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Abstract. In the previous studies, the notion of antisymmetrically connected T0-quasi-metric space is
described as a type of the connectivity in the framework of asymmetric topology. Actually, the theory of
antisymmetric connectedness was established in terms of graph theory, as the natural counterpart of the
connected complementary graph. In this paper, some significant properties of antisymmetrically connected
T0-quasi-metric spaces are presented.

Accordingly, we study some different aspects of the theory of antisymmetric connectedness in terms of
asymmetric norms which associate the theory of quasi-metrics with functional analysis. In the light of this
approach, antisymmetrically connected T0-quasi-metric spaces are investigated and characterized for the
first time in the theory of asymmetrically normed real vector spaces.

Besides these, many further observations about the antisymmetric connectedness are dealt with es-
pecially in the sense of their combinations such as products and unions through various theorems and
examples in the context of T0-quasi-metrics. Also, we examine the question of under what kind of quasi-
metric mapping antisymmetric connectedness will be preserved.

1. Introduction and preliminaries

In [10], the theory of symmetric connectedness for a T0-quasi-metric space was described and investi-
gated in detail. In the same framework, the notion of antisymmetrically connected T0-quasi-metric is introduced
for the first time, as a kind of dual structure of symmetrically connected space. Actually, these types of
T0-quasi-metric spaces were especially discussed in the sense of graph theory [4, 9] as corresponding
counterparts of the connectedness for both a graph and complementary graph.

When we consider this paper, firstly, it is natural to ask how antisymmetric connectedness behaves in the
context of asymmetrically normed real vector spaces. Accordingly, many interesting properties and some
characterizations of the antisymmetrically connected T0-quasi-metric spaces will be presented in terms
of asymmetric norms. Following that we observed some combinations of anstisymmetrically connected
spaces such as products and unions in the context of T0-quasi-metrics. With this viewpoint, it is also natural
to inquire whether the images of antisymmetrically connected spaces under an isometric isomorphism have
the same property or not. Hereby, we will also obtain some crucial and useful results within the framework
of these questions.
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In the light of all these considerations, the content of paper is as follows:
Some necessary background material for the remaining of paper is presented in Section 1. After recalling

the preliminary information, as one of the purposes of the paper, in Section 2 we studied some properties of
the theory of antisymmetric connectedness in the framework of asymmetric norms peculiar to asymmetric
topology. Indeed, it is known from [10] that the problem to determine the antisymmetry components of
points in X turns out to be easier when it is formulated for a T0-quasi-metric induced by the asymmetric
norm of an asymmetrically normed real vector space which is introduced by Cobzaş (see [1]) in Functional
Analysis. Specifically, some characterizations of antisymmetric connectedness are presented in the context
of the T0-quasi-metrics induced by the asymmetric norms.

As the last part of paper, Section 3 is devoted to discussing some observations about the products,
unions,... of the antisymmetrically connected T0-quasi-metric spaces and their preservation under the
specific metric mappings. Additionally, we investigate a few future properties of these spaces besides the
related (counter)examples.

The remainder of this section will present some background material on T0-quasi-metrics and in particu-
lar, it consists of the required information about the theories of symmetric and antisymmetric connectedness.

Definition 1.1. Let (X, d) be a T0-quasi-metric space. Then d is called a T0-quasi-metric on X if

(a) d(x, x) = 0
(b) d(x, y) = 0 = d(y, x) ⇒ x = y
(c) d(x, z) ≤ d(x, y) + d(y, z)

whenever x, y, z ∈ X. We will also say that (X, d) is T0-quasi-metric space.

If d is a T0-quasi-metric on X, then d−1 : X×X→ [0,∞) defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is
also a T0-quasi-metric, called the conjugate T0-quasi-metric of d.Obviously, a T0-quasi-metric d on X satisfying
d = d−1 will become a metric.

For any T0-quasi-metric d, note that

ds = sup{d, d−1
} = d ∨ d−1

is a metric and ds is called the symmetrization metric of d.
We will use the notation τds to denote the topology induced by the (symmetrization) metric ds.
The literature on the T0-quasi-metric spaces is vast, so we only present here some basic facts which are

relevant to our purpose. An adequate introduction to the theory of T0-quasi-metrics and the motivation for
their study may be obtained from the works [3, 5–8].

Example 1.2. On the set R of the reals take

u(x, y) = (x − y) ∨ 0

whenever x, y ∈ R. It is easy to verify that u satisfies the conditions of Definition 1.1, and so u is a T0-quasi-
metric, called the standard T0-quasi-metric on R.

Now, let us recall some crucial notions and examples related to the theories constructed in [10]:

Definition 1.3. Let us take a T0-quasi-metric space (X, d).

i) A pair (x, y) ∈ X × X will be called symmetric pair if d(x, y) = d(y, x).
ii) A finite sequence of points in X, starting at x and ending with y, is called a (finite) symmetric path

Px,y = (x = x0, x1, . . . , xn−1, xn = y) (where n ∈ N) from x to y provided that all the pairs (xi, xi+1) are
symmetric where i ∈ {0, . . . ,n − 1}.

iii) For any x ∈ X the path Px,x = (x, x) or the pair (x, x) will be called a loop.
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Note 1.4. Note that sometimes it is useful to assume that no point occurs twice in a path Px,y, except that
possibly x = y.

For a T0-quasi-metric space (X, d), we take

Zd = {(x, y) ∈ X × X : d(x, y) = d(y, x)}

as the set of symmetric pairs in (X, d). It is clear that the relation Zd is reflexive and symmetric.
Incidentally, note that ds(x, y) = d(x, y) = d−1(x, y) for (x, y) ∈ Zd.
Also,

Zd(x) = {y ∈ X | (x, y) ∈ Zd}

is called symmetry set of x ∈ X.

Definition 1.5. a) Let (X, d) be a T0-quasi-metric space. We say that x ∈ X is symmetrically connected to
y ∈ X if there is a symmetric path Px,y, starting at the point x and ending at the point y.
By definition, it is easy to verify that “symmetric connectedness” is an equivalence relation on the set
X.

b) The equivalence class of a point x ∈ X with respect to the symmetric connectedness relation will be
called the symmetry component of x.

More clearly, if Cd denotes the symmetric connectedness relation then the symmetry component of x ∈ X is

Cd(x) = {y ∈ X : there is a symmetric path from x to y}.

Therefore, we are now in a position to recall from [10] the following important notion via the above
notations:

Definition 1.6. A T0-quasi-metric space (X, d) such that all the Cd-equivalence classes of points in X agree
with X, that is Cd(x) = X for all x ∈ X, is called symmetrically connected.

Obviously, a T0-quasi-metric space (X, d) is symmetrically connected if and only if for all x, y ∈ X, x and
y are symmetrically connected (see Definition 1.5).

The next result is trivial from the above definition and it forms the fundamental motivation of the
“symmetric connectedness theory” in the context of T0-quasi-metric spaces.

Corollary 1.7. Each metric space is symmetrically connected.

Now we can recall from [10] a notion opposite to that of “metric”.

Definition 1.8. We shall call a T0-quasi-metric space (X, d) antisymmetric if Zd = {(x, x) : x ∈ X}, that is, Zd is
equal to the diagonal ∆X of X × X.

Equivalently, it is clear that each symmetry component of (X, d) is a singleton if and only if (X, d) is
antisymmetric space.

Example 1.9. Observe that (R,u) in Example 1.2 is an antisymmetric T0-quasi-metric space by the fact that
Zu = △R. Note that in (R,u), the only symmetric pairs are trivial, that is the pairs (x, x) for x ∈ X. Also, the
T0-quasi-metric space (R,u) is not symmetrically connected by the fact that Cu(x) = {x} , R for all x ∈ R.

At this stage, we can turn our attention to the dual counterparts of some notions described above.
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Definition 1.10. Let (X, d) be a T0-quasi-metric space. A pair (x, y) ∈ X × X is called antisymmetric if it
satisfies the condition d(x, y) , d(y, x).

For a T0-quasi-metric space (X, d) we will also study the complement set of Zd in X × X, that is, the set

Rd = {(x, y) ∈ X × X : d(x, y) , d(y, x)}

of antisymmetric pairs of the space (X, d). It is clear that the relation Rd is symmetric, but neither reflexive
nor transitive. Also, the set

Rd(x) = {y ∈ X | (x, y) ∈ Rd}

is called antisymmetry set of x.

Definition 1.11. A finite sequence of points in X, starting at x and ending with y, is called a (finite)
antisymmetric path Px,y = (x = x0, x1, . . . , xn−1, xn = y) (where n ∈ N) from x to y provided that all the pairs
(xi, xi+1) are antisymmetric where i ∈ {0, . . . ,n − 1}.

We are now in a position to recall the dual notion to symmetric connectedness as follows:

Definition 1.12. i) In a T0-quasi-metric space (X, d), two points x, y ∈ X will be called antisymmetrically
connected if there is an antisymmetric path Px,y = (x = x0, x1, . . . , xn−1, xn = y), or x = y.
Now, if we take the relation

Td := {(x, y) ∈ X × X : x and y are antisymmetrically connected in (X, d)}

then Td is an equivalence relation on X, obviously. In addition, note here that Rd ⊆ Td.
ii) The equivalence class of a point x ∈ X with respect to Td will be called the antisymmetry component

and it is denoted by

Td(x) = {y ∈ X : there is an antisymmetric path from x to y}.

iii) If Td = X × X, or Td(x) = X for each x ∈ X, then the T0-quasi-metric space (X, d) will be called
antisymmetrically connected.

Hence, (X, d) is antisymmetrically connected if and only if for all x, y ∈ X, x and y are antisymmetrically
connected (see Definition 1.12).

Because of Definition 1.12 iii), it is trivial that the singleton sets and loops are antisymmetrically con-
nected.

Incidentally, the proofs of the following observations are straightforward.

Proposition 1.13. a) Rd ∪ Zd = X × X, Rd ∩ Zd = ∅ and so, Rd(x) ∪ Zd(x) = X, Rd(x) ∩ Zd(x) = ∅ for each
x ∈ X.

b) The relation Rd(Zd) is τds × τds -open (closed) in X × X.
c) The antisymmetry set Rd(x) (the symmetry set Zd(x)) of x ∈ X is τds -open (closed) in X.
d) Zd ∪ Td = X × X, Cd ∩ Td , ∅ and Cd ∪ Rd = X × X.

Example 1.14. The T0-quasi-metric space (R,u) given in Example 1.2 is antisymmetrically connected but
not symmetrically connected, by Definition 1.12 iii) and Definition 1.6.

After presenting the preliminary information, now we can start to the main ideas of this study.
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2. Antisymmetric connectedness in asymmetrically normed real vector spaces

Asymmetrically normed real vector spaces in the sense of [1] are also investigated in [10] as a new
approach to the theory of asymmetry measurement for T0-quasi-metrics. Now, after recalling the notion of
asymmetric norm, we will present some new considerations peculiar to this framework.

Definition 2.1. ([1]) Let X be a real vector space equipped with a given map ∥ · | : X→ [0,∞) satisfying the
conditions:

(a) ∥x| = ∥ − x| = 0 if and only if x = 0.
(b) ∥λx| = λ∥x|whenever λ ≥ 0 and x ∈ X.
(c) ∥x + y| ≤ ∥x| + ∥y|whenever x, y ∈ X.

Then ∥ · | is called an asymmetric norm and (X, ∥ · |) an asymmetrically normed real vector space. In (a), 0
denotes the zero vector of the vector space X.

Obviously, an asymmetric norm induces a T0-quasi-metric on X with the equality d∥·|(x, y) = ∥x − y|
for each x, y ∈ X, where (X, ∥ · |) is an asymmetrically normed real vector space. But, naturally some
T0-quasi-metrics may not be induced by an asymmetric norm:

Example 2.2. Consider the function s on R as follows:

s
(
x, y
)
=

{
min{x − y, 1} ; x ≥ y

1 ; x < y
for each x, y ∈ R. It is easy to show that s is a T0-quasi-metric, but it cannot be induced by an asymmetric
norm.

Incidentally, the notation d∥·| will be used for the T0-quasi-metric induced by the asymmetric norm ∥ · |.
Moreover, the function

∥ · |
s = ∥ · | ∨ ∥ · |−1 = ∥ · ∥

defines the standard (symmetrization) norm on X, where ∥a|−1 = ∥ − a| for a ∈ X, and so

ds
∥·|
= d∥·|s = d∥·∥

Also, clearly we have that Zd∥.| (0) = {x ∈ X : d(0, x) = d(x, 0)} = {x ∈ X : ∥ − x| = ∥x|} and

Rd∥.| (0) = {x ∈ X : d∥.|(0, x) , d∥.|(x, 0)} = {x ∈ X : ∥x| , ∥ − x|}

If (X, ∥ · |) is an asymmetrically normed real vector space, then C∥·| = {x ∈ X : ∥ − x| = 0} is known to be a
proper cone [2] in X. Accordingly,

Proposition 2.3. Let (X, ∥ · |) be an asymmetrically normed real vector space. In this case,

Rd∥·| (0) ∪ X \ C∥·| = X \ {0}.

Proof. Let x ∈ Rd∥·| (0)∪X \ C∥·|. Then x ∈ Rd∥·| (0) or x ∈ X \ C∥·|. So, ∥x| , ∥ − x| that is x , 0 or ∥ − x| , 0 that is
x , 0. Thus, x ∈ X \ {0}.

On the other hand, let a ∈ X \ {0} then a , 0. Now, if a < Rd∥·| (0) ∪ X \ C∥·| then a < Rd∥·| (0) and a < X \ C∥·|.
Thus ∥a| = ∥ − a|, and ∥ − a| = 0 since a ∈ C∥·|. Finally, a must be 0 because of the definition of asymmetric
norm. This gives a contradiction.

Lemma 2.4. Let (X, ∥ · |) be an asymmetrically normed real vector space. Then for x ∈ X,

1. Rd∥·| (x) = Rd∥·| (0) + x
2. Td∥·| (x) = Td∥·| (0) + x
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Proof. First of all, let us take d = d∥·| for the simplicity in the proof.
(1) Let y ∈ Rd(0). Then ∥y| , ∥ − y|. Thus d(x + y, x) = ∥y| and d(x, x + y) = ∥ − y| are not equal, so

Rd(0) + x ⊆ Rd(x).
For the converse inclusion, let y ∈ Rd(x). Then d(y, x) , d(x, y). Thus ∥y− x| , ∥x− y| and so, y− x ∈ Rd(0).

Therefore y = (y − x) + x ∈ Rd(0) + x. Finally, we have the equality Rd(x) = Rd(0) + x.
(2) Assume that y ∈ Td(x). Then there exists an antisymmetric path Px,y = (x0, x1, . . . , xn) from x to y,

where x0 = x, xn = y.Define the path P0,y−x as (x0 − x, x1 − x, . . . , xn − x). Then P0,y−x is an antisymmetric path
from 0 to y − x. Thus y − x ∈ Td(0). Therefore y ∈ Td(0) + x and Td(x) ⊆ Td(0) + x.

Conversly, let y ∈ Td(0) + x. Then there exists t ∈ Td(0) with y = t + x. Furthermore, there is an
antisymmetric path P0,t = (0, x1 . . . , t) from 0 to t. Then define Px,x+t as the path (x, x+x1, . . . , x+ t). Obviously
Px,x+t is an antisymmetric path from x to x + t. Therefore y = t + x ∈ Td(x) and we have established that
Td(0) + x ⊆ Td(x).

Specifically, we can present the next characterization in the context of asymmetrically normed real vector
spaces.

Theorem 2.5. Let (X, ∥ · |) be an asymmetrically normed real vector space. Then, (X, d∥·|) is antisymmetrically
connected if and only if Td∥·| (0) = X.

Proof. (=⇒) Since (X, d) is antisymmetrically connected, we have Td∥·| (x) = X for all x ∈ X. So, Td∥·| (0) = X,
in particular.

(⇐=) We claim that (X, d) is antisymmetrically connected, that is for each x ∈ X the equality Td∥·| (x) = X
must be proved. Firstly, Td∥·| (x) ⊆ X is clear. For the other inclusion, let y ∈ X. Since X is a vector space,
y− x ∈ X and so y− x ∈ Td∥·| (0) by the hypothesis. Then we have an antisymmetric path (0, x1, ..., xn = y− x)
from 0 to y − x. In this case, we get a new antisymmetric path (x, x1 + x..., xn + x = y)) from x to y. Hence
y ∈ Td∥·| (x), and we obtain the fact Td∥·| (x) = X.

Example 2.6. Let R2 be equipped with its usual real vector space structure and the asymmetric norm
∥x| = x1 ∨ x2 ∨ 0 where x = (x1, x2) ∈ R2. Here x1 = −x2 if and only if ∥x| = ∥ − x| (see Example 32 in [10]).

First of all, according to definition of the asymmetric norm ∥.| on R2, the T0-quasi-metric generated by
∥.| is

d∥.|((x, y), (a, b)) = ∥(x − a, y − b)| = (x − a) ∨ (y − b) ∨ 0

whenever (x, y), (a, b) ∈ R2.
In this case,

Zd∥.| (0) = {(x1, x2) ∈ R2 : x1 = −x2}.

Also, we obtain the symmetry set

Zd∥.| ((h1, h2)) = {(x1 + h1,−x1 + h2) | x1 ∈ R} = Cd∥.| ((h1, h2))

and the antisymmetry set
Rd∥.| ((h1, h2)) = {(x1 + h1, x2 + h2) | x1 , −x2}

of h = (h1, h2) ∈ R2.
We are now in a position to show that Td∥.| (0) = Td∥.| ((0, 0)) = R2. The inclusion Td∥.| ((0, 0)) ⊆ R2 is clear.

For the other side, let (u, v) ∈ R2 such that u , −v. Thus (u, v) ∈ Rd∥.| ((0, 0)). So (u, v) ∈ Td∥.| ((0, 0)) by the fact
that Rd ⊆ Td given in Definition 1.12 i).

Now for the assumption u = −v we have two cases:
If u = −v = 0 then (u, v) = (0, 0) ∈ Td∥.| ((0, 0)), trivially.
If u = −v , 0 then the pair ((u, v), (0, 0)) is a symmetric pair and moreover, the path ((u, v), (−u

2 ,
v
2 ), (0, 0))

will be an antisymmetric path from (u, v) to (0, 0). That is, (u, v) ∈ Td∥.| ((0, 0)).
Finally, Td∥.| ((0, 0)) = R2. Thus, the T0-quasi-metric space (R2, d∥.|) will be antisymmetrically connected

by Theorem 2.5.
Due to this example, it is obvious that any symmetric pair (here, ((u,−u), (0, 0))) can be antisymmetrically

connected as well, from Definition 1.12. □
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By virtue of Theorem 2.5 we have the following also:

Corollary 2.7. Let (X, ∥ · |) be an asymmetrically normed real vector space. Then (X, d∥·|) is antisymmetrically
connected if and only if Td∥·| (0) is τds -open.

Proof. (=⇒) Straightforward.
(⇐=) Firstly, let us prove that Td∥·| (x) is τds -open for all x ∈ X. If z ∈ Td∥·| (x) then z − x ∈ Td∥·| (0) by

Lemma 2.4(2). In addition, since Td∥·| (0) is τds -open, there exists ϵ > 0 such that Bds
∥·|

(z − x, ϵ) ⊆ Td∥·| (0).
Therefore, in a similar manner it is easy to verify that Bds

∥·|
(z, ϵ) ⊆ Td∥·| (x). Indeed, if a ∈ Bds

∥·|
(z, ϵ) then

ds(z, a) < ϵ. On the other hand, ds(z−a, x−a) = ∥z−x−a+x∥ = ∥z−a∥ = ds(z, a) < ϵ, and so a−x ∈ Bds
∥·|

(z−x, ϵ).
By the fact that Bds

∥·|
(z − x, ϵ) ⊆ Td∥·| (0) we have a − x ∈ Td∥·| (0), so a ∈ Td∥·| (0) + x that is a ∈ Td∥·| (x). It completes

the proof of Bds
∥·|

(z, ϵ) ⊆ Td∥·| (x). Finally, Td∥·| (x) is τds -open for each x ∈ X. In this case, it is easy to show
that Td∥·| (x) is τds -closed, so these sets are clopen. Also, it is well-known that the normed topological spaces
are path-connected, so connected. Therefore, in the topological space τs

d∥·|
= τ∥·|s = τd∥·∥ clopen sets must

be ∅ and X. Moreover, clearly Td∥·| (x) , ∅ since x ∈ Td∥·| (x), so the sets Td∥·| (x) must be X, that is X will be
antisymmetrically connected by Theorem 2.5.

Lemma 2.8. Let (X, ∥ · |) be an asymmetrically normed real vector space. Suppose that x ∈ Rd∥·| (0). Then λx ∈ Rd∥·| (0)
whenever λ ∈ R.

Proof. This is obvious for λ ≥ 0, since ∥x| , ∥−x| implies that ∥λx| , ∥−λx|, by property (b) of an asymmetric
norm, so λx ∈ Rd∥·| (0). It holds also also for λ < 0 if we take λ′ = −λ > 0,which yields the conclusion.

With the similar argument of Lemma 2.8, we can establish the following more general result, the proof
of which is left to the reader.

Corollary 2.9. Let (X, ∥·|) be an asymmetrically normed real vector space andλ ∈ R\{0}.1) If (x = x0, x1, . . . , xn = y)
is an antisymmetric path from x to y in X, then (λx, λx1, . . . , λy) is an antisymmetric path from λx to λy in X.

Proposition 2.10. Let (X, ∥ · |) be an asymmetrically normed real vector space and x, y ∈ X. Take n ∈N. In this case,
y ∈ Rn

d∥·|
(x) implies that y ∈ Rd∥·| (0) + . . . + Rd∥·| (0) + Rd∥·| (x), where the latter sum has n summands. (Here, R1

d = Rd

and for each n ∈N we have Rn+1
d = Rd ◦ Rn

d , where d = d∥·|.)

Proof. Note that y ∈ Rn
d∥·|

(x) implies that there are x1, . . . , xn−1 ∈ X such that (x, x1), . . . , (xn−1, y) ∈ Rd∥·| , which
means that there exist x1, . . . , xn−1 ∈ X such that x1 ∈ Rd∥·| (x), x2 ∈ Rd∥·| (x1), . . . , y ∈ Rd∥·| (xn−1). By Lemma 2.4(1),
the condition implies that there are x1, . . . , xn−1 ∈ X such that x1 − x ∈ Rd∥·| (0), x2 − x1 ∈ Rd∥·| (0), . . . , y − xn−1 ∈

Rd∥·| (0),which implies that y−x ∈ Rd∥·| (0)+· · ·+Rd∥·| (0), which finally entails that y ∈ Rd∥·| (0)+· · ·+Rd∥·| (0)+Rd∥·| (x)
(with n summands).

Proposition 2.11. For a T0-quasi-metric space (X, d), we have

Td = (
⋃
n∈N

Rn
d) ∪ ∆X

That is, Td is the transitive hull of Rd ∪ ∆X.

Proof. Trivial from the definitions.

Consequently, by virtue of Proposition 2.11, the next result will be obvious in the context of asymmetri-
cally normed real vector spaces.

1)It looks reasonable to exclude the case λ = 0 in order to avoid trivialities.
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Corollary 2.12. Let (X, ∥ · |) be an asymmetrically normed real vector space. In this case,

Td∥·| (0) =
⋃
n∈N

Rn
d∥·|

(0) ∪ {0}

Corollary 2.13. Let (X, ∥ · |) be an asymmetrically normed real vector space. Then Td∥·| (0) is equal to the smallest
linear subspace containing Rd∥·| (0) (which we shall denote as its linear hull lin Rd∥·| (0) of Rd∥·| (0)).

Proof. Take x ∈ Td∥·| (0). Then by Corollary 2.12 there exists some n ∈ N such that x ∈ Rn
d∥·|

(0). So by
Proposition 2.10 we see that x =

∑n
i=1 ti where ti ∈ R(0) for each i = 1, . . . ,n. Therefore x obviously belongs

to the linear hull of Rd∥·| (0).
Now suppose that x is in the linear hull lin Rd∥·| (0) of Rd∥·| (0). Then x =

∑n
i=1 aibi where for each i = 1, . . . ,n,

ai is a real number and bi ∈ Rd∥·| (0).However ti := aibi ∈ Rd∥·| (0) by Lemma 2.8. Thus x ∈ Rd∥·| (0) + . . . + Rd∥·| (0)
(n summands). At this stage, if take h j =

∑ j
i=1 ti for each j ∈ {1, . . . ,n} then

(0, h1), (h1, h2), . . . , (hn−1, hn) ∈ Rd∥·|

by the definition of R. Therefore x = hn ∈ Rn
d∥·|

(0), that is x ∈ Td∥·| (0).

For the next theorem, the following notion will be required:

Definition 2.14. Let (X, d) be an antisymmetric T0-quasi-metric space and A ⊆ X. Then the space (A, dA) is
called antisymmetric subspace if dA is antisymmetric T0-quasi-metric on A, where

dA(x, y) = d(x, y)

for all x, y ∈ A.

Theorem 2.15. Let (X, ∥ · |) be an asymmetrically normed real vector space. Suppose that Rd∥·| (0)+Rd∥·| (0) = Rd∥·| (0).
Then Td∥·| (v) = Rd∥·| (v) and Td∥·| (v) is an antisymmetric subspace of X whenever v ∈ X.

Proof. We have Td∥·| (0) =
⋃

n∈N
Rn

d∥·|
(0) ∪ {0} by Corollary 2.12 and therefore by Proposition 2.10 the fact that

Rd∥·| (0) = Td∥·| (0) follows from iterations of the hypothesis Rd∥·| (0) + Rd∥·| (0) = Rd∥·| (0). Hence for each v ∈ X,
Td∥·| (v) = Rd∥·| (v) by Proposition 2.10 and the equalities given in Lemma 2.4.

Let x, y ∈ Rd∥·| (v). Then x − v ∈ Rd∥·| (0) and y − v ∈ Rd∥·| (0), hence v − y ∈ Rd∥·| (0) by Lemma 2.8. Thus
x−y = x−v+v−y ∈ Rd∥·| (0) by our assumption. Consequently d(x, y) = ∥x−y| , ∥−(x−y)| = d(y, x).Therefore d
is antisymmetric T0-quasi-metric on the subset Rd∥·| (v) of X and so, Td∥·| (v) will be an antisymmetric subspace
of X, clearly.

3. Further properties of antisymmetrically connected T0-quasi-metric spaces

First of all, let us describe a function on the product of two T0-quasi-metric spaces as follows:

Definition 3.1. For the T0-quasi-metric spaces (X, d), (Y, q), the product T0-quasi-metric space (X × Y,D) is
defined as

D : (X × Y) × (X × Y) −→ [0,∞)

D((x1, y1), (x2, y2)) = d(x1, x2) ∨ q(y1, y2)

It is easy to verify that D is a T0-quasi-metric on X × Y since d, q are T0-quasi-metrics. Accordingly, we
have:

Theorem 3.2. If (X, d) and (Y, q) are antisymmetrically connected T0-quasi-metric spaces then the product space
(X × Y,D) is antisymmetrically connected.
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Proof. Let us choose (x, y) ∈ X×Y and show that TD((x, y)) = X×Y: For (a, b) ∈ X×Y it is clear that a, x ∈ X and
b, y ∈ Y. Since (X, d) and (Y, q) are antisymmetrically connected, there is a path Pa,x = (a = x0, x1, ..., xn = x)
(n ∈N), on X such that d(xi, xi+1) , d(xi+1, xi) for i = 0, 1, ...,n−1 and there is a path Pb,y = (b = y0, y1, ..., ym = y)
(m ∈N), on Y such that q(y j, y j+1) , q(y j+1, y j) for j = 0, 1, ...,m − 1.

In this case, P((a,b),(x,y)) = ((x0, y0) = (a, b), (x1, b), ..., (x, b), (x, y1), (x, y2), ..., (x, y)) is an antisymmetric path
on X × Y from (a, b) to (x, y).

Then there is an antisymmetric path from (a, b) to (x, y) on X × Y, and (a, b) ∈ TD((x, y)) and so, the
product space (X × Y,D) is antisymmetrically connected.

By virtue of Theorem 3.2, we have the following result with the help of induction:

Corollary 3.3. The finite product of antisymmetrically connected T0-quasi-metric spaces is antisymmetrically con-
nected. □

Example 3.4. Consider the sets X1 = {0, 1}with the usual metric us = |x−y| and X2 = {0, 1}with the T0-quasi-
metric u, where u(x, y) = (x − y) ∨ 0. Then the space (X1,us) is not antisymmetrically connected because of
the fact that Tus (0) = {0}. Also the space (X2,u) is antisymmetric and so antisymmetrically connected since
Tu(0) = X2. Hence, if take the product T0-quasi-metric space (X1×X2,us

∨u) then it is not antisymmetrically
connected by the fact that Tus∨u(0, 0) = {(0, 0), (0, 1)} , X1 × X2.

On the other hand, note that the equality Tus (0) × Tu(0) = Tus∨u(0, 0) in this example.

Particularly, the next theorem can be presented.

Theorem 3.5. Let I = {1, . . . ,n}. For each i ∈ {1, . . . ,n} let (Xi, di) be an antisymmetrically connected T0-quasi-
metric space. Then (Πi∈IXi, d) is an antisymmetrically connected T0-quasi-metric space. Here on Πi∈IXi we have
defined the T0-quasi-metric d by setting

d((xi)i∈I, (yi)i∈I) =
∑
i∈I

di(xi, yi)

whenever (xi)i∈I, (yi)i∈I ∈ Πi∈IXi.

Proof. Let (x1, . . . , xn), (y1, . . . , yn) ∈ Πi∈IXi. Since (X1, d1) is antisymmetrically connected, then there is an
antisymmetric path from x1 to y1 in (X1, d1). Keeping all the remaining n− 1 coordinates fixed, we obtain an
antisymmetric path with finitely many steps from (x1, x2, . . . , xn) to (y1, x2, . . . , xn) in (Πi∈IXi, d). Also we can
find an antisymmetric path with finitely many steps from x2 to y2 in (X2, d2). Thus, similarly we can obtain
an antisymmetric path with finitely many steps from (y1, x2, x3, . . . , xn) to (y1, y2, x3, . . . , xn) in (Πi∈IXi, d).

By continuing this process inductively over the remaining n − 2 coordinates and concatenating the n
antisymmetric paths in (Πi∈IXi, d), we have constructed an antisymmetric path in (Πi∈IXi, d) from (x1, . . . , xn)
to (y1, . . . , yn).

Finally, we reached the fact that the product space (Πi∈IXi, d) is antisymmetrically connected.

Because of Definitions 1.10 and 1.12, the fact that Rd ⊆ Td is trivial for a T0-quasi-metric space (X, d).
Additionally, it is easy to prove the following observations via Definitions 1.8 and 1.12:

Lemma 3.6. (a) A T0-quasi-metric space (X, d) is antisymmetric if and only if Rd = X ×X \∆X and Td = X ×X.
(b) If Rd is transitive then Rd ∪ ∆X = Td.
(c) For x ∈ X, the subspace (Rd(x), dRd(x)) of T0-quasi-metric space (X, d) is antisymmetrically connected.

Incidentally, it is clear from the definitions, there is no space with more than one point that is both
antisymmetrically connected and metric.
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Example 3.7. Let us define a T0-quasi-metric on the set X = {1, 2, 3} by the matrix

F =

 0 9 8
7 0 1
6 1 0


That is, F = ( fi j) where f (i, j) = fi j for i, j ∈ X. It is easy to prove that f is a T0-quasi-metric on X. Here

note that f (2, 3) = f (3, 2), so the T0-quasi-metric space (X, f ) is not antisymmetric, that is R f \ ∆X , T f \ ∆X
by Lemma 3.6 (a).

On the other hand, we can construct an antisymmetric path between 2 and 3 such as (2, 1, 3) since (2, 1)
and (1, 3) are antisymmetric pairs. Hence, (X, f ) is antisymmetrically connected and moreover f is not a
metric by the fact that f (1, 2) , f (2, 1).

At this stage, let us turn our attention to the question of whether the antisymmetric connectedness is
preserved under an isometric isomorphism.

Theorem 3.8. Let (X, d), (Y, e) be T0-quasi-metric-spaces and f : (X, d) −→ (Y, e) an isometric isomorphism. Then,
(X, d) is antisymmetrically connected⇐⇒ (Y, e) is antisymmetrically connected.

Proof. The proof is obvious as expected, and left to the interested reader.

For a T0-quasi-metric d, the specialization order ≤d is described as

x ≤d y ⇐⇒ d(x, y) = 0.

Accordingly, we have the next fact:

Proposition 3.9. Let (X, d) be a T0-quasi-metric space with at least two points. If (X, d) has a top element with
respect to the specialization order ≤d of d then (X, d) is antisymmetrically connected.

Proof. Take x, y ∈ X and the top element z ∈ X. Firstly, let us consider the case x , z, y = z. Then x ≤d z, so
d(x, z) = 0 and d(z, x) , 0. That is, (x, y) = (x, z) is an antisymmetric pair, thus x and y are antisymmetrically
connected. The case y , z, x = z is similar.

Now assume that x , z and y , z. Thus x ≤d z and y ≤d z since z is top element in X. That is, d(x, z) = 0
and d(y, z) = 0. In this case, if d(z, x) = 0 then d(z, x) = d(x, z) = 0, so we have z = x which is a contradiction.
Hence, d(z, x) , d(x, z). Similarly, with the assumption d(z, y) = 0 we have another contradiction. That is,
d(z, y) , d(y, z). Finally, the path (x, z, y) will be an antisymmetric path from x to y in (X, d), and it means
that (X, d) is antisymmetrically connected space.

Lemma 3.10. Let (X, d) be a T0-quasi-metric space. Then (X, d) is antisymmetrically connected if and only if (X, d−1)
is antisymmetrically connected.

Proof. (=⇒) Since (X, d) is antisymmetrically connected, there is a path Px,y = (x = x0, x1, ..., y = xn) from x
to y in (X, d) such that d(xi, xi+1) , d(xi+1, xi) (i = 0, ...,n − 1) whenever x, y ∈ X. In this case, d−1(xi+1, xi) =
d(xi, xi+1) , d(xi+1, xi) = d−1(xi, xi+1) (i = 0, ...,n−1) which implies the path (x = x0, x1, ..., y = xn) (i = 0, ...,n−1)
will be an antisymmetric path from x to y in the space (X, d−1).

(⇐=) It can be seen easily with a similar method.

Example 3.11. Consider the (unbounded) Sorgenfrey T0-quasi-metric on R as follows:

d
(
x, y
)
=

{
x − y ; x ≥ y

1 ; x < y
Because of the equality d(x, x + 1) = 1 = d(x + 1, x), we have

Zd(x) = {y ∈ R | y = x ∓ 1} = {x − 1, x + 1}
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and
Zd = {(x, y) ∈ R ×R | y = x ∓ 1}

Thus, Zd , ∆R, so (R, d) is neither an antisymmetric space nor a metric space.
However, the T0-quasi-metric space (R, d) is antisymmetrically connected:
For every x, y ∈ R, x < y, it is easy to verify that the path Px,y(x, x − 2, y + 2, y) is an antisymmetric path

from x to y. Similarly, if y < x then the path Px,y(y, y − 2, x + 2, x) is antisymmetric path from y to x. Hence,
(R, d) is antisymmetrically connected.

Besides this, the dual T0-quasi-metric space (R, d−1) is also antisymmetrically connected by Lemma 3.10.

Now we are in a position to discuss the unions of antisymmetyrically connected spaces. In this context,
the following will be required for the next theorem.

Remark 3.12. Let (X, d) be a T0-quasi-metric space and A ⊆ X. Thus with the notation dA described in
Definition 2.14, we have the inclusion

TdA (a) ⊆ Td(a) ∩ A

for all a ∈ A.

Incidentally, we can give an example for the fact TdA (a) , Td(a) ∩ A, as follows:

Example 3.13. Let X = {0} ∪ {2−n : n ∈N} and define the function e′ : X→ [0,∞) as

e′(x, y) =


|x − y| ; x < y and (x, y) , (2−(n+1), 2−n), ∀n ∈N

2|x − y| ; otherwise

for x, y ∈ X.
It is proved in [5, Example 2.11] that e′ is a T0-quasi-metric on X. Also it is easy to show that Te′ ( 1

2 ) = X
and Te′X\{0} (

1
2 ) = { 12 } for 1

2 ∈ X \ {0} = A. Thus, Te′ ( 1
2 ) ∩ A ⊈ Te′A ( 1

2 ).

Additionally, we proved the following fact as in [5, Lemma 3.14]:
If (X, d) is a T0-quasi-metric space and A ⊆ X is τds -dense, then

TdA (x) = Td(x) ∩ A

for x ∈ A.

Theorem 3.14. Let (X, d) be a T0-quasi-metric space and Ai ⊆ X for all i ∈ I. In this case, if the subspaces (Ai, dAi )
are antisymmetrically connected for all i ∈ I and A j ∩ Ai , ∅ for i , j, then (

⋃
i∈I

Ai, d⋃
i∈I

Ai
) is antisymmetrically

connected.

Proof. The proof mimics that of the corresponding result for path connected spaces, because of Re-
mark 3.12.

Consequently, we have the following result via Theorem 3.14:

Corollary 3.15. Let (X, d) be a T0-quasi-metric space and
⋂
i∈I

Ai , ∅ whenever Ai ⊆ X for all i ∈ I. If the

subspaces (Ai, dAi ) are antisymmetrically connected for all i ∈ I, then the T0-quasi-metric space (
⋃
i∈I

Ai, d⋃
i∈I

Ai
) is

antisymmetrically connected. □
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[1] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2013.
[2] J. Conradie, Asymmetric norms, cones and partial orders, Topology Appl. 193 (2015), 100–115.
[3] P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Dekker, New York, 1982.
[4] A. Hellwig, L. Volkmann, The connectivity of a graph and its complement, Appl. Math. 156 (2008), 3325–3328.
[5] N. Javanshir, F. Yıldız, Symmetrically connected and antisymmetrically connected T0-quasi-metric extensions, Topology Appl. 276 (2020),

Art. ID 107179.
[6] H.-P. A. Künzi, An introduction to quasi-uniform spaces, In: F. Mynard, E. Pearl (eds.), Beyond Topology, Contemp. Math. 486

(2009), 239–304.
[7] H.-P. A. Künzi, F. Yıldız, Convexity structures in T0-quasi-metric spaces, Topology Appl. 200 (2016), 2–18, 2016.
[8] H.-P. A. Künzi, F. Yıldız, Extensions of T0-quasi-metrics, Acta Math. Hungar. 153 (2017), 196–215.
[9] R. J. Wilson, Introduction To Graph Theory, Oliver and Boyd, Edinburgh, 1972.

[10] F. Yıldız, H.-P. A. Künzi, Symmetric Connectedness in T0-quasi-metric spaces, Bull. Belg. Math. Soc. Simon Stevin, 26 (2019), 659–679.


