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Some binomial identities related to the Catalan triangles and the halves
of the Pascal matrix

Lin Yanga, Sheng-Liang Yanga,∗

aDepartment of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China

Abstract. In this paper, five binomial sums with two additional parameters are shown to be equipollent
by using the Riordan array method and the generalized Catalan matrices, as well as the halves of the Pascal
matrix.

1. Introduction

For the following binomial sums

Ωn =

n∑
k=0

(
3(n − k)

n − k

)(
3k
k

)
,

An =

n∑
k=0

3k
(
3n − k

2n

)
,

Bn =

n∑
k=0

2k
(

3n + 1
2n + k + 1

)
,

En =

n∑
k=0

3k
(
3n − k
n − k

)
2k(k + 1)

3n − k
,

Fn =

n∑
k=0

2k
(
3n + 2
n − k

)
(3k + 2)(k + 1)

3n + 2
,

Alzer and Prodinger [1], Bai and Chu [2], Duarte and Guedes de Oliveira [8], and Kilic and Arikan [14]
found, by using different methods respectively, the following combinatorial identities

Ωn = An = Bn = En = Fn. (1)
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In this paper, we define five new kinds of binomial sums with two additional parameters m and r:

Ω(m,r)
n =

n∑
k=0

(
(m + 1)(n − k)

n − k

)(
(m + 1)k + r

k

)
,

A(m,r)
n =

n∑
k=0

(m + 1)k
(
(m + 1)n − k + r

mn + r

)
,

B(m,r)
n =

n∑
k=0

mk
(
(m + 1)n + r + 1
mn + k + r + 1

)
,

E(m,r)
n =

n∑
k=0

mk + r
mn + n − k + r

(
mn + n − k + r

n − k

)
(k + 1)(m + 1)k,

F(m,r)
n =

n∑
k=0

mk + k + r + 2
(m + 1)n + r + 2

(
(m + 1)n + r + 2

n − k

)
(k + 1)mk.

As an extension of the identities (1), some new identities are provided in this paper, the main results of
which can be stated as following theorem.

Theorem 1.1. For n,m, r ≥ 0,

Ω(m,r)
n = A(m,r)

n = B(m,r)
n = E(m,r)

n = F(m,r)
n .

In the following of this section, we will briefly recall the Riordan arrays [3–5, 7, 10, 16, 19, 21] and the
(m, r, s)-half of the Pascal matrix [4, 11, 24, 25] which are two important tools in the sequel. An infinite
lower triangular matrix G = (1n,k)n,k∈N is called a Riordan array if its column k has generating function
d(t)h(t)k, where d(t) =

∑
∞

n=0 dntn and h(t) =
∑
∞

n=1 hntn are formal power series with d0 , 0 and h1 , 0. If
(bn)b∈N is any sequence having b(t) =

∑
∞

n=0 bntn as its generating function, then for every Riordan array
(d(t), h(t)) = (1n,k)n,k∈N

n∑
k=0

1n,kbk = [tn]d(t)b(h(t)). (2)

This is called the fundamental theorem of Riordan arrays (FTRA) and it can be rewritten as

(d(t), h(t))b(t) = d(t)b(h(t)). (3)

For example, the Pascal matrix P =
((n

k
))

n,k≥0
= ( 1

1−t ,
t

1−t ) is a Riordan array, which is registered as sequence
A007318 in OEIS [20]. In the sequel, sequences are frequently referred to by their OEIS number.

The vertical halves of Riordan arrays and the horizontal halves of Riordan arrays were introduced in
Yang et al. [11, 24, 25] and Barry [4, 15], respectively. In recently, we introduce the (m, r, s)-half of a Riordan
array [22], which can be viewed as a skew half of a Riordan antecedent [4].

Definition 1.2. Let G = (u(t), tv(t)) = (1n,k)n,k≥0 be a Riordan array, and let m, r be nonnegative integers and s a
positive fractional number such that ms is integral number. The (m, r, s)-half of G is defined as the matrix G(m,r,s) with
general (n, k)-th term 1(m+1)n+(ms−m−1)k+r,mn+(ms−m)k+r.

In [22], using the generating function Bm+1(t) =
∑
∞

n=0
1

(m+1)n+1
((m+1)n+1

n
)
tn, the (m, r, s)-half of the Pascal

matrix G = ( 1
1−t ,

t
1−t ) have been found:

Lemma 1.3. The (m, r, s)-half of the Pascal matrix G = ( 1
1−t ,

t
1−t ) is

G(m,r,s) =

(
Bm+1(t)r+1

1 −mtBm+1(t)m+1 , tBm+1(t)ms
)
.
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For giving another form of the halves of the Pascal matrix, let us recall some equations for Fuss-Catalan
numbers 1

pn+1
(pn+1

n
)
, see [6, 9, 17]. The generating function Bp(t) =

∑
∞

n=0
1

pn+1
(pn+1

n
)
tn satisfies the functional

equation

Bp(t) = 1 + tBp(t)p, (4)

and the powers of Bp(t) admit quite nice Taylor expansion:

Bp(t)s =

∞∑
n=0

s
pn + s

(
pn + s

n

)
tn. (5)

The coefficients s
pn+s

(pn+s
n

)
have also combinatorial interpretations, see also [9], and are called generalized

Fuss-Catalan numbers or Raney numbers. Formulas (4), (5) remain true if the parameters p, s are real. It
can be checked in [9, 12, 13, 17, 23] that the following identities are valid

Bp(tBp+s(t)s) = Bp+s(t), (6)

Bp(t)s+1

1 − (p − 1)tBp(t)p =

∞∑
n=0

(
pn + s

n

)
tn, (7)

and the derivative of Bp(t) is given by

B
′

p(t) =
Bp(t)p+1

1 − (p − 1)tBp(t)p =

∞∑
n=0

(
pn + p

n

)
tn. (8)

By the Lemma 1.3 and equation (8), we have

Bm+1(t)r+1

1 −mtBm+1(t)m+1 = B
′

m+1(t)Bm+1(t)r−m−1.

Hence, we can obtain the following result.

Theorem 1.4. The (m, r, s)-half of the Pascal matrix G = ( 1
1−t ,

t
1−t ) is given by

G(m,r,s) =
(
B
′

m+1(t)Bm+1(t)r−m−1, tBm+1(t)ms
)
. (9)

2. Proofs

In this section, we will give the proof for the Theorem 1.1.

Proof. Step 1: A(m,r)
n = Ω(m,r)

n .

The generating function of the sequence (Ω(m,r)
n )n≥0 is given by

∞∑
n=0

Ω(m,r)
n tn =

∞∑
n=0

n∑
k=0

(
(m + 1)(n − k)

n − k

)(
(m + 1)k + r

k

)
tn

=

 ∞∑
n=0

(
(m + 1)n

n

)
tn


 ∞∑

n=0

(
(m + 1)n + r

n

)
tn


=

Bm+1(t)
1 −mtBm+1(t)m+1 ·

Bm+1(t)r+1

1 −mtBm+1(t)m+1

=
Bm+1(t)r+2

(1 −mtBm+1(t)m+1)2 .
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From (9), we know that the (m, r, 1)-half of the Pascal matrix is

G(m,r,1) =
(
B
′

m+1(t)Bm+1(t)r−m−1, tBm+1(t)m
)
,

and its general term is
((m+1)n−k+r

mn+r
)
. By the FTRA and equation (8), we have

G(m,r,1)
·

1
1 − (m + 1)t

=
B
′

m+1(t)Bm+1(t)r−m−1

1 − (m + 1)tBm+1(t)m

=
Bm+1(t)m+1

1 − (m + 1)tBm+1(t)m
Bm+1(t)r−m−1

1 − (m + 1)tBm+1(t)m

=
Bm+1(t)m+2

Bm+1(t) − (m + 1)tBm+1(t)m+1

Bm+1(t)r−m

Bm+1(t) − (m + 1)tBm+1(t)m+1

=
Bm+1(t)r+2

(1 −mtBm+1(t)m+1)2 =

∞∑
n=0

Ω(m,r)
n tn,

which is equivalent to A(m,r)
n = Ω(m,r)

n .
Step 2: B(m,r)

n = Ω(m,r)
n .

By Theorem 1.4, we know that the (m, r + 1, m+1
m )-half of the Pascal matrix is

G(m,r+1, m+1
m ) =

(
B
′

m+1(t)Bm+1(t)r−m, tBm+1(t)m+1
)
,

and the general term is
((m+1)n+r+1

mn+k+r+1

)
. By the FTRA and equation (8), we have

G(m,r+1, m+1
m )
·

1
1 −mt

=
(
B
′

m+1(t)Bm+1(t)r−m, tBm+1(t)m+1
)
·

1
1 −mt

=
B
′

m+1(t)Bm+1(t)r−m

1 −mtBm+1(t)m+1

=
Bm+1(t)r+2

(1 −mtBm+1(t)m+1)2

=

∞∑
n=0

Ω(m,r)
n tn,

which is equivalent to B(m,r)
n = Ω(m,r)

n .
Step 3: E(m,r)

n = Ω(m,r)
n , F(m,r)

n = Ω(m,r)
n .

Consider the following two Riordan matrices

E = (Bm+1(t)r, tBm+1(t)m) and F =
(
Bm+1(t)r+2, tBm+1(t)m+1

)
,

which are the generalized Catalan matrices considered by several authors [6, 13, 25]. Their generic elements
are given by

En,k = [tn]Bm+1(t)r (tBm+1(t)m)k

= [tn−k]Bm+1(t)mk+r

=
mk + r

mn + n − k + r

(
mn + n − k + r

n − k

)
,
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Fn,k = [tn]Bm+1(t)r+2
(
tBm+1(t)m+1

)k

= [tn−k]Bm+1(t)mk+k+r+2

=
mk + k + r + 2

(m + 1)n + r + 2

(
(m + 1)n + r + 2

n − k

)
.

From the following two matrix equations

(Bm+1(t)r, tBm+1(t)m) ·
1

(1 − (m + 1)t)2 =
Bm+1(t)r

(1 − (m + 1)tBm+1(t)m)2

=
Bm+1(t)r+2

(1 −mtBm+1(t)m+1)2

=

∞∑
n=0

Ω(m,r)
n tn,

(
Bm+1(t)r+2, tBm+1(t)m+1

)
·

1
(1 −mt)2 =

Bm+1(t)r+2

(1 −mtBm+1(t)m+1)2

=

∞∑
n=0

Ω(m,r)
n tn,

we can obtain that E(m,r)
n = Ω(m,r)

n and F(m,r)
n = Ω(m,r)

n .

Note that if we set m = 1 and r = 0, then

E = (1, tB2(t)) and F =
(
B2(t)2, tB2(t)2

)
,

where B2(t) =
∑
∞

n=0
1

2n+1
(2n+1

n
)
tn is the generating function of the Catalan numbers. Thus, E = (1, tB2(t)) is

the Ballot matrix [12, 23] and F =
(
B2(t)2, tB2(t)2

)
is the Shapiro’s Catalan triangle [18].

3. Special cases

In this section, we will give some identities for some special m and r.
Example 3.1. If m = 2 and r = 0, then we have

Ω(2,0)
n = A(2,0)

n = B(2,0)
n = E(2,0)

n = F(2,0)
n .

It means that
Ωn = An = Bn = En = Fn,

where the sequence (Ωn)n≥0 begins (A006256)

1, 6, 39, 258, 1719, 11469, · · ·

These results are also obtained in [1, 2, 8, 14].
Example 3.2. In the case m = 1,

∞∑
n=0

Ω(1,r)
n tn =

∞∑
n=0

n∑
k=0

(
2(n − k)

n − k

)(
2k + r

k

)
tn

=
C(t)r+2

(1 − tC(t)2)2

= B(t)2C(t)r,
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where C(t) = B2(t) =
∑
∞

n=0
1

2n+1
(2n+1

n
)
tn is the generating function of the Catalan numbers, and B(t) = C(t)

1−tC(t)2

is the generating function of the central binomial coefficients
(2n

n
)
.

(i) If m = 1 and r = 0, then we have

Ω(1,0)
n = A(1,0)

n = B(1,0)
n = E(1,0)

n = F(1,0)
n = 4n,

where

Ω(1,0)
n =

n∑
k=0

(
2(n − k)

n − k

)(
2k
k

)
,

A(1,0)
n =

n∑
k=0

2k
(
2n − k

n

)
,

B(1,0)
n =

n∑
k=0

(
2n + 1

n + k + 1

)
,

E(1,0)
n =

n∑
k=0

k(k + 1)
2n − k

(
2n − k
n − k

)
2k,

F(1,0)
n =

n∑
k=0

(k + 1)2

n + 1

(
2n + 2
n − k

)
.

(ii) If m = 1 and r = 1, then we can get that

Ω(1,1)
n = A(1,1)

n = B(1,1)
n = E(1,1)

n = F(1,1)
n = 22n+1

−

(
2n + 1

n

)
,

where

Ω(1,1)
n =

n∑
k=0

(
2(n − k)

n − k

)(
2k + 1

k

)
,

A(1,1)
n =

n∑
k=0

2k
(
2n − k + 1

n + 1

)
,

B(1,1)
n =

n∑
k=0

(
2n + 2

n + k + 2

)
,

E(1,1)
n =

n∑
k=0

(k + 1)2

2n − k + 1

(
2n − k + 1

n − k

)
2k,

F(1,1)
n =

n∑
k=0

(2k + 3)(k + 1)
2n + 3

(
2n + 3
n − k

)
,

and the sequence (Ω(1,1)
n )n≥0 begins (A000346)

1, 5, 22, 93, 386, 1586, · · ·

(iii) If m = 1 and r = 2, then we have

Ω(1,2)
n = 4n+1

−

(
2n + 3
n + 1

)
,

and the sequence (Ω(1,2)
n )n≥0 begins (A008549)

1, 6, 29, 130, 562, 2380, 9949, 41226, · · ·



L. Yang, S.-L. Yang / Filomat 37:20 (2023), 6917–6924 6923

(iv) If m = 1 and r = 3, then we have

Ω(1,3)
n = 22n+3

−

(
2n + 3

n

)
−

(
2n + 4
n + 2

)
,

and the sequence (Ω(1,3)
n )n≥0 begins (A006419)

1, 7, 37, 176, 794, 3473, 14893, 63004, · · ·

Example 3.3. If m = 2 and r = 1, then we can obtain that

Ω(2,1)
n = A(2,1)

n = B(2,1)
n = E(2,1)

n = F(2,1)
n ,

where

Ω(2,1)
n =

n∑
k=0

(
2(n − k)

n − k

)(
3k + 1

k

)
,

A(2,1)
n =

n∑
k=0

3k
(
3n − k + 1

2n + 1

)
,

B(2,1)
n =

n∑
k=0

2k
(

3n + 2
2n + k + 2

)
,

E(2,1)
n =

n∑
k=0

(2k + 1)(k + 1)
3n − k + 1

(
3n − k + 1

n − k

)
3k,

F(2,1)
n =

n∑
k=0

(k + 1)2

n + 1

(
3n + 3
n − k

)
2k,

and the sequence (Ω(2,1)
n )n≥0 begins (A036829)

1, 7, 48, 327, 2221, 15060, 102012, · · ·

Example 3.4. If m = 3 and r = 0, then we have

Ω(3,0)
n = A(3,0)

n = B(3,0)
n = E(3,0)

n = F(3,0)
n ,

where

Ω(3,0)
n =

n∑
k=0

(
4(n − k)

n − k

)(
4k
k

)
,

A(3,0)
n =

n∑
k=0

4k
(
4n − k

3n

)
,

B(3,0)
n =

n∑
k=0

3k
(

4n + 1
3n + k + 1

)
,

E(3,0)
n =

n∑
k=0

3k(k + 1)
4n − k

(
4n − k
n − k

)
4k,

F(3,0)
n =

n∑
k=0

(2k + 1)(k + 1)
2n + 1

(
4n + 2
n − k

)
3k,
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and the sequence (Ω(3,0)
n )n≥0 begins (A078995)

1, 8, 72, 664, 6184, 57888, · · ·
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