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Abstract. In this paper, we use multiplicative twice differentiable functions and establish two new mul-
tiplicative integral identities. Then, we use convexity for multiplicative twice differentiable functions and
establish some new midpoint and trapezoidal type inequalities in the framework of multiplicative calcu-
lus. Finally, we give some applications to special means of real numbers to make these inequalities more
interesting for the readers.

1. Introduction

In calculus and analysis, integration and differentiation are two fundamental operations. In actuality,
these are the infinitesimal forms of the operations on numbers for subtraction and addition, respectively.

New definitions of differentiation and integration in which the roles of addition and subtraction move to
multiplication and division and introduce a new calculus called multiplicative calculus. This is also called
non-Newtonian calculus. Despite answering all the conditions expected from calculus, multiplicative
calculus is not so much popular as the Newton and Leibnitz unfortunately.

Since the applications of multiplicative calculus are relatively limited than the calculus of Newton and
Leibnitz. Therefore a well-developed tool with a wider scope has already been made, the question of
whether it is fair to design a new tool with a limited scope arises. The solution is comparable to the question
of why mathematicians use a polar coordinate system when a rectangular coordinate system that better
describes points on a plane exists. We believe that the mathematical instrument of multiplicative calculus
can be particularly helpful for the study of economics and finance.

Assume for motivation’s sake that by depositing $θ, one will receive $ϑ after a year. The original
number then fluctuates ϑ/θ times. How frequently does it change each month? Assume that the change
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over a month is p times for this. The total then becomes ϑ = θp12 for a year. The formula for computing p
is now p = (ϑ/θ)

1
12 . Assuming that deposits fluctuate daily, hourly, minutely, secondarily, etc. and that the

function Λ indicating its value at various time points, is the formula

lim
h→0

(
Λ (x + h)

h

) 1
h

. (1)

The above formula shows that how the value of Λ (x) varies at moment x. For the compare of definition (1),
the definition of derivative is

Λ′ (x) = lim
h→0

Λ (x + h) −Λ (x)
h

. (2)

We observe that the difference in (2) is replaced by division and the division by h is replace by the raising
to the reciprocal power 1/h. The limit (1) is called multiplicative derivative.

Analysis has long been the dominant area of mathematics, and inequalities play a major role in analysis.
The significance of inequalities has long been recognized in the field of mathematics. The mathematical
roots of the theory of inequality were set by eminent mathematicians in the 18th and 19th centuries. The
impact of inequalities was significant in the years that followed, and many well-known mathematicians
were drawn to the subject. In the 20th century, it was the ground breaking work of G. H. Hardy, J. E.
Littlewoods, and G. Polya which was published in 1934 that sparked the development of the field as a
subfield of modern mathematics.

The Hermite-Hadamard inequality, named after Charles Hermite and Jacques Hadamard and commonly
known as Hadamard’s inequality, says that if a function Λ : [θ, ϑ] → R is convex, the following double
inequality holds:

Λ
(
θ + ϑ

2

)
≤

1
ϑ − θ

∫ ϑ

θ
Λ (x) dx ≤

Λ (θ) + Λ (ϑ)
2

. (3)

If Λ is a concave mapping, the above inequality holds in the opposite direction. The inequality (3) can
be proved using the Jensen inequlity. There has been much research done in the direction of Hermite-
Hadamard for different kinds of convexities. For example, in [1–4], the authors established some inequalities
linked with midpoint and trapezoid formulas of numerical integration for convex functions.

In [5] and [6], the authors used twice differentiability and established the following formulas of finding
the error bounds for midpoint and trapezoidal type inequalities:

Theorem 1.1. Let Λ : [θ, ϑ] → R be a twice differentiable and integrable functions. If Λ′′ is convex, then the
following inequalities holds:∣∣∣∣∣∣Λ (θ) + Λ (ϑ)

2
−

1
ϑ − θ

∫ ϑ

θ
Λ (x) dx

∣∣∣∣∣∣ (4)

≤
(ϑ − θ)2

12

[
|Λ′′ (θ)| + Λ′′ (ϑ)

2

]
and ∣∣∣∣∣∣ 1

ϑ − θ

∫ ϑ

θ
Λ (x) dx −Λ

(
θ + ϑ

2

)∣∣∣∣∣∣ (5)

≤
(ϑ − θ)2

24

[
|Λ′′ (θ)| + Λ′′ (ϑ)

2

]
.

Very recently, Ali et al. [7] proved the Hermite–Hadamard type inequality in the framework of multi-
plicative calculus and stated as:



J. Xie et al. / Filomat 37:20 (2023), 6665–6675 6667

Theorem 1.2. Let Λ : [θ, ϑ]→ R+ be a multiplicative convex function, then the following inequality holds:

Λ
(
θ + ϑ

2

)
≤

(∫ ϑ

θ
(Λ (x))dx

) 1
ϑ−θ

≤

√
Λ (θ)Λ (ϑ). (6)

After the work of Ali et al. [7], many researchers started work in this directions and proved different
variants of integral inequalities in the setting of multiplicative calculus. For example, Khan and Budak [8]
gave some estimates for the midpoint and trapezoidal inequalities in multiplicative calculus, the Hermite–
Hadamard type inequalities for general multiplicative convex functions were proved in [9] and Özcan
used the multiplicative preinvexity and established Hermite–Hadamard type inequalities in [10]. For
multiplicative s-convex and multiplicative s-preinvex functions, the Hermite–Hadamard type inequalities
were found in [11, 12] and for h-preinvex functions proved in [13]. Ali et al. [14] established some
Ostrowski’s and Simpson’s type inequalities for multiplicative convex functions and give their applications.
Budak and Özcelik [15] used multiplicative fractional integrals and established Hermite–Hadamard type
inequalities. In [16], Fu et al. introduced multiplicative tempered fractional integrals and established
some new fractional Hermite–Hadamard type inequalities for multiplicative convex functions. Ali et al.
[17] introduced the notions of multiplicative interval-valued integral and established some new Hermite–
Hadamard type inequalities for interval–valued multiplicative convex functions. Very recently, some new
Simpson’s and Newton’s type inequalities in the setting of multiplicative calculus were established in [18].

Inspired by the ongoing studies, we establish some new trapezoidal and midpoint type inequalities
linked with the left and right sides of the inequality (6) for multiplicative twice differentiable multiplicative
convex functions. The newly established inequalities are the multiplicative versions of the inequalities (4)
and (5), where all subtraction and addition operations behave as a multiplication and division. finally, we
give some applications of newly established inequalities. Since multiplicative calculus is modern calculus
with lot of applications in banking and finance, therefore the study about multiplicative calculus is valuable.

2. Preliminaries

In this section, we recall some concepts of multiplicative calculus and convexity.

Definition 2.1. [19] LetΛ : R→ R+ be a positive function. The multiplicative derivative of the functionΛ is given
by

d∗Λ
dρ

(ρ) = Λ∗(ρ) = lim
h→0

(
Λ(ρ + h)
Λ(ρ)

)1/h

.

If Λ has positive values and is differentiable at ρ, then Λ∗ exists and the relation between Λ∗ and ordinary derivative
Λ′ is as follows:

Λ∗(ρ) = e[logΛ(ρ)]′ = e
Λ′ (ρ)
Λ(ρ) .

If, additionally, the second derivative of Λ at ρ exists, then by an easy substitution, we obtain

Λ∗∗(ρ) = e[log ◦Λ∗(ρ)]′ = e[logΛ(ρ)]′′ .

Here (lnΛ)′′ (ρ) exists because Λ′′(ρ) exist. Repeating this procedure n times, we conclude that if Λ is a
positive function and its nth derivative at ρ exists, then Λ∗(n)(ρ) exists and

Λ∗(n)(ρ) = e(logΛ)(n)
(ρ), n = 1, 2, · · · .

For more details and properties of multiplicative calculus, one can consult [19].
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We also recall that the concept of the ∗ integral called multiplicative integral is denoted by
ϑ∫
θ

(Λ(x))dx which

introduced by Bashirov et al. in [19]. While the sum of the terms of product is used in the definition of
a classical Riemann integral of Λ on [θ, ϑ] , the product of terms raised to power is used in the definition
multiplicative integral of Λ on [θ, ϑ] .
There is the following relation between Riemann integral and multiplicative integral [19]:

Proposition 2.2. [19] If Λ is Riemann integrable on [θ, ϑ] , then Λ is multiplicative integrable on [θ, ϑ] and

ϑ∫
θ

(Λ(x))dx = e

ϑ∫
θ

log(Λ(x))dx
.

Moreover, Bashirov et al. [19] showed that multiplicative integrable has the following results and properties:

Proposition 2.3. If Λ is positive and Riemann integrable on [θ, ϑ], thenΛ is multiplicative integrable on [θ, ϑ] and

(i)
ϑ∫
θ

((Λ(x))p)dx =

 ϑ∫
θ

(Λ(x))dx

p

,

(ii)
ϑ∫
θ

(Λ(x)1(x))dx =
ϑ∫
θ

(Λ(x))dx.
ϑ∫
θ

(1(x))dx,

(iii)
ϑ∫
θ

(
Λ(x)
1(x)

)dx
=

ϑ∫
θ

(Λ(x))dx

ϑ∫
θ

(1(x))dx

,

(iv)
ϑ∫
θ

(Λ(x))dx =
c∫
θ

(Λ(x))dx.
ϑ∫

c
(Λ(x))dx, θ ≤ c ≤ ϑ.

(v)
θ∫
θ

(Λ(x))dx = 1 and
ϑ∫
θ

(Λ(x))dx =

 θ∫
ϑ

(Λ(x))dx

−1

.

Theorem 2.4. [19] Let Λ : [θ, ϑ] → R be multiplicative differentiable, let 1 : [θ, ϑ] → R be differentiable so the
function Λ1 is multiplicative integrable. Then

ϑ∫
θ

(Λ∗(x)1(x))dx =
Λ(ϑ)1(ϑ)

Λ(θ)1(θ)
.

1
ϑ∫
θ

(Λ(x)1′(x))dx

.

Lemma 2.5. [14] Let Λ : [θ, ϑ] → R be multiplicative differentiable, let 1 : [θ, ϑ] → R and h : J ⊂ R → [θ, ϑ] be
two differentiable functions. Then we have

ϑ∫
θ

(Λ∗(h(x))1(x)h′(x))dx =
Λ(h(ϑ))1(ϑ)

Λ(h(θ))1(θ)
.

1
ϑ∫
θ

(Λ (h (x)))1′(x))dx

.

For the our main results we need to following definition.

Definition 2.6. [20] A non-empty set K is said to be convex, if for every θ, ϑ ∈ K we have

θ + ρ(ϑ − θ) ∈ K, ∀ρ ∈ [0, 1].
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Definition 2.7. [20] A function Λ is said to be convex function on set K, if

Λ(ρx + (1 − ρ)y) ≤ ρΛ(x) + (1 − ρ)Λ(y), ∀ρ ∈ [0, 1].

Definition 2.8. [20] A function Λ is said to be lo1 or multiplicative convex function on set K, if

Λ(ρx + (1 − ρ)y) ≤ [Λ(x)]ρ .
[
Λ(y)

]1−ρ ,∀ρ ∈ [0, 1].

3. Multiplicative Integral Identities

In this section, we establish two integral identity associated with the twice multiplicative differentiable
function.

Lemma 3.1. Let Λ : [θ, ϑ] → R+ be a twice multiplicative differentiable function over (θ, ϑ) . If Λ∗∗ is integrable
function, then following equality holds:

√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

(7)

=

(∫ 1

0

([
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)]ρ(1−ρ)

)dρ
) (ϑ−θ)2

2

.

Proof. From the fundamental rules of multiplicative integration and changing the variables of integration,
we have (∫ 1

0

([
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)]ρ(1−ρ)

)dρ
) (ϑ−θ)2

2

= e
(ϑ−θ)2

2
∫ 1
0 ρ(1−ρ)(ln ◦Λ)′′(ρϑ+(1−ρ)θ)dρ

= e
ϑ−θ

2 ρ(1−ρ)(ln ◦Λ)′(ρϑ+(1−ρ)θ)|10− ϑ−θ2

∫ 1
0 (1−2ρ)(ln ◦Λ)′(ρϑ+(1−ρ)θ)dρ

= e
−

1
2

[
(1−2ρ)(ln ◦Λ)(ρϑ+(1−ρ)θ)|10 +2

∫ 1
0

(ln ◦Λ)(ρϑ+(1−ρ)θ)dρ
]

= e
1
2 [lnΛ(ϑ)Λ(θ)]−

∫ 1
0

(ln ◦Λ)(ρϑ+(1−ρ)θ)dρ

=
eln
√
Λ(θ)Λ(ϑ)

e
∫ 1

0
(ln ◦Λ)(ρϑ+(1−ρ)θ)dρ

=
√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

.

Thus, the proof is completed.

Lemma 3.2. Let Λ : [θ, ϑ] → R+ be a twice multiplicative differentiable function over (θ, ϑ) . If Λ∗∗ is integrable
function, then following equality holds:(∫ ϑ

θ
(Λ (x))dx

) 1
ϑ−θ

Λ
(
θ+ϑ

2

) =

∫ 1
2

0

([
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)]ρ2)dρ


(ϑ−θ)2

2

(8)

×

∫ 1

1
2

([
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)](1−ρ)2)dρ


(ϑ−θ)2

2

.
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Proof. From basic rules of multiplicative integration, we have

I1 =

∫ 1
2

0

([
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)]ρ2)dρ


(ϑ−θ)2

2

= e
(ϑ−θ)2

2

∫ 1
2

0 ρ
2(ln ◦Λ)′′(ρϑ+(1−ρ)θ)dρ

= e
ϑ−θ

8 (ln ◦Λ)′( θ+ϑ2 )− 1
2 lnΛ( θ+ϑ2 )+

∫ 1
2

0 lnΛ(ρϑ+(1−ρ)θ)dρ

and

I2 =

∫ 1

1
2

([
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)](1−ρ)2)dρ


(ϑ−θ)2

2

= e
−
ϑ−θ

8 (ln ◦Λ)′( θ+ϑ2 )− 1
2Λ( θ+ϑ2 )+

∫ 1
1
2

lnΛ(ρϑ+(1−ρ)θ)dρ
.

We get the following resultant equality from the above two equalities

I1 × I2 = e
∫ 1

0 lnΛ(ρϑ+(1−ρ)θ)dρ−lnΛ( θ+ϑ2 )

=
e

1
ϑ−θ

∫ ϑ
θ

lnΛ(x)dx

Λ
(
θ+ϑ

2

)
=

(∫ ϑ
θ

(Λ (x))dx
) 1
ϑ−θ

Λ
(
θ+ϑ

2

) .

Thus, the proof is completed.

4. Trapezoidal type Inequalities

Some new trapezoidal type inequalities in the setting of multiplicative calculus are established in this
section.

Theorem 4.1. Under the assumptions of Lemma 3.1. If Λ∗∗ is multiplicative convex function, then the following
inequality holds:∣∣∣∣∣∣∣∣

√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

∣∣∣∣∣∣∣∣ (9)

≤ ([Λ∗∗ (θ)] [Λ∗∗ (ϑ)])
(ϑ−θ)2

24 .

Proof. From the equality (7) and the multiplicative convexity of Λ∗∗, we have∣∣∣∣∣∣∣∣
√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

∣∣∣∣∣∣∣∣
≤ exp

[
(ϑ − θ)2

2

∫ 1

0

∣∣∣∣ln (
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
))ρ(1−ρ)

∣∣∣∣ dρ]
= exp

[
(ϑ − θ)2

2

∫ 1

0

∣∣∣ρ (1 − ρ) ln
(
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
))∣∣∣ dρ]

≤ exp
[

(ϑ − θ)2

2

∫ 1

0
ρ
(
1 − ρ

) (
ρ lnΛ∗∗ (ϑ) +

(
1 − ρ

)
lnΛ∗∗ (θ)

)
dρ

]
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= ([Λ∗∗ (θ)] [Λ∗∗ (ϑ)])
(ϑ−θ)2

24 .

Theorem 4.2. Under the assumptions of Lemma 3.1. If (ln (Λ∗∗))q , q > 1 is convex function, then the following
inequality holds:∣∣∣∣∣∣∣∣

√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

∣∣∣∣∣∣∣∣
≤

(√
(Λ∗∗ (ϑ)) (Λ∗∗ (θ))

) (ϑ−θ)2

2 [β(p+1,p+1)]
1
p

,

where 1
p +

1
q = 1.

Proof. From Lemma 7 and Hölder inequality, we have∣∣∣∣∣∣∣∣
√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

∣∣∣∣∣∣∣∣
≤ exp

[
(ϑ − θ)2

2

∫ 1

0
ρ
(
1 − ρ

) ∣∣∣ln (
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
))∣∣∣ dρ]

≤ exp

 (ϑ − θ)2

2

(∫ 1

0

(
ρ
(
1 − ρ

))p dρ
) 1

p
(∫ 1

0

(
ln

(
Λ∗∗

(
ρϑ +

(
1 − ρ

)
θ
)))q dρ

) 1
q
 .

Applying convexity of (ln (Λ∗∗))q, Using
n∑

i=1
(ai + bi)

s
≤

n∑
i=1

as
i + bs

i for all s ∈ [0, 1) and
(

1
2

) 1
q
≤

1
2 , we have∣∣∣∣∣∣∣∣

√
Λ (θ)Λ (ϑ)

(∫ ϑ

θ
(Λ (x))dx

) 1
θ−ϑ

∣∣∣∣∣∣∣∣
≤ exp

 (ϑ − θ)2

2

(∫ 1

0

(
ρ
(
1 − ρ

))p dρ
) 1

p
(∫ 1

0

[
ρ
(
ln (Λ∗∗ (ϑ))q +

(
1 − ρ

)
(lnΛ∗∗ (θ))q)] dρ

) 1
q


= exp
[

(ϑ − θ)2

2
[
β
(
p + 1, p + 1

)] 1
p

×

(1
2

) 1
q

ln (Λ∗∗ (ϑ)) +
(1

2

) 1
q

ln (Λ∗∗ (θ))


≤ exp

[
(ϑ − θ)2

2
[
β
(
p + 1, p + 1

)] 1
p
(
ln

√
(Λ∗∗ (ϑ)) (Λ∗∗ (θ))

)]
=

(√
(Λ∗∗ (ϑ)) (Λ∗∗ (θ))

) (ϑ−θ)2

2 [β(p+1,p+1)]
1
p

.

Thus, the proof is completed.

5. Midpoint Type Inequalities

Some new midpoint type inequalities in the setting of multiplicative calculus are established in this
section.
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Theorem 5.1. Under the assumptions of Lemma 3.2. If Λ∗∗ is multiplicative convex function, then the following
inequality holds:∣∣∣∣∣∣∣∣∣∣∣

(∫ ϑ
θ

(Λ (x))dx
) 1
ϑ−θ

Λ
(
θ+ϑ

2

)
∣∣∣∣∣∣∣∣∣∣∣

≤ ([Λ∗∗ (θ)] [Λ∗∗ (ϑ)])
(ϑ−θ)2

48 .

Proof. From the equality (8) and the multiplicative convexity of Λ∗∗, we have∣∣∣∣∣∣∣∣∣∣∣
(∫ ϑ
θ

(Λ (x))dx
) 1
ϑ−θ

Λ
(
θ+ϑ

2

)
∣∣∣∣∣∣∣∣∣∣∣

≤ exp

 (ϑ − θ)2

2

∫ 1
2

0
ρ2

∣∣∣lnΛ∗∗ (ρϑ + (
1 − ρ

)
θ
)∣∣∣ dρ

+
(ϑ − θ)2

2

∫ 1

1
2

(
1 − ρ

)2
∣∣∣lnΛ∗∗ (ρϑ + (

1 − ρ
)
θ
)∣∣∣ dρ

≤ exp

 (ϑ − θ)2

2

∫ 1
2

0
ρ2 (
ρ lnΛ∗∗ (ϑ) +

(
1 − ρ

)
lnΛ∗∗ (θ)

)
dρ


+

∫ 1

1
2

(
1 − ρ

)2 (
ρ lnΛ∗∗ (ϑ) +

(
1 − ρ

)
Λ∗∗ (θ)

)
dρ


= exp

[
(ϑ − θ)2

2

(
lnΛ∗∗ (ϑ)

64
+

5 lnΛ∗∗ (θ)
192

)
+

(ϑ − θ)2

2

(
5 lnΛ∗∗ (ϑ)

192
+

lnΛ∗∗ (θ)
64

)]
= [Λ∗∗ (θ)Λ∗∗ (ϑ)]

(ϑ−θ)2

48 .

Thus, the proof is completed.

Theorem 5.2. Under the assumptions of Lemma 3.2. If (lnΛ∗∗)q, q > 1 is a convex function, then the following
inequality holds:∣∣∣∣∣∣∣∣∣∣∣

(∫ ϑ
θ

(Λ (x))dx
) 1
ϑ−θ

Λ
(
θ+ϑ

2

)
∣∣∣∣∣∣∣∣∣∣∣

≤

(√
Λ∗∗ (θ)Λ∗∗ (ϑ)

) (ϑ−θ)2

2

(
1

22p+1(2p+1)

) 1
p

.

Proof. From the equality (8) and Hölder’s inequality, we have∣∣∣∣∣∣∣∣∣∣∣
(∫ ϑ
θ

(Λ (x))dx
) 1
ϑ−θ

Λ
(
θ+ϑ

2

)
∣∣∣∣∣∣∣∣∣∣∣
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≤ exp

 (ϑ − θ)2

2

∫ 1
2

0
ρ2

∣∣∣lnΛ∗∗ (ρϑ + (
1 − ρ

)
θ
)∣∣∣ dρ

+
(ϑ − θ)2

2

∫ 1

1
2

(
1 − ρ

)2
∣∣∣lnΛ∗∗ (ρϑ + (

1 − ρ
)
θ
)∣∣∣ dρ

≤ exp

 (ϑ − θ)2

2

∫ 1
2

0
ρ2pdρ


1
p
∫ 1

2

0

∣∣∣lnΛ∗∗ (ρϑ + (
1 − ρ

)
θ
)∣∣∣q dρ


1
q

+
(ϑ − θ)2

2

∫ 1

1
2

(
1 − ρ

)2p dρ


1
p
∫ 1

1
2

∣∣∣lnΛ∗∗ (ρϑ + (
1 − ρ

)
θ
)∣∣∣q dρ


1
q
 .

Now applying convexity of lnΛ∗∗, Using
n∑

i=1
(ai + bi)

s
≤

n∑
i=1

as
i +bs

i for all s ∈ [0, 1) and
(

1
8

) 1
q
+
(

3
8

) 1
q
≤

1
2 , we have∣∣∣∣∣∣∣∣∣∣∣

(∫ ϑ
θ

(Λ (x))dx
) 1
ϑ−θ

Λ
(
θ+ϑ

2

)
∣∣∣∣∣∣∣∣∣∣∣

≤ exp

 (ϑ − θ)2

2

(
1

22p+1 (
2p + 1

) ) 1
p
∫ 1

2

0
ρ (lnΛ∗∗ (ϑ))q +

(
1 − ρ

)
(lnΛ∗∗ (θ))q

 dρ


1
q

+
(ϑ − θ)2

2

(
1

22p+1 (
2p + 1

) ) 1
p
∫ 1

1
2

ρ (lnΛ∗∗ (ϑ))q +
(
1 − ρ

)
(lnΛ∗∗ (θ))q

 dρ


1
q


= exp

 (ϑ − θ)2

2

(
1

22p+1 (
2p + 1

) ) 1
p
( (lnΛ∗∗ (ϑ))q

8
+

3 (lnΛ∗∗ (θ))q

8

) 1
q

+

(
3 (lnΛ∗∗ (ϑ))q

8
+

(lnΛ∗∗ (θ))q

8

) 1
q



≤ exp

 (ϑ − θ)2

2

(
1

22p+1 (
2p + 1

) ) 1
p
[(

lnΛ∗∗ (ϑ)(
1
8 )

1
q
Λ∗∗ (θ)(

3
8 )

1
q
)
+

(
lnΛ∗∗ (ϑ)(

3
8 )

1
q
Λ∗∗ (θ)(

1
8 )

1
q
)]

≤

(√
Λ∗∗ (θ)Λ∗∗ (ϑ)

) (ϑ−θ)2

2

(
1

22p+1(2p+1)

) 1
p

.

Thus, the proof is completed.

6. Applications

In this section, we give applications to special special means of real number. For θ, ϑ ∈ R with θ, ϑ > 0
and θ , ϑ,we have

(1) Arithmetic mean

A (θ, ϑ) =
θ + ϑ

2
;

(2) Geometric mean

G (θ, ϑ) =
√

θϑ;
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(3) Logarithmic mean

L (θ, ϑ) =
ϑ − θ

ln |ϑ| − ln |θ|
;

(4) Harmonic mean

H (θ, ϑ) =
2θϑ
θ + ϑ

(5) Generalized logarithmic mean

Lp (θ, ϑ) =
(
ϑp+1

− θp+1(
p + 1

)
(ϑ − θ)

) 1
p

.

Proposition 6.1. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eA(θ2,ϑ2)

eL2
2(θ,ϑ)

∣∣∣∣∣∣ ≤ e
(ϑ−θ)2

6 .

Proof. This inequality can be derived from Theorem 4.1 for the function Λ (x) = ex2
.

Proposition 6.2. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eA(θ2,ϑ2)

eL2
2(θ,ϑ)

∣∣∣∣∣∣ ≤ e(ϑ−θ)2[β(p+1,p+1)]
1
p
.

Proof. This inequality can be derived from Theorem 4.2 for the function Λ (x) = ex2
.

Proposition 6.3. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eH−1(θ,ϑ)

eL−1(θ,ϑ)

∣∣∣∣∣∣ ≤ e
(ϑ−θ)2

6 H−1(θ,ϑ).

Proof. This inequality can be derived from Theorem 4.1 for the function Λ (x) = e
1
x .

Proposition 6.4. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eH−1(θ,ϑ)

eL−1(θ,ϑ)

∣∣∣∣∣∣ ≤ e2[β(p+1,p+1)]
1
p (ϑ−θ)2H−1(θ,ϑ).

Proof. This inequality can be derived from Theorem 4.2 for the function Λ (x) = e
1
x .

Proposition 6.5. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eL2
2(θ,ϑ)

eA2(θ,ϑ)

∣∣∣∣∣∣ ≤ e
(ϑ−θ)2

12 .

Proof. This inequality can be derived from Theorem 5.1 for the function Λ (x) = ex2
.

Proposition 6.6. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eL2
2(θ,ϑ)

eA2(θ,ϑ)

∣∣∣∣∣∣ ≤ e
(ϑ−θ)2

(
1

22p+1(2p+1)

) 1
p

.
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Proof. This inequality can be derived from Theorem 5.2 for the function Λ (x) = ex2
.

Proposition 6.7. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eL−1(θ,ϑ)

e
1

2A(θ,ϑ)

∣∣∣∣∣∣ ≤ e
(ϑ−θ)2

12 H−1(θ,ϑ).

Proof. This inequality can be derived from Theorem 5.1 for the function Λ (x) = e
1
x .

Proposition 6.8. For θ, ϑ ∈ R with θ, ϑ > 0 and θ , ϑ, the following inequality holds:∣∣∣∣∣∣ eL−1(θ,ϑ)

e
1

2A(θ,ϑ)

∣∣∣∣∣∣ ≤ e
2
(

1
22p+1(2p+1)

) 1
p

(ϑ−θ)2H−1(θ,ϑ)
.

Proof. This inequality can be derived from Theorem 5.2 for the function Λ (x) = e
1
x .

7. Conclusion

In this work, we establish some new inequalities of trapezoidal and midpoint type for multiplicative
twice differentiable convex functions using the notions of multiplicative calculus. The newly established
inequalities can be helpful in finding the error bounds for trapezoidal formula in multiplicative numerical
integrations. It is a good and new problem that the upcoming researchers can obtain similar inequalities
for other convexities and for the functions of two variables in the setting of multiplicative calculus.
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[3] N. Alp, M. Z. Sarikaya, M. Kunt and İ. İşcan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type
inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci., 30 (2018), 193–203.
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