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On the set of all generalized Drazin invertible elements in a ring
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Abstract. Berkani and Sarihr [Studia Math. (2001) 148: 251–257] showed that the set of all Drazin invertible
elements in an algebra over a filed is a regularity in the sense of Kordula and Müller [Studia Math. (1996)
119: 109–128]. In this paper, the above result is extended to the case of a ring. Counterexamples are
provided to show that the set of all generalized Drazin invertible elements in a ring need not be a regularity
in general. We determine when the set of all generalized Drazin invertible matrices in the 2 × 2 full matrix
ring over a commutative local ring is a regularity. We also give a sufficient condition for the set of all
generalized Drazin invertible elements in a ring to be a regularity.

1. Introduction

To develop the axiomatic theory of spectrum, Kordula and Müller [14] introduced the notion of a
regularity in a complex Banach algebra using a purely algebraic method. Here we restate the definition of a
regularity in the setting of rings. Thus, a non-empty subset S in a ring R is called a regularity if the following
two conditions are satisfied:

(1) for any a ∈ R and positive integer n, a ∈ S⇔ an
∈ S, and

(2) for any mutually commutative elements a, b, c, d ∈ R such that ac + bd = 1, ab ∈ S⇔ a, b ∈ S.
In 2001, Berkani and Sarihr [1] proved that the set of all Drazin invertible elements in an algebra over a

filed is a regularity. For the case of generalized Drazin inverse, Lubansky [16] obtained a similar result in a
complex Banach algebra.

In this note, the Berkani-Sarihr’s result mentioned above is extended to the case of a ring. Counterex-
amples are provided to show that the set of all generalized Drazin invertible elements in a ring need not be
a regularity in general. We determine when the set of all generalized Drazin invertible matrices in the 2× 2
full matrix ring over a commutative local ring is a regularity. We also give a sufficient condition for the set
of all generalized Drazin invertible elements in a ring to be a regularity.

Throughout this paper, all rings R are associative with unity 1. The symbol U(R) stands for the set of all
invertible elements of R. Write J(R) to denote the Jacobson radical of R. The commutant of a ∈ R is denoted
by comm(a), i.e.,

comm(a) = {x ∈ R: xa = ax}.
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Similarly, the double commutant comm2(a) = {y ∈ R : yx = xy for all x ∈ comm(a)}. Following Harte [11],
an element a ∈ R is said to be quasi-nilpotent if 1 − ax ∈ U(R) for each x ∈ comm(a), which is equivalent
to ||an

||
1
n → 0 as n → +∞ in case R is a complex Banach algebra. Nilpotent elements and elements in the

Jacobson radical are well-known examples of quasi-nilpotent elements. We denote by Rqnil the set of all
quasi-nilpotent elements of R.

Recall that the Drazin inverse of a ∈ R, whenever it exists, is the unique element y ∈ R (denoted by aD)
such that yay = y ∈ comm(a) and yak+1 = ak for some non-negative integer k [9]. It is known that y = aD

if and only if yay = y ∈ comm2(a) and a − aya is nilpotent. Based on this fact, Koliha and Patrı́cio [15]
introduced the notion of generalized Drazin inverses in a ring. They called b ∈ R a generalized Drazin inverse
of a if bab = b ∈ comm2(a) and a − aba ∈ Rqnil. The generalized Drazin inverse of a is unique if it exists, and
will be denoted by agD. It is worth mentioning that if R is a complex Banach algebra, then b = agD if and
only if bab = b ∈ comm(a) and a − aba ∈ Rqnil (see [13] for the proof and much more, including topological
and spectral properties of the generalized Drazin inverse). By RD and RgD we mean the set of all elements
which have Drazin inverses and generalized Drazin inverses in R, respectively. An element a ∈ R is called
quasipolar [15] if there exists p ∈ R such that p2 = p ∈ comm2(a), ap ∈ Rqnil and a + p ∈ U(R). Following [18],
a ring R is said to be quasipolar if each element in R is quasipolar. It is shown [15] that a ∈ RgD if and only if
it is quasipolar. This fact will be used below repeatedly.

2. Main results

Proposition 2.1. The set RD of all Drazin invertible elements in any ring R is a regularity.

Proof. First of all, RD is nonempty since 0,±1 ∈ RD. According to [9, Theorem 4], a ∈ RD if and only if there
is a positive integer m such that

amR = am+1R = am+2R = · · · and Ram = Ram+1 = Ram+2 = · · ·

From this fact, it is easy to see that, for each integer n ≥ 1, a ∈ RD if and only if an
∈ RD (see [2, Theorem

11.5], [9, Theorem 2] and [12, Theorem 2.1] for different proofs).
Let a, b, c, d ∈ R be mutually commuting elements such that ac + bd = 1. If a, b ∈ RD, then ak

∈ ak+1R ∩
Rak+1 and bk

∈ bk+1R ∩ Rbk+1 for some positive integer k. One easily shows that (ab)k
∈ (ab)k+1R ∩ R(ab)k+1.

Thus ab ∈ RD in view of [9, Theorem 4].
Conversely, suppose ab ∈ RD with (ab)m = (ab)m+1(ab)D, we shall prove a, b ∈ RD. From the binomial

expansion of (ac + bd)2m+1 = 1 one can obtain c′, d′ ∈ comm(a) ∩ comm(b) such that am+1c′ + bm+1d′ = 1. Let
y = am

− am+1b(ab)D, then am = y + am+1(ab)Db and

y = (am+1c′ + bm+1d′)y

= am+1c′y + d′bm+1[am
− am+1b(ab)D]

= am+1c′y + d′b[(ab)m
− (ab)m+1(ab)D]

= am+1c′y ∈ am+1R.

So we have am
∈ am+1R. Similarly, am

∈ Ram+1 and bm
∈ bm+1R ∩ Rbm+1. Therefore a, b ∈ RD.

The following lemma will be repeatedly used in the sequel.

Lemma 2.2. Let a ∈ R. If an
∈ RgD for some integer n > 1, then a ∈ RgD with agD = an−1(an)gD = (an)gDan−1 and

(an)gD = (agD)n. In particular, an
∈ Rqnil implies a ∈ Rqnil.

Proof. Suppose an
∈ RgD. Then a ∈ RgD and agD = (an)gDan−1 (see, for instance, [12, Theorem 2.7 (i)]). From

(an)gD
∈ comm2(an) and an−1

∈ comm(an), we derive (an)gDan−1 = an−1(an)gD, and hence (agD)n = agDa(agD)n =
[(an)gDan−1]a(agD)n = (an)gDan(agD)n = (an)gDaagD = (an)gDa[an−1(an)gD] = (an)gD.

The last statement follows from the fact that a ∈ Rqnil if and only if agD = 0.
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Next, we provide two examples of rings in which the set of all generalized Drazin invertible elements
is not a regularity.

Example 2.3. Let S = Z2[t1, t2, . . .] be the ring of all polynomials in countably many indeterminates over
the field Z2 of integers modulo 2 and S(t1) denote the localization of S at the prime ideal (t1). Consider the
ring endomorphism σ : S(t1) → S(t1) induced by σ(ti) = ti+1 for all i ≥ 1. Let S(t1)[[x; σ]] be the skew formal
power series ring over S(t1) subject to xa = σ(a)x for all a ∈ S(t1) and R = T2(S(t1)[[x; σ]]) be the ring of all 2× 2
upper triangular matrices over S(t1)[[x; σ]], then

(i) A =
(

t2 x
0 −t1

)
∈ RgD but A2 =

(
t2
2 0
0 t2

1

)
< RgD;

(ii) B =
(

t2 0
0 t1

)
, C =

(
t−1
2 0
0 0

)
and D =

(
0 0
0 1

)
commute with each other, BC + D2 = I, where I denotes the

identity of R, and BD ∈ RgD but B < RgD.

Proof. (i) We claim that A ∈ Rqnil. Indeed, suppose that

X =


∞∑

i=0
µixi

∞∑
i=0
νixi

0
∞∑

i=0
ρixi

 ∈ R

commutes with A. Write µ−1 = ν−1 = ρ−1 = 0. Then, we have

AX =


∞∑

i=0
t2µixi

∞∑
i=0

[t2νi + σ(ρi−1)]xi

0 −

∞∑
i=0

t1ρixi


and

XA =


∞∑

i=0
µit2+ixi

∞∑
i=0

[µi−1 − νit1+i]xi

0
∞∑

i=0
−ρit1+ixi

 .
Now AX = XA implies

(t2 − t2+i)µi = 0, (1)

(t1 − t1+i)ρi = 0, (2)

t2νi + σ(ρi−1) = µi−1 − νit1+i, (3)

for all i ∈N.
From the above equalities (1) and (2) one can see that µ j = ρ j = 0 for j ≥ 1 since t2 − t2+ j and t1 − t1+ j are

invertible in S(t1)[[x; σ]]. Combining this fact with the above equality (3), we obtain

(t2 + t1)ν0 = 0, σ(ρ0) = µ0 and (t2 + t1+ j)ν j = 0 for j > 1.

Consequently, it follows that ν0 = ν2 = ν3 = · · · = 0 and t2µ0 , 1. We thus conclude

I − AX =
(
1 − t2µ0 (µ0 − ν1t2)x

0 1 + t1ρ0

)
∈ U(R).

This shows A ∈ Rqnil and hence A ∈ RgD with AgD = 0.
Assume that A2

∈ RgD. By Lemma 2.2, we have (A2)gD = (AgD)2 = 0, which means A2
∈ Rqnil. However,

there is a matrix C =
(

t−2
2 0
0 0

)
∈ R such that A2C =

(
1 0
0 0

)
= CA2 and I − A2C < U(R), a contradiction.

(ii) It is clear that B, C and D commute with each other, BC + D2 = I and BD ∈ J(R) ⊆ RgD. From [5,
Example 2.11], we know that B is not quasipolar, i.e., not generalized Drazin invertible.
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Example 2.4. Let Z(3) be the localization of the ring Z of integers at the prime ideal 3Z and R = M2(Z(3))
be the ring of all 2 × 2 matrices over Z(3). Consider the following matrices

A =
(

0 3
1 1

)
,B =

(
1 6
2 3

)
,C =

(
−2 0
0 −2

)
and D = I2 =

(
1 0
0 1

)
∈ R.

An easy computation shows that A,B,C and D are mutually commutative, AC+BD = I2 and AB ∈ J(R) ⊆ RgD.
However, in view of [6, Corollary 2.14], B < RgD because detB ∈ J(Z(3)), trB ∈ U(Z(3)) and the equation
x2 = (trB)2

−4detB = 52 has no solution in U(Z(3)), where detB and trB denote, respectively, the determinant
and trace of B.

Remark 2.5. Let M2(R) be the 2 × 2 full matrix ring over an arbitrary commutative local ring R. We
remark that (M2(R))gD is “almost” a regularity, i.e., (1) for any integer n > 1, X ∈ (M2(R))gD if and only if
Xn
∈ (M2(R))gD; (2) if A,B,C,D ∈M2(R) are mutually commutative, AC+BD = I2 and A,B ∈ (M2(R))gD, then

AB ∈ (M2(R))gD. Indeed, according to Lemma 2.2, it suffices to show AB ∈ (M2(R))gD under the hypothesis
of A,B ∈ (M2(R))gD and AB = BA. First of all, using [7, Proposition 4.1], we have (A−AAgDA)2, (B−BBgDB)2

∈

J(M2(R)). Then, by AgD
∈ comm2(A) and BgD

∈ comm2(B), it follows that BgDAgDABBgDAgD = BgDAgD
∈

comm(AB) and
(AB − ABBgDAgDAB)2 = [(A − AAgDA)B + AAgDA(B − BBgDB)]2

= (A − AAgDA)2B2 + (AAgDA)2(B − BBgDB)2

∈ J(M2(R)) ⊆ (M2(R))qnil.

Consequently, AB−ABBgDAgDAB ∈ (M2(R))qnil by Lemma 2.2. Let P = I2−ABBgDAgD, from the proof of [15,
Theorem 4.2], one can see that P2 = P ∈ comm(AB), ABP ∈ (M2(R))qnil and AB + P ∈ U(M2(R)). Therefore,
we obtain AB ∈ (M2(R))gD by [7, Proposition 3.5].

For the n× n full matrix ring over a commutative local ring without zero divisor, we have the following
result.

Proposition 2.6. Let n be any integer greater than 1 and Mn(R) be the ring of all n× n matrices over a commutative
local ring R without zero divisor. If A,B ∈ (Mn(R))gD and AB = BA, then AB ∈ (Mn(R))gD.

Proof. Let C = AB for convenience. Similarly to Remark 2.5, by virtue of [4, Theorem 2.5], we conclude that
there exists P ∈ Mn(R) such that P2 = P ∈ comm(C), CP ∈ (Mn(R))qnil and C + P ∈ U(Mn(R)). Note that R is
projective free (see, e.g., [10, Charpter VIII, Proposition 4.8]). From [3, Charpter 0, Proposition 4.5], there is
V ∈ U(Mn(R)) such that P = V

(
Ir 0
0 0

)
V−1, where 0 ≤ r ≤ n. If r = 0 then C is invertible and hence the result

is clear. If r = n then C ∈ (Mn(R))qnil
⊆ (Mn(R))gD.

Now suppose 0 < r < n and write V−1CV =
(

C1 C2
C3 C4

)
, where C1 is an r × r matrix over R. Then CP = PC

implies C2 = C3 = 0. Moreover,

V
(

C1 + Ir 0
0 C4

)
V−1 = V

(
C1 0
0 C4

)
V−1 + V

(
Ir 0
0 0

)
V−1 = C + P ∈ U(Mn(R))

implies C4 ∈ U(Mn−r(R)). Furthermore,

V
(

C1 0
0 0

)
V−1 = V

(
C1 0
0 C4

)
V−1V

(
Ir 0
0 0

)
V−1 = CP ∈ (Mn(R))qnil

gives rise to
(

C1 0
0 0

)
∈ (Mn(R))qnil by [6, Lemma 2.3]. For any D ∈ comm(C1), we have

(
D 0
0 0

)(
C1 0
0 0

)
=(

C1 0
0 0

)(
D 0
0 0

)
, and hence

(
Ir − C1D 0

0 In−r

)
∈ U(Mn(R)). This means Ir − C1D ∈ U(Mr(R)), i.e., C1 ∈ (Mr(R))qnil.

From [4, Theorem 2.5] it follows that Ck
1 ∈ J(Mr(R)) for some k ≥ 1. Write W = V−1CkV =

(
Ck

1 0
0 Ck

4

)
and X =

(0 0
0 C−k

4

)
. We proceed to show that W ∈ (Mn(R))gD with WgD = X. A trivial verification gives
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that XWX = X and W − WXW ∈ J(Mn(R)) ⊆ (Mn(R))qnil. We next prove X ∈ comm2(W). For any
Y =

(
Y1 Y2
Y3 Y4

)
∈ comm(W) with Y1 ∈Mr(R), one has(

Ck
1Y1 Ck

1Y2

Ck
4Y3 Ck

4Y4

)
=WY = YW =

(
Y1Ck

1 Y2Ck
4

Y3Ck
1 Y4Ck

4

)
.

Write f (x) = a0 + a1x + · · · + xn−r for the characteristic polynomial of Ck
4. Clearly a0 ∈ U(R) since C4 ∈

U(Mn−r(R)). By the Hamilton-Cayley theorem, f (Ck
4) = 0 and so (Ck

4)D = (Ck
4)−1 = 1(Ck

4), where 1(x) =
−a−1

0 a1 − · · · − a−1
0 xn−r−1. Let F be the quotient field of R. Note that Ck

1 is Drazin invertible in Mr(F) (see [9,
Corollary 5]). Then we have

(Ck
1)DY2 = Y2(Ck

4)D = Y21(Ck
4) = 1(Ck

1)Y2,

where the first equality can be obtained by a similar argument to the proof of [8, Theorem 2.2], and the last
equality follows from Y2Ck

4 = Ck
1Y2. Hence

[Ir − Ck
1(Ck

1)D]Y2 = Y2 − Ck
1Y2(Ck

4)D = Y2[Ir − Ck
4(Ck

4)D] = 0,

and so Y2 = Ck
1(Ck

1)DY2. Consequently,

[Ir − 1(Ck
1)Ck

1]Y2 = Y2 − 1(Ck
1)Ck

1Y2

= Ck
1(Ck

1)DY2 − Ck
11(C

k
1)Y2

= Ck
1[(Ck

1)DY2 − Y21(Ck
4)]

= Ck
1[(Ck

1)DY2 − Y2(Ck
4)D]

= 0.

Since Ck
1 ∈ J(Mr(R)) =Mr(J(R)) and all the coefficients of 1(x) are in R, we conclude that 1(Ck

1)Ck
1 ∈Mr(J(R)) =

J(Mr(R)). This forces Ir − 1(Ck
1)Ck

1 ∈ U(Mr(R)) and hence Y2 = 0 as we have seen that [Ir − 1(Ck
1)Ck

1]Y2 = 0. In
the same manner one can show that Y3 = 0. In addition, the equation Ck

4Y4 = Y4Ck
4 implies C−k

4 Y4 = Y4C−k
4 .

Whence it follows that YX = XY, showing X ∈ comm2(W). Thus, WgD = X as desired. In view of [6, Lemma
2.3], Ck = VWV−1

∈ (Mn(R))gD. Finally, we obtain that C = AB ∈ (Mn(R))gD by Lemma 2.2.

The above Example 2.4 and Remark 2.5 motivate us to consider under what condition (M2(R))gD is a
regularity.

Theorem 2.7. Let M2(R) be the 2 × 2 matrix ring over a commutative local ring R. Then (M2(R))gD is a regularity
if and only if M2(R) is quasipolar.

Proof. Suppose that (M2(R))gD is a regularity. By [7, Theorem 3.7], it suffices to prove that for any u ∈ U(R)
and j ∈ J(R),

(
0 j
1 u

)
is quasipolar. Let

A =
(
0 j
1 u

)
,C =

(
u−1
− u − 2u−1 j j

1 u−1
− 2u−1 j

)
,

B =
(
−u j
1 0

)
,D =

(
2u−1 j − u−1 j

1 2u−1 j − u−1 + u

)
.

One can check that A,B,C and D are mutually commutative, AC + BD = I2 and AB ∈ J(M2(R)) ⊆ (M2(R))gD.
Therefore A ∈ (M2(R))gD, i.e., A is quasipolar.

The converse is obvious.
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We refer the readers to [6, 7] for more sufficient and necessary conditions under which the 2 × 2 matrix
ring M2(R) over a commutative local ring R is quasipolar.

Recall that a ring R is said to be abelian if every idempotent in R is central. Following Nicholson and
Zhou [17], we say that idempotents in a ring R lift strongly modulo an ideal I if, whenever a2

− a ∈ I, there
exists e2 = e ∈ aR (equivalently e2 = e ∈ Ra) such that e − a ∈ I. As usual, we write

√
J(R) = {x ∈ R : xn

∈

J(R) for some positive integer n}.

Theorem 2.8. Let R be an abelian ring such that Rqnil
⊆

√
J(R) and idempotents in R lift strongly modulo J(R), then

RgD is a regularity.

Proof. We will use the following fact repeatedly in the sequel: if a, x ∈ R satisfy xax = x, then x ∈ comm2(a).
Indeed, for any y ∈ comm(a), yx = y(xa)x = (xa)yx = x(ya)x = xy(ax) = x(ax)y = (xax)y = xy since R is
abelian.

Given an integer n ≥ 1, if an
∈ RgD, then by Lemma 2.2, we have a ∈ RgD. Conversely, suppose a ∈ RgD.

Then (agD)nan(agD)n = (agD)n and hence (agD)n
∈ comm2(an). Note that a − aagDa ∈ Rqnil

⊆
√

J(R). We have
(a−aagDa)kn

∈ J(R) ⊆ Rqnil for some integer k ≥ 1. Consequently, it follows that an
−an(agD)nan = (a−aagDa)n

∈

Rqnil by Lemma 2.2. Thus, an
∈ RgD.

Now let a, b, c, d ∈ R be mutually commutative elements such that ac+ bd = 1. If a, b ∈ RgD then it follows
that bgDagDabbgDagD = bgDbbgD(agDa)agD = bgDagD

∈ comm2(ab) and

(ab − abbgDagDab)l = (a − aagDa)lbl + (aagDa)l(b − bbgDb)l
∈ J(R) ⊆ Rqnil

for some positive integer l. Using Lemma 2.2 we get ab − abbgDagDab ∈ Rqnil. This shows bgDagD = (ab)gD.
Conversely, if ab ∈ RgD, write p = 1 − ab(ab)gD. Since abp ∈ Rqnil

⊆
√

J(R), it follows that (abp)t
∈ J(R) for

some positive integer t. Note that a, b, c, d, p, (ab)gD commute with each other as (ab)gD
∈ comm2(ab) and

a, b, c, d ∈ comm(ab). Let 1 = b(ab)gD + pc and h = 1 − (1 − 1a)t, then h ∈ aR ∩ Ra and

at
− ath = (a − a1a)t = (a − ab(ab)gDa − apca)t

= (pa − apca)t = [ap(1 − ac)]t

= (apbd)t = (abp)tdt
∈ J(R).

Hence
at + J(R) = ath + J(R) = hat + J(R) ∈ [at+1R + J(R)] ∩ [Rat+1 + J(R)].

This implies that a + J(R) ∈ (R/J(R))D by [9, Theorem 4]. Let x ∈ R with x + J(R) = (a + J(R))D, one has that
ax− (ax)2

∈ J(R) and (a− axa)m
∈ J(R) for some positive integer m. As idempotents in R lift strongly modulo

J(R), there is an idempotent e ∈ R such that ax − e ∈ J(R) and e = axw for some w ∈ R. It is easily seen that
(xwe)a(xwe) = xwe ∈ comm2(a) and

[a − a(xwe)a]m = [(1 − e)a]m = [(a − axa) + (ax − e)a]m
∈ J(R) ⊆ Rqnil.

By Lemma 2.2, a − a(xwe)a ∈ Rqnil. Therefore a ∈ RgD with agD = xwe. Similarly one gets b ∈ RgD.

Remark 2.9. (1) Note that the ring Z of integers, the polynomial ring Z[x], the formal power series ring
Z[[x]] and all local rings satisfy the hypothesis of Theorem 2.8.

(2) Let R = R1 × R2 be the direct product of two rings R1 and R2 such that RgD
1 and RgD

2 are regularities,
then RgD = RgD

1 × RgD
2 is a regularity. Thus, one can construct more examples of rings R in which RgD is a

regularity.
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