence, h(T,U ) = 0 for any open cover U of X implying h(T) = sup{h(T,U ) : U is an open cover of X} =
0.

Remark 4.2. By using Theorem 1 and above theorem we can say that any transitive and almost topologically
equicontinuous dynamical system on a first countable, compact uniform space has zero topological entropy
and since any transitive but not topologically sensitive system is almost topologically equicontinuous, so
any transitive but not topologically sensitive system on a first countable, compact uniform space has zero
topological entropy.

Next we provide an example of a topologically uniformly rigid dynamical system with the base space
a compact, Hausdorff space and hence, the system will have zero topological entropy.

Example 3. Let X = {(r, θ) : r ∈ [0, 1], θ ∈ [0, 2π)} with usual metric and f : X → X by f (r, θ) = (r, (θ + α)
mod 2π) where α is an irrational multiple of π. Then given any i ∈ N there exists an ni ∈ N such that
d( f ni (x), x) < 1

i for every x ∈ X. Now, let U be any open cover of X then there exists a Lebesgue number
for U , say ϵ. Take i0 > 1

ϵ , as for any i > i0, d( f ni (x), x) < 1
i < ϵ, so for any i > i0 there exists a U ∈ U such

that ( f ni (x), x) ∈ U × U and hence the system (X, f ) is topologically uniformly rigid. Therefore, f has zero
topological entropy.
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