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Existence of positive solutions for singular fractional boundary value
problems with p-Laplacian

Nuket Aykut Hamala, Furkan Erkana
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Abstract. In this paper, we obtain the existence of positive solutions for the singular fractional boundary
value problem with p-Laplacian. The existence of positive solutions is established using the Avery-Peterson
fixed point theorem. In addition, we include an example for the demonstration of our main result.

1. Introduction

Singular fractional differential equations arise in many engineering and scientific disciplines as the mod-
eling of problems in mathematics and physics such as gas dynamics, chemical reactions, nuclear physics,
atomic calculations and the studies of atomic structures. Many authors study on singular boundary value
problems using variational methods, fixed point theory, see, [1–6]. There has been noticeable development
in the study of singular fractional differential equations in recent year, see, [7–14] and references therein.
Recently, many important results related to the boundary value problem of fractional differantial equations
with p-Laplacian operator have been obtained, see, [21–28].

In [9], the author established the existence of positive solutions for the singular fractional boundary
value problem with p-Laplacian

[ϕp(Dα
0+u(t))]

′

+ f (t,u(t)) =0, 0 < t < 1,
u′(0) = 0, u(1) − γu(η) =0,

where 1 < α ≤ 2, Dα
0+ is the Caputo fractional derivative, f (t,u) is singular at u = 0.

In [7], using the Avery-Peterson’s fixed point theorem, the authors got the positive solutions for the
following singular fractional boundary value problems

cDα
0+u(t) + f (t,u(t),u′(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =
∞∑
j=1

η ju(ξ j),

where 2 < α ≤ 3, η j ≥ 0, 0 < ξ1 < ξ2 < . . . < ξ j−1 < ξ j < . . . < 1 ( j = 1, 2, . . .), f (t, x, y) is singular at t=0.
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In [8], the authors established the existence of positive solutions for the singular fractional boundary
value problem

Dα
0+u(t) + λ f (t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = . . . = u(n−2)(0) = 0, Dp
0+u(t)|t=1 =

m∑
i=1

aiD
q
0+u(t)|t=ξi ,

where α ∈ (n− 1,n], n ∈N, n ≥ 3, ξi ∈ R for all i = 1, . . . ,m (m ∈N), 0 < ξ1 < ξ2 < . . . < ξm < 1, f is singular
at t = 0 or t = 1.

In [11], the authors investigated positive solutions for the singular fractional boundary value problem
with parameters

Dα
0+u(t) + λh(t) f (t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = . . . = u(n−2)(0) = 0, Dβ0

0+u(1) =
m∑

i=1

∫ 1

0
Dβi

0+u(t)dHi(t),

where α ∈ R, α ∈ (n − 1,n], n ∈N, n ≥ 3, f (t,u) is singular at u = 0 and h(t) singular at t = 0.
Motivated by the above papers, we investigate the existence of at least three positive solutions for the

boundary value problem with p-Laplacian :

[ϕp(Dα
0+u(t))]

′

+ f (t,u(t),u′(t)) = 0, 0 < t < 1, (1)

u(0) = u′(0) = 0, Dα−1
0+ u(1) =

m−2∑
i=1

aiDα−1
0+ u(ξi), (2)

where α∈R, 2 < α ≤ 3, ξi∈R for all i = 1, 2, ...,m − 2 (m∈N), 0 < ξ1 < ξ2 < . . . < ξm−2 < 1, Dα
0+ is the

Riemann-Liouville derivative of order α, f (t, x, y) may be singular at t = 0. In this paper, we will always
suppose that the following conditions hold.

(H1) ai > 0 and
∑m−2

i=1 ai < 1 for all i = 1, 2, ...,m − 2 (m∈N),
(H2) f (t, x, y) : (0, 1]×R+×R+ → R+ , and there exists a constant 0 < σ < 1 such that tσ f (t, x, y) is continuous

in [0, 1] ×R+ ×R+.

By using Avery-Peterson fixed point theorem in [12], we get the existence of positive solutions for the
BVP (1)-(2). Thus, this results can be considered as a contribution to this field. The organization of this
paper is as follows. In section 2, we provide some definitions and preliminary lemmas which are key tools
for our main result. In section 3, we give and prove our main result. Finally, we give an example to illustrate
how the main result can be used in practice.

2. Preliminaries

In this section, we present some necessary definitions and lemmas, which can be found in [16–19].

Definition 2.1. The integral

Iα0+ y(t) =
1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds,

where α > 0, is called the Riemann-Liouville fractional integral of order α.

Definition 2.2. For a function y(t) given in the interval [0,∞), the expression

Dα
0+ y(t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

0
(t − s)n−α+1y(s)ds,

where n = [α] + 1, and [α] denotes the integer part of number α, is called Riemann-Liouville fractional derivative of
order α.
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Remark 2.3. From the definition of the Riemann-Liouville fractional derivative, we quote for µ > −1, then

Dα
0+ t

µ =
Γ(1 + µ)
Γ(1 + µ − α)

tµ−α

In particular Dα
0+ t

α−m = 0 (m = 1, 2, . . . ,N), N is the smallest integer greater than or equal to α.

Lemma 2.4. ([13]) Assume that u ∈ C(0, 1)
⋂

L1(0, 1), with a fractional derivative of order α > 0 that belongs to
C(0, 1)

⋂
L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1tα−1 + C2tα−2 + . . . + CNtα−N,

for some Ci ∈ R, i = 1, 2, . . . ,N, where N is the smallest integer greater than or equal to α.

Lemma 2.5. We consider the fractional differential equation

[ϕp(Dα
0+u(t))]

′

+ h(t) = 0, 0 < t < 1, (3)

u(0) = u′(0) = 0, Dα−1
0+ u(1) =

m−2∑
i=1

aiDα−1
0+ u(ξi), (4)

with the boundary conditions (4), where h∈C(0, 1)
⋂

L1(0, 1). We denote by ∆ = Γ(α)
(
1 −

∑m−2
i=1 ai

)
.

Then the unique solution u∈C[0, 1] of problem (3), (4) is given by

u(t) =
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds (5)

where ω(s) = ϕq

(∫ s

0 h(τ)dτ
)
. ϕq(u) is the inverse function of ϕp(u), i.e. 1

p +
1
q = 1.

Proof. By Lemma 2.5, we deduce that the solution u∈C(0, 1)
⋂

L1(0, 1) of the fractional differential equation
(5) is given by

u(t) = c1tα−1 + c2tα−2 + c3tα−3
− Iα0+

(
ϕq

∫ t

0
h(s)ds

)
= c1tα−1 + c2tα−2 + c3tα−3

−
1
Γ(α)

∫ t

0
(t − s)α−1

(
ϕq

∫ s

0
h(τ)dτ

)
ds

= c1tα−1 + c2tα−2 + c3tα−3
−

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds

for some ci∈R, i = 1, 2, 3. By using the conditions u(0) = u′(0) = 0, we obtain c2 = c3 = 0. Then we conclude

u(t) = c1tα−1
−

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds (6)

For the obtained function (6), we find

Dα−1
0+ u(1) = c1Γ(α) −

∫ 1

0
ω(s)ds

m−2∑
i=1

aiDα−1
0+ u(ξi) = c1Γ(α)

m−2∑
i=1

ai −

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds
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Then the condition Dα−1
0+ u(1) =

∑m−2
i=1 aiDα−1

0+ u(ξi) gives us

c1 =
1
∆

∫ 1

0
ω(s)ds −

1
∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds

Therefore, the unique solution of the problem (3) is given by

u(t) =
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds

Lemma 2.6. Suppose that the condition (H1) and (H2) hold, then u(t) is nonnegative and nondecreasing function

Proof. It is obvious that ω(s) ≥ 0,

u(t) =
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds

≥
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ 1

0
ω(s)ds −

tα−1

Γ(α)

∫ 1

0
ω(s)ds

=
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ 1

0
ω(s)ds −

tα−1

∆

∫ 1

0
ω(s)ds +

tα−1

∆

m−2∑
i=1

ai

∫ 1

0
ω(s)ds

= 0

Therefore, we see that u(t) is nonnegative.
It is similar to the proof of u′(t) ≥ 0, we can obtain u′(t) ≥ 0, so u(t) is nondecreasing. The proof is

complete.

We consider the Banach space B = C1[0, 1] with the norm

∥u∥ = max
{

max
t∈[0,1]

|u(t)|,max
t∈[0,1]

|u′(t)|
}

and we define the cone

P = {u ∈ B : u(t) ≥ 0,u′(t) ≥ 0, t ∈ [0, 1]}

and operator T : P→ B given by

Tu(t) =
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds

Lemma 2.7. T : P→ P is completely continuous operator.

Proof. For u ∈ P, in view of Lemma 2.6, we see that Tu(t) is nonnegative and nondecreasing, consequently,
we have T : P → P. By (H2), we can easily get that T : P → P is continuous. Now, we will prove that T is
compact in bounded subsets of its domain.
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Let Ω ⊂ P be bounded. By (H2), we get that there exists a constant L > 0 such that tσ f (t,u(t),u′(t)) ≤ L,
t ∈ [0, 1], u∈Ω. Thus, for u∈Ω, t ∈ [0, 1], we have

ω(s) = ϕq

(∫ s

0
t−σtσ f (t,u(t),u′(t))dt

)
≤ ϕq

(∫ 1

0
Lt−σdt

)
=

Lq−1

(1 − σ)q−1

So we get

Tu(t) =
tα−1

∆

∫ 1

0
ω(s)ds −

tα−1

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ t

0
(t − s)α−1ω(s)ds

≤
tα−1

∆

∫ 1

0
ω(s)ds

≤
1
∆

∫ 1

0

Lq−1

(1 − σ)q−1 ds

≤
(α − 1)Lq−1

∆(1 − σ)q−1

Similarly, we get

(Tu)′(t) =
(α − 1)tα−2

∆

∫ 1

0
ω(s)ds −

(α − 1)tα−2

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

(α − 1)
Γ(α)

∫ t

0
(t − s)α−2ω(s)ds

≤
(α − 1)
∆

∫ 1

0

Lq−1

(1 − σ)q−1 ds

=
(α − 1)Lq−1

∆(1 − σ)q−1

Consequently, ∥Tu∥ ≤ (α−1)Lq−1

∆(1−σ)q−1 . In the following we will proof that T(Ω) is equicontinuous.
For t1, t2 ∈ [0, 1], t1 < t2, u ∈ Ω, we have

|Tu(t2) − Tu(t1)|

=

∣∣∣∣∣∣c1tα−1
2 −

1
Γ(α)

∫ t2

0
(t2 − s)α−1ω(s)ds − c1tα−1

1 +
1
Γ(α)

∫ t1

0
(t1 − s)α−1ω(s)ds

∣∣∣∣∣∣
≤ c1

∣∣∣tα−1
2 − tα−1

1

∣∣∣ + 1
Γ(α)

∣∣∣∣∣∣
∫ t2

0
(t2 − s)α−1ω(s)ds −

∫ t1

0
(t1 − s)α−1ω(s)ds

∣∣∣∣∣∣
≤

(
1
∆

∫ 1

0
ω(s)ds

) ∣∣∣tα−1
2 − tα−1

1

∣∣∣ + 1
Γ(α)

(∫ t2

0
(t2 − s)α−1ω(s)ds −

∫ t1

0
(t1 − s)α−1ω(s)ds

)
≤

Lq−1

∆(1 − σ)q−1

∣∣∣tα−1
2 − tα−1

1

∣∣∣ + Lq−1

Γ(α + 1)(1 − σ)q−1

∣∣∣tα2 − tα1
∣∣∣

≤
Lq−1

∆(1 − σ)q−1 2 |t2 − t1| +
Lq−1

Γ(α)(1 − σ)q−1 |t2 − t1|
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Similarly, we get

|(Tu)′(t2) − (Tu)′(t1)|

=

∣∣∣∣∣∣c1(α − 1)tα−2
2 −

1
Γ(α − 1)

∫ t2

0
(t2 − s)α−2ω(s)ds − c1(α − 1)tα−2

1 +
1

Γ(α − 1)

∫ t1

0
(t1 − s)α−2ω(s)ds

∣∣∣∣∣∣
≤ c1(α − 1)

∣∣∣tα−2
2 − tα−2

1

∣∣∣ + 1
Γ(α − 1)

∣∣∣∣∣∣
∫ t2

0
(t2 − s)α−2ω(s)ds −

∫ t1

0
(t1 − s)α−2ω(s)ds

∣∣∣∣∣∣
≤

(
1
∆

∫ 1

0
ω(s)ds

)
(α − 1)

∣∣∣tα−2
2 − tα−2

1

∣∣∣ + 1
Γ(α − 1)

(∫ t2

0
(t2 − s)α−2ω(s)ds −

∫ t1

0
(t1 − s)α−2ω(s)ds

)
≤

Lq−1

∆(1 − σ)q−1 (α − 1)
∣∣∣tα−2

2 − tα−2
1

∣∣∣ + Lq−1

Γ(α)(1 − σ)q−1

∣∣∣tα−1
2 − tα−1

1

∣∣∣
≤

Lq−1

∆(1 − σ)q−1 2 |t2 − t1| +
Lq−1

Γ(α)(1 − σ)q−1 2 |t2 − t1|

We have the right-hand side of the above inequalities tends to zero if t2 → t1. Using Arzela–Ascoli Theorem,
we have T is a completely continuous operator.

Letγ andθbe nonnegative, continuous and convex functional on P,Φ andψbe a nonnegative continuous
functional on P. Then, for positive numbers h, r, c and d, we define the following sets:

P(γ, d) =
{
x ∈ P : γ(x) < d

}
,

P(γ,Φ, r, d) =
{
x ∈ P : r ≤ Φ(x), γ(x) ≤ d

}
,

P(γ, θ,Φ, r, c, d) =
{
x ∈ P : r ≤ Φ(x), θ(x) ≤ c, γ(x) ≤ d

}
,

R(γ, ψ, h, d) =
{
x ∈ P : h ≤ ψ(x), γ(x) < d

}
.

We will use the following fixed point theorem of Avery and Peterson to study the problem (1), (2).

Theorem 2.8. ([12]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative, continuous and convex
functionals on P, Φ be a nonnegative, continuous and concave functional on P, and ψ be a nonnegative continuous
functional on P satisfying ψ(λx) ≤ λψ(x) for 0 ≤ k ≤ 1, such that for some positive numbers d and M,

Φ(x) ≤ ψ(x) and ∥x∥ ≤Mγ(x)

for all x ∈ P(γ, d). Suppose that
T : P(γ, d)→ P(γ, d)

is completely continuous and there exist positive numbers h, r, c with h < r, such that the following conditions are
satisfied:

(S1)
{
x ∈ P(γ, θ,Φ, r, c, d) : Φ(x) > r

}
, ∅ and Φ(Tx) ≥ r for x ∈ P(γ, θ,Φ, r, c, d);

(S2) Φ(Tx) > r for x ∈ P(γ,Φ, r, d) with θ(Tx) > c;
(S3) 0 < R(γ, ψ, h, d) and ψ(Tx) < h for x ∈ R(γ, ψ, h, d) with ψ(x) = h.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ, d), such that

γ(xi) ≤ d, f or i = 1, 2, 3,

and
r < Φ(x1), h < ψ(x2), γ(x2) < r, ψ(x3) < h.
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3. Main result

To prove that (1), (2) has three positive solutions, the following three functionals are defined by
Φ(u) = mint∈[ξm−2,1] |u(t)| and convex functionals γ(u) = maxt∈[0,1] |u′(t)|, ψ(u) = θ(u) = maxt∈[0,1] |u(t)| on P.

Theorem 3.1. Assume that there exist positive constants h, r, c, d with h < r, c > max
{

1
ξα−1

m−2
, e1−

ξα−1
m−2
2

}
r, d ≥ c, and f

holds the following conditions:

(H3) tσ f (t,u,u′) ≤ (dM1)p−1, f or (t,u,u′) ∈ [0, 1] × [0, d] × [0, d];
(H4) f (t,u,u′) > (rM2)p−1, f or (t,u,u′) ∈ [0, 1] × [r, c] × [r, c];
(H5) tσ f (t,u,u′) < (hM1)p−1, f or (t,u,u′) ∈ [0, 1] × [0, h] × [0, h].

where M1 =
∆(1−σ)q−1

(α−1) and M2 =
∆q

ξα−1
m−2−ξ

α+q−1
m−2

. Then the problem (1),(2) has at least three positive solutions u1,u2,u3

satisfying
γ(ui) ≤ d, f or i = 1, 2, 3,

and
r < Φ(u1), h < ψ(u2), γ(u2) < r, ψ(u3) < h.

Proof. First of all, we prove T : P(γ, d)→ P(γ, d).
For u ∈ P(γ, d),By assumption (H3), we get

ω(s) = ϕq

(∫ s

0
t−σtσ f (t,u(t),u′(t))dt

)
≤ ϕq

(∫ 1

0
(dM1)p−1t−σdt

)
=

dM1

(1 − σ)q−1

then

γ(Tu(t)) = max
t∈[0,1]

|(Tu)′(t)|

≤
(α − 1)
∆

∫ 1

0
ω(s)ds

≤
(α − 1)
∆

∫ 1

0

dM1

(1 − σ)q−1 ds

=
(α − 1)dM1

∆(1 − σ)q−1

= d

So we obtain T : P(γ, d)→ P(γ, d).
Take u(t) = ret−0,5ξα−1

m−2 , t ∈ [0, 1]. By simple calculation, we can get that u ∈ P, γ(u) < c, ψ(u) = θ(u) < c and
Φ(u) > r.{

u ∈ P(γ, θ,Φ, r, c, d) : Φ(u) > r
}
, ∅
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For by (H4), we get

Φ(Tu(t)) = min
t∈[ξm−2,1]

|Tu(t)| = |Tu(ξm−2)|

=
ξα−1

m−2

∆

∫ 1

0
ω(s)ds −

ξα−1
m−2

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ ξm−2

0
(ξm−2 − s)α−1ω(s)ds

≥
ξα−1

m−2

∆

∫ 1

0
ω(s)ds −

ξα−1
m−2

∆

m−2∑
i=1

ai

∫ ξm−2

0
ω(s)ds −

ξα−1
m−2

Γ(α)

∫ ξm−2

0
ω(s)ds

=
ξα−1

m−2

∆

∫ 1

ξm−2

ω(s)ds

=
ξα−1

m−2

∆

∫ 1

ξm−2

ϕq

(∫ s

0
f (t,u(t),u′(t))dt

)
ds

≥
ξα−1

m−2

∆

∫ 1

ξm−2

ϕq

(∫ s

0
(M2r)p−1dt

)
ds

≥
ξα−1

m−2

∆

∫ 1

ξm−2

ϕq

(
(M2r)p−1s

)
ds

=
M2r(ξα−1

m−2 − ξ
α+q−1
m−2 )

∆q
= r

So, the condition (S1) of Theorem 3.1 holds.
Take u ∈ P(γ,Φ, r, d) and θ(Tu(t)) > c. Considering Tu ∈ P, we get

θ(Tu(t)) = max
t∈[0,1]

|Tu(t)| = |Tu(1)|

=
1
∆

∫ 1

0
ω(s)ds −

1
∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ 1

0
(1 − s)α−1ω(s)ds

and

Φ(Tu(t)) = min
t∈[ξm−2,1]

|Tu(t)| = |Tu(ξm−2)|

=
ξα−1

m−2

∆

∫ 1

0
ω(s)ds −

ξα−1
m−2

∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

ξα−1
m−2

Γ(α)

∫ ξm−2

0
(1 −

s
ξm−2

)α−1ω(s)ds

≥ ξα−1
m−2

 1
∆

∫ 1

0
ω(s)ds −

1
∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ 1

0
(1 − s)α−1ω(s)ds


= ξα−1

m−2(θ(Tu(t)))

≥ ξα−1
m−2c

= r

This shows that the condition (S2) is satisfied.
In the following we will prove that the condition (S3) is satisfied.
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Assume that u ∈ R(γ, ψ, h, d) with ψ(u) = h. Then by (H5), we have

ω(s) = ϕq

(∫ s

0
t−σtσ f (t,u(t),u′(t))dt

)
≤ ϕq

(∫ 1

0
(hM1)p−1t−σdt

)
=

hM1

(1 − σ)q−1

So we get

ψ(Tu(t)) = max
t∈[0,1]

|Tu(t)| = |Tu(1)|

=
1
∆

∫ 1

0
ω(s)ds −

1
∆

m−2∑
i=1

ai

∫ ξi

0
ω(s)ds −

1
Γ(α)

∫ 1

0
(1 − s)(α−1)ω(s)ds

≤
(α − 1)
∆

∫ 1

0

hM1

(1 − σ)q−1

=
(α − 1)hM1

∆(1 − σ)q−1

= h

Thus, the condition (S3) is satisfied. By Theorem 3.1, we can get that (1),(2) has at least three positive
solutions u1,u2,u3 satisfying

γ(ui) ≤ d, f or i = 1, 2, 3,

and
r < Φ(u1), h < ψ(u2), γ(u2) < r, ψ(u3) < h.

Example 3.2. Consider the following boundary value problem

[ϕp(Dα
0+u(t))]

′

+ f (t,u(t),u′(t)) = 0, 0 < t < 1 (7)

u(0) = u′(0) = 0, Dα−1
0+ u(1) =

m−2∑
i=1

aiDα−1
0+ u(ξi) (8)

where
√

t f (t,u, v) is continuous in [0, 1] ×R+,×R+,
√

t f (t,u, v) ≤ 1500, for (t,u, v) ∈ [0, 1] ×R+ ×R+, such that

f (t,u, v) =


1
√

t
(eu + ev), (t,u, v) ∈ (0, 1] × [0, 3] × [0, 3]

50
√

t
(e
√

u + e
√

v), (t,u, v) ∈ (0, 1] × [5, 17] × [5, 17]
1499
√

t
, (t,u, v) ∈ (0, 1] × [100,∞) × [100,∞)

Corresponding to Theorem 3.1, we take α = 7
3 , p = 3, σ = 1

2 ,m = 4, ξ1 =
1
3 , ξ2 =

2
3 , a1 =

1
2 , a2 =

1
4 . Let

h = 3, r = 5, c = 17, d = 150. By simple calculations, we can get that the conditions of Theorem 3.1 are satisfied. So,
the problem (7), (8) has at least three positive solutions u1,u2,u3 satisfying

γ(ui) ≤ 150, f or i = 1, 2, 3,

and
5 < Φ(u1), 3 < ψ(u2), γ(u2) < 5, ψ(u3) < 3.
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