Filomat 37:20 (2023), 6719–6725 https://doi.org/10.2298/FIL2320719P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the set of all generalized Drazin invertible elements in a ring

Fei Peng^a, Xiaoxiang Zhang^{a,*}

^aSchool of Mathematics, Southeast University, Nanjing 210096, China

Abstract. Berkani and Sarihr [Studia Math. (2001) 148: 251–257] showed that the set of all Drazin invertible elements in an algebra over a filed is a regularity in the sense of Kordula and Müller [Studia Math. (1996) 119: 109–128]. In this paper, the above result is extended to the case of a ring. Counterexamples are provided to show that the set of all generalized Drazin invertible elements in a ring need not be a regularity in general. We determine when the set of all generalized Drazin invertible matrices in the 2×2 full matrix ring over a commutative local ring is a regularity. We also give a sufficient condition for the set of all generalized Drazin invertible elements condition for the set of all generalized Drazin invertible matrices.

1. Introduction

To develop the axiomatic theory of spectrum, Kordula and Müller [14] introduced the notion of a regularity in a complex Banach algebra using a purely algebraic method. Here we restate the definition of a regularity in the setting of rings. Thus, a non-empty subset *S* in a ring *R* is called a *regularity* if the following two conditions are satisfied:

(1) for any $a \in R$ and positive integer $n, a \in S \Leftrightarrow a^n \in S$, and

(2) for any mutually commutative elements $a, b, c, d \in R$ such that ac + bd = 1, $ab \in S \Leftrightarrow a, b \in S$.

In 2001, Berkani and Sarihr [1] proved that the set of all Drazin invertible elements in an algebra over a filed is a regularity. For the case of generalized Drazin inverse, Lubansky [16] obtained a similar result in a complex Banach algebra.

In this note, the Berkani-Sarihr's result mentioned above is extended to the case of a ring. Counterexamples are provided to show that the set of all generalized Drazin invertible elements in a ring need not be a regularity in general. We determine when the set of all generalized Drazin invertible matrices in the 2×2 full matrix ring over a commutative local ring is a regularity. We also give a sufficient condition for the set of all generalized Drazin invertible elements in a ring to be a regularity.

Throughout this paper, all rings *R* are associative with unity 1. The symbol U(*R*) stands for the set of all invertible elements of *R*. Write J(*R*) to denote the Jacobson radical of *R*. The commutant of $a \in R$ is denoted by comm(a), i.e.,

 $\operatorname{comm}(a) = \{x \in R: xa = ax\}.$

²⁰²⁰ Mathematics Subject Classification. 16U90.

Keywords. Regularity; Drazin inverse; Generalized Drazin inverse; Ring.

Received: 13 January 2023; Accepted: 11 February 2023

Communicated by Dragana Cvetković-Ilić

Research supported by the National Natural Science Foundation of China (No. 11871145, 12171083) and the Qinglan Project of Jiangsu Province of China

^{*} Corresponding author: Xiaoxiang Zhang

Email addresses: pfmath@163.com (Fei Peng), 101009915@seu.edu.cn (Xiaoxiang Zhang)

Similarly, the double commutant comm²(*a*) = { $y \in R : yx = xy$ for all $x \in \text{comm}(a)$ }. Following Harte [11], an element $a \in R$ is said to be *quasi-nilpotent* if $1 - ax \in U(R)$ for each $x \in \text{comm}(a)$, which is equivalent to $||a^n||^{\frac{1}{n}} \to 0$ as $n \to +\infty$ in case *R* is a complex Banach algebra. Nilpotent elements and elements in the Jacobson radical are well-known examples of quasi-nilpotent elements. We denote by R^{qnil} the set of all quasi-nilpotent elements of *R*.

Recall that the *Drazin inverse* of $a \in R$, whenever it exists, is the unique element $y \in R$ (denoted by a^D) such that $yay = y \in \text{comm}(a)$ and $ya^{k+1} = a^k$ for some non-negative integer k [9]. It is known that $y = a^D$ if and only if $yay = y \in \text{comm}^2(a)$ and a - aya is nilpotent. Based on this fact, Koliha and Patrício [15] introduced the notion of generalized Drazin inverses in a ring. They called $b \in R$ a *generalized Drazin inverse* of a if $bab = b \in \text{comm}^2(a)$ and $a - aba \in R^{qnil}$. The generalized Drazin inverse of a is unique if it exists, and will be denoted by a^{gD} . It is worth mentioning that if R is a complex Banach algebra, then $b = a^{gD}$ if and only if $bab = b \in \text{comm}(a)$ and $a - aba \in R^{qnil}$ (see [13] for the proof and much more, including topological and spectral properties of the generalized Drazin inverse). By R^D and R^{gD} we mean the set of all elements which have Drazin inverses and generalized Drazin inverses in R, respectively. An element $a \in R$ is called *quasipolar* [15] if there exists $p \in R$ such that $p^2 = p \in \text{comm}^2(a)$, $ap \in R^{qnil}$ and $a + p \in U(R)$. Following [18], a ring R is said to be *quasipolar* if each element in R is quasipolar. It is shown [15] that $a \in R^{gD}$ if and only if is quasipolar. This fact will be used below repeatedly.

2. Main results

Proposition 2.1. The set R^D of all Drazin invertible elements in any ring R is a regularity.

Proof. First of all, R^{D} is nonempty since $0, \pm 1 \in R^{D}$. According to [9, Theorem 4], $a \in R^{D}$ if and only if there is a positive integer *m* such that

$$a^{m}R = a^{m+1}R = a^{m+2}R = \cdots$$
 and $Ra^{m} = Ra^{m+1} = Ra^{m+2} = \cdots$

From this fact, it is easy to see that, for each integer $n \ge 1$, $a \in R^D$ if and only if $a^n \in R^D$ (see [2, Theorem 11.5], [9, Theorem 2] and [12, Theorem 2.1] for different proofs).

Let $a, b, c, d \in R$ be mutually commuting elements such that ac + bd = 1. If $a, b \in R^{D}$, then $a^{k} \in a^{k+1}R \cap Ra^{k+1}$ and $b^{k} \in b^{k+1}R \cap Rb^{k+1}$ for some positive integer k. One easily shows that $(ab)^{k} \in (ab)^{k+1}R \cap R(ab)^{k+1}$. Thus $ab \in R^{D}$ in view of [9, Theorem 4].

Conversely, suppose $ab \in \mathbb{R}^{D}$ with $(ab)^{m} = (ab)^{m+1}(ab)^{D}$, we shall prove $a, b \in \mathbb{R}^{D}$. From the binomial expansion of $(ac + bd)^{2m+1} = 1$ one can obtain $c', d' \in \text{comm}(a) \cap \text{comm}(b)$ such that $a^{m+1}c' + b^{m+1}d' = 1$. Let $y = a^{m} - a^{m+1}b(ab)^{D}$, then $a^{m} = y + a^{m+1}(ab)^{D}b$ and

$$y = (a^{m+1}c' + b^{m+1}d')y$$

= $a^{m+1}c'y + d'b^{m+1}[a^m - a^{m+1}b(ab)^D]$
= $a^{m+1}c'y + d'b[(ab)^m - (ab)^{m+1}(ab)^D]$
= $a^{m+1}c'y \in a^{m+1}R$.

So we have $a^m \in a^{m+1}R$. Similarly, $a^m \in Ra^{m+1}$ and $b^m \in b^{m+1}R \cap Rb^{m+1}$. Therefore $a, b \in R^D$. \Box

The following lemma will be repeatedly used in the sequel.

Lemma 2.2. Let $a \in R$. If $a^n \in R^{gD}$ for some integer n > 1, then $a \in R^{gD}$ with $a^{gD} = a^{n-1}(a^n)^{gD} = (a^n)^{gD}a^{n-1}$ and $(a^n)^{gD} = (a^{gD})^n$. In particular, $a^n \in R^{qnil}$ implies $a \in R^{qnil}$.

Proof. Suppose $a^n \in \mathbb{R}^{gD}$. Then $a \in \mathbb{R}^{gD}$ and $a^{gD} = (a^n)^{gD}a^{n-1}$ (see, for instance, [12, Theorem 2.7 (i)]). From $(a^n)^{gD} \in \operatorname{comm}^2(a^n)$ and $a^{n-1} \in \operatorname{comm}(a^n)$, we derive $(a^n)^{gD}a^{n-1} = a^{n-1}(a^n)^{gD}$, and hence $(a^{gD})^n = a^{gD}a(a^{gD})^n = [(a^n)^{gD}a^{n-1}]a(a^{gD})^n = (a^n)^{gD}a^n(a^{gD})^n = (a^n)^{gD}a^{gD}a^{gD} = (a^n)^{gD}a[a^{n-1}(a^n)^{gD}] = (a^n)^{gD}$.

The last statement follows from the fact that $a \in R^{\text{qnil}}$ if and only if $a^{\text{gD}} = 0$. \Box

Next, we provide two examples of rings in which the set of all generalized Drazin invertible elements is not a regularity.

Example 2.3. Let $S = \mathbb{Z}_2[t_1, t_2, ...]$ be the ring of all polynomials in countably many indeterminates over the field \mathbb{Z}_2 of integers modulo 2 and $S_{(t_1)}$ denote the localization of *S* at the prime ideal (t_1). Consider the ring endomorphism $\sigma : S_{(t_1)} \to S_{(t_1)}$ induced by $\sigma(t_i) = t_{i+1}$ for all $i \ge 1$. Let $S_{(t_1)}[[x;\sigma]]$ be the skew formal power series ring over $S_{(t_1)}$ subject to $xa = \sigma(a)x$ for all $a \in S_{(t_1)}$ and $R = T_2(S_{(t_1)}[[x; \sigma]])$ be the ring of all 2×2 upper triangular matrices over $S_{(t_1)}[[x; \sigma]]$, then

(i) $A = \begin{pmatrix} t_2 & x \\ 0 & -t_1 \end{pmatrix} \in R^{\text{gD}}$ but $A^2 = \begin{pmatrix} t_2^2 & 0 \\ 0 & t_1^2 \end{pmatrix} \notin R^{\text{gD}}$; (ii) $B = \begin{pmatrix} t_2 & 0 \\ 0 & t_1 \end{pmatrix}, C = \begin{pmatrix} t_2^{-1} & 0 \\ 0 & 0 \end{pmatrix}$ and $D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ commute with each other, $BC + D^2 = I$, where I denotes the identity of R, and $BD \in R^{\text{gD}}$ but $B \notin R^{\text{gD}}$.

Proof. (i) We claim that $A \in R^{qnil}$. Indeed, suppose that

$$X = \begin{pmatrix} \sum_{i=0}^{\infty} \mu_i x^i & \sum_{i=0}^{\infty} \nu_i x^i \\ 0 & \sum_{i=0}^{\infty} \rho_i x^i \end{pmatrix} \in R$$

commutes with *A*. Write $\mu_{-1} = \nu_{-1} = \rho_{-1} = 0$. Then, we have

$$AX = \begin{pmatrix} \sum_{i=0}^{\infty} t_{2}\mu_{i}x^{i} & \sum_{i=0}^{\infty} [t_{2}\nu_{i} + \sigma(\rho_{i-1})]x^{i} \\ 0 & -\sum_{i=0}^{\infty} t_{1}\rho_{i}x^{i} \end{pmatrix}$$

and

$$XA = \begin{pmatrix} \sum_{i=0}^{\infty} \mu_i t_{2+i} x^i & \sum_{i=0}^{\infty} [\mu_{i-1} - \nu_i t_{1+i}] x^i \\ 0 & \sum_{i=0}^{\infty} -\rho_i t_{1+i} x^i \end{pmatrix}.$$

Now AX = XA implies

$$(t_2 - t_{2+i})\mu_i = 0, (1)$$

$$(t_1 - t_{1+i})\rho_i = 0, (2)$$

$$t_2 \nu_i + \sigma(\rho_{i-1}) = \mu_{i-1} - \nu_i t_{1+i}, \tag{3}$$

for all $i \in \mathbb{N}$.

From the above equalities (1) and (2) one can see that $\mu_i = \rho_i = 0$ for $j \ge 1$ since $t_2 - t_{2+j}$ and $t_1 - t_{1+j}$ are invertible in $S_{(t_1)}[[x;\sigma]]$. Combining this fact with the above equality (3), we obtain

$$(t_2 + t_1)v_0 = 0, \sigma(\rho_0) = \mu_0$$
 and $(t_2 + t_{1+j})v_j = 0$ for $j > 1$.

Consequently, it follows that $v_0 = v_2 = v_3 = \cdots = 0$ and $t_2 \mu_0 \neq 1$. We thus conclude

$$I - AX = \begin{pmatrix} 1 - t_2 \mu_0 & (\mu_0 - \nu_1 t_2) x \\ 0 & 1 + t_1 \rho_0 \end{pmatrix} \in \mathbf{U}(R).$$

This shows $A \in R^{qnil}$ and hence $A \in R^{gD}$ with $A^{gD} = 0$.

Assume that $A^2 \in R^{\text{gD}}$. By Lemma 2.2, we have $(A^2)^{\text{gD}} = (A^{\text{gD}})^2 = 0$, which means $A^2 \in R^{\text{qnil}}$. However, there is a matrix $C = \begin{pmatrix} t_2^{-2} & 0 \\ 0 & 0 \end{pmatrix} \in R$ such that $A^2C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = CA^2$ and $I - A^2C \notin U(R)$, a contradiction.

(ii) It is clear that B, C and D commute with each other, $BC + D^2 = I$ and $BD \in J(R) \subseteq R^{gD}$. From [5, Example 2.11], we know that *B* is not quasipolar, i.e., not generalized Drazin invertible. \Box

Example 2.4. Let $\mathbb{Z}_{(3)}$ be the localization of the ring \mathbb{Z} of integers at the prime ideal $3\mathbb{Z}$ and $R = M_2(\mathbb{Z}_{(3)})$ be the ring of all 2×2 matrices over $\mathbb{Z}_{(3)}$. Consider the following matrices

$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 6 \\ 2 & 3 \end{pmatrix}, C = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$
 and $D = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in R$.

An easy computation shows that *A*, *B*, *C* and *D* are mutually commutative, $AC+BD = I_2$ and $AB \in J(R) \subseteq R^{gD}$. However, in view of [6, Corollary 2.14], $B \notin R^{\text{gD}}$ because det $B \in J(\mathbb{Z}_{(3)})$, tr $B \in U(\mathbb{Z}_{(3)})$ and the equation $x^2 = (trB)^2 - 4detB = 52$ has no solution in U($\mathbb{Z}_{(3)}$), where detB and trB denote, respectively, the determinant and trace of B.

Remark 2.5. Let $M_2(R)$ be the 2 \times 2 full matrix ring over an arbitrary commutative local ring R. We remark that $(M_2(R))^{gD}$ is "almost" a regularity, i.e., (1) for any integer $n > 1, X \in (M_2(R))^{gD}$ if and only if $X^n \in (M_2(R))^{gD}$; (2) if $A, B, C, D \in M_2(R)$ are mutually commutative, $AC + BD = I_2$ and $A, B \in (M_2(R))^{gD}$, then $AB \in (M_2(R))^{gD}$. Indeed, according to Lemma 2.2, it suffices to show $AB \in (M_2(R))^{gD}$ under the hypothesis of $A, B \in (M_2(R))^{\text{gD}}$ and AB = BA. First of all, using [7, Proposition 4.1], we have $(A - AA^{\text{gD}}A)^2$, $(B - BB^{\text{gD}}B)^2 \in J(M_2(R))$. Then, by $A^{\text{gD}} \in \text{comm}^2(A)$ and $B^{\text{gD}} \in \text{comm}^2(B)$, it follows that $B^{\text{gD}}A^{\text{gD}}ABB^{\text{gD}}A^{\text{gD}} = B^{\text{gD}}A^{\text{gD}} \in \mathbb{C}$ comm(AB) and

$$(AB - ABB^{gD}A^{gD}AB)^{2} = [(A - AA^{gD}A)B + AA^{gD}A(B - BB^{gD}B)]^{2}$$
$$= (A - AA^{gD}A)^{2}B^{2} + (AA^{gD}A)^{2}(B - BB^{gD}B)^{2}$$
$$\in J(M_{2}(R)) \subseteq (M_{2}(R))^{qnil}.$$

Consequently, $AB - ABB^{\text{gD}}A^{\text{gD}}AB \in (M_2(R))^{\text{qnil}}$ by Lemma 2.2. Let $P = I_2 - ABB^{\text{gD}}A^{\text{gD}}$, from the proof of [15, Theorem 4.2], one can see that $P^2 = P \in \text{comm}(AB)$, $ABP \in (M_2(R))^{\text{qnil}}$ and $AB + P \in U(M_2(R))^1$. Therefore, we obtain $AB \in (M_2(R))^{gD}$ by [7, Proposition 3.5].

For the $n \times n$ full matrix ring over a commutative local ring without zero divisor, we have the following result.

Proposition 2.6. Let *n* be any integer greater than 1 and $M_n(R)$ be the ring of all $n \times n$ matrices over a commutative local ring R without zero divisor. If $A, B \in (M_n(R))^{gD}$ and AB = BA, then $AB \in (M_n(R))^{gD}$.

Proof. Let C = AB for convenience. Similarly to Remark 2.5, by virtue of [4, Theorem 2.5], we conclude that there exists $P \in M_n(R)$ such that $P^2 = P \in \text{comm}(C)$, $CP \in (M_n(R))^{\text{qnil}}$ and $C + P \in U(M_n(R))$. Note that R is projective free (see, e.g., [10, Charpter VIII, Proposition 4.8]). From [3, Charpter 0, Proposition 4.5], there is $V \in U(M_n(R))$ such that $P = V \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} V^{-1}$, where $0 \le r \le n$. If r = 0 then *C* is invertible and hence the result is clear. If r = n then $C \in (M_n(R))^{\text{qnil}} \subseteq (M_n(R))^{\text{gD}}$. Now suppose 0 < r < n and write $V^{-1}CV = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}$, where C_1 is an $r \times r$ matrix over R. Then CP = PC

implies $C_2 = C_3 = 0$. Moreover,

$$V \begin{pmatrix} C_1 + I_r & 0 \\ 0 & C_4 \end{pmatrix} V^{-1} = V \begin{pmatrix} C_1 & 0 \\ 0 & C_4 \end{pmatrix} V^{-1} + V \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} V^{-1} = C + P \in U(M_n(R))$$

implies $C_4 \in U(M_{n-r}(R))$. Furthermore,

$$V\begin{pmatrix} C_1 & 0\\ 0 & 0 \end{pmatrix} V^{-1} = V\begin{pmatrix} C_1 & 0\\ 0 & C_4 \end{pmatrix} V^{-1} V\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} V^{-1} = CP \in (M_n(R))^{qnil}$$

gives rise to $\begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix} \in (\mathbf{M}_n(R))^{\text{qnil}}$ by [6, Lemma 2.3]. For any $D \in \text{comm}(C_1)$, we have $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, and hence $\begin{pmatrix} I_r - C_1 D & 0 \\ I_{n-r} \end{pmatrix} \in U(\mathbf{M}_n(R))$. This means $I_r - C_1 D \in U(\mathbf{M}_r(R))$, i.e., $C_1 \in (\mathbf{M}_r(R))^{\text{qnil}}$. From [4, Theorem 2.5] it follows that $C_1^k \in J(M_r(R))$ for some $k \ge 1$. Write $W = V^{-1}C^k V = \begin{pmatrix} C_1^k & 0 \\ 0 & C_2^k \end{pmatrix}$ and $X = \begin{pmatrix} 0 & 0 \\ 0 & C^{-k} \end{pmatrix}$. We proceed to show that $W \in (M_n(R))^{gD}$ with $W^{gD} = X$. A trivial verification gives

that XWX = X and $W - WXW \in J(M_n(R)) \subseteq (M_n(R))^{qnil}$. We next prove $X \in \text{comm}^2(W)$. For any $Y = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix} \in \text{comm}(W)$ with $Y_1 \in M_r(R)$, one has

$$\begin{pmatrix} C_1^k Y_1 & C_1^k Y_2 \\ C_4^k Y_3 & C_4^k Y_4 \end{pmatrix} = WY = YW = \begin{pmatrix} Y_1 C_1^k & Y_2 C_4^k \\ Y_3 C_1^k & Y_4 C_4^k \end{pmatrix}$$

Write $f(x) = a_0 + a_1x + \cdots + x^{n-r}$ for the characteristic polynomial of C_4^k . Clearly $a_0 \in U(R)$ since $C_4 \in U(M_{n-r}(R))$. By the Hamilton-Cayley theorem, $f(C_4^k) = 0$ and so $(C_4^k)^{D} = (C_4^k)^{-1} = g(C_4^k)$, where $g(x) = -a_0^{-1}a_1 - \cdots - a_0^{-1}x^{n-r-1}$. Let *F* be the quotient field of *R*. Note that C_1^k is Drazin invertible in $M_r(F)$ (see [9, Corollary 5]). Then we have

$$(C_1^k)^{\mathrm{D}}Y_2 = Y_2(C_4^k)^{\mathrm{D}} = Y_2g(C_4^k) = g(C_1^k)Y_2$$

where the first equality can be obtained by a similar argument to the proof of [8, Theorem 2.2], and the last equality follows from $Y_2C_4^k = C_1^kY_2$. Hence

$$[I_r - C_1^k (C_1^k)^{\mathrm{D}}] Y_2 = Y_2 - C_1^k Y_2 (C_4^k)^{\mathrm{D}} = Y_2 [I_r - C_4^k (C_4^k)^{\mathrm{D}}] = 0,$$

and so $Y_2 = C_1^k (C_1^k)^D Y_2$. Consequently,

$$\begin{split} [I_r - g(C_1^k)C_1^k]Y_2 &= Y_2 - g(C_1^k)C_1^kY_2 \\ &= C_1^k(C_1^k)^DY_2 - C_1^kg(C_1^k)Y_2 \\ &= C_1^k[(C_1^k)^DY_2 - Y_2g(C_4^k)] \\ &= C_1^k[(C_1^k)^DY_2 - Y_2(C_4^k)^D] \\ &= 0. \end{split}$$

Since $C_1^k \in J(M_r(R)) = M_r(J(R))$ and all the coefficients of g(x) are in R, we conclude that $g(C_1^k)C_1^k \in M_r(J(R)) = J(M_r(R))$. This forces $I_r - g(C_1^k)C_1^k \in U(M_r(R))$ and hence $Y_2 = 0$ as we have seen that $[I_r - g(C_1^k)C_1^k]Y_2 = 0$. In the same manner one can show that $Y_3 = 0$. In addition, the equation $C_4^kY_4 = Y_4C_4^k$ implies $C_4^{-k}Y_4 = Y_4C_4^{-k}$. Whence it follows that YX = XY, showing $X \in \text{comm}^2(W)$. Thus, $W^{\text{gD}} = X$ as desired. In view of [6, Lemma 2.3], $C^k = VWV^{-1} \in (M_n(R))^{\text{gD}}$. Finally, we obtain that $C = AB \in (M_n(R))^{\text{gD}}$ by Lemma 2.2.

The above Example 2.4 and Remark 2.5 motivate us to consider under what condition $(M_2(R))^{gD}$ is a regularity.

Theorem 2.7. Let $M_2(R)$ be the 2 × 2 matrix ring over a commutative local ring R. Then $(M_2(R))^{gD}$ is a regularity *if and only if* $M_2(R)$ *is quasipolar.*

Proof. Suppose that $(M_2(R))^{gD}$ is a regularity. By [7, Theorem 3.7], it suffices to prove that for any $u \in U(R)$ and $j \in J(R)$, $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ is quasipolar. Let

$$A = \begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}, C = \begin{pmatrix} u^{-1} - u - 2u^{-1}j & j \\ 1 & u^{-1} - 2u^{-1}j \end{pmatrix},$$
$$B = \begin{pmatrix} -u & j \\ 1 & 0 \end{pmatrix}, D = \begin{pmatrix} 2u^{-1}j - u^{-1} & j \\ 1 & 2u^{-1}j - u^{-1} + u \end{pmatrix}.$$

One can check that *A*, *B*, *C* and *D* are mutually commutative, $AC + BD = I_2$ and $AB \in J(M_2(R)) \subseteq (M_2(R))^{gD}$. Therefore $A \in (M_2(R))^{gD}$, i.e., *A* is quasipolar.

The converse is obvious. \Box

6723

We refer the readers to [6, 7] for more sufficient and necessary conditions under which the 2×2 matrix ring $M_2(R)$ over a commutative local ring R is quasipolar.

Recall that a ring *R* is said to be *abelian* if every idempotent in *R* is central. Following Nicholson and Zhou [17], we say that idempotents in a ring *R lift strongly modulo an ideal I* if, whenever $a^2 - a \in I$, there exists $e^2 = e \in aR$ (equivalently $e^2 = e \in Ra$) such that $e - a \in I$. As usual, we write $\sqrt{J(R)} = \{x \in R : x^n \in J(R) \text{ for some positive integer } n\}$.

Theorem 2.8. Let *R* be an abelian ring such that $R^{qnil} \subseteq \sqrt{J(R)}$ and idempotents in *R* lift strongly modulo J(R), then R^{gD} is a regularity.

Proof. We will use the following fact repeatedly in the sequel: if $a, x \in R$ satisfy xax = x, then $x \in \text{comm}^2(a)$. Indeed, for any $y \in \text{comm}(a)$, yx = y(xa)x = (xa)yx = x(ya)x = xy(ax) = x(ax)y = (xax)y = xy since R is abelian.

Given an integer $n \ge 1$, if $a^n \in R^{\text{gD}}$, then by Lemma 2.2, we have $a \in R^{\text{gD}}$. Conversely, suppose $a \in R^{\text{gD}}$. Then $(a^{\text{gD}})^n a^n (a^{\text{gD}})^n = (a^{\text{gD}})^n$ and hence $(a^{\text{gD}})^n \in \text{comm}^2(a^n)$. Note that $a - aa^{\text{gD}}a \in R^{\text{qnil}} \subseteq \sqrt{J(R)}$. We have $(a - aa^{\text{gD}}a)^{kn} \in J(R) \subseteq R^{\text{qnil}}$ for some integer $k \ge 1$. Consequently, it follows that $a^n - a^n (a^{\text{gD}})^n a^n = (a - aa^{\text{gD}}a)^n \in R^{\text{qnil}}$ by Lemma 2.2. Thus, $a^n \in R^{\text{gD}}$.

Now let $a, b, c, d \in R$ be mutually commutative elements such that ac + bd = 1. If $a, b \in R^{\text{gD}}$ then it follows that $b^{\text{gD}}a^{\text{gD}}a^{\text{gD}}a^{\text{gD}}a^{\text{gD}} = b^{\text{gD}}bb^{\text{gD}}(a^{\text{gD}}a)a^{\text{gD}} = b^{\text{gD}}a^{\text{gD}} \in \text{comm}^2(ab)$ and

$$(ab - abb^{\mathrm{gD}}a^{\mathrm{gD}}ab)^{l} = (a - aa^{\mathrm{gD}}a)^{l}b^{l} + (aa^{\mathrm{gD}}a)^{l}(b - bb^{\mathrm{gD}}b)^{l} \in \mathrm{J}(R) \subseteq R^{\mathrm{qnil}}$$

for some positive integer *l*. Using Lemma 2.2 we get $ab - abb^{gD}a^{gD}ab \in R^{qnil}$. This shows $b^{gD}a^{gD} = (ab)^{gD}$. Conversely, if $ab \in R^{gD}$, write $p = 1 - ab(ab)^{gD}$. Since $abp \in R^{qnil} \subseteq \sqrt{J(R)}$, it follows that $(abp)^t \in J(R)$ for some positive integer *t*. Note that *a*, *b*, *c*, *d*, *p*, $(ab)^{gD}$ commute with each other as $(ab)^{gD} \in \text{comm}^2(ab)$ and $a, b, c, d \in \text{comm}(ab)$. Let $g = b(ab)^{gD} + pc$ and $h = 1 - (1 - ga)^t$, then $h \in aR \cap Ra$ and

$$a^{t} - a^{t}h = (a - aga)^{t} = (a - ab(ab)^{gD}a - apca)^{t}$$
$$= (pa - apca)^{t} = [ap(1 - ac)]^{t}$$
$$= (apbd)^{t} = (abp)^{t}d^{t} \in J(R).$$

Hence

$$a^{t} + J(R) = a^{t}h + J(R) = ha^{t} + J(R) \in [a^{t+1}R + J(R)] \cap [Ra^{t+1} + J(R)].$$

This implies that $a + J(R) \in (R/J(R))^D$ by [9, Theorem 4]. Let $x \in R$ with $x + J(R) = (a + J(R))^D$, one has that $ax - (ax)^2 \in J(R)$ and $(a - axa)^m \in J(R)$ for some positive integer m. As idempotents in R lift strongly modulo J(R), there is an idempotent $e \in R$ such that $ax - e \in J(R)$ and e = axw for some $w \in R$. It is easily seen that $(xwe)a(xwe) = xwe \in \text{comm}^2(a)$ and

$$[a - a(xwe)a]^m = [(1 - e)a]^m = [(a - axa) + (ax - e)a]^m \in J(R) \subseteq R^{qnil}$$

By Lemma 2.2, $a - a(xwe)a \in R^{qnil}$. Therefore $a \in R^{gD}$ with $a^{gD} = xwe$. Similarly one gets $b \in R^{gD}$.

Remark 2.9. (1) Note that the ring \mathbb{Z} of integers, the polynomial ring $\mathbb{Z}[x]$, the formal power series ring $\mathbb{Z}[[x]]$ and all local rings satisfy the hypothesis of Theorem 2.8.

(2) Let $R = R_1 \times R_2$ be the direct product of two rings R_1 and R_2 such that R_1^{gD} and R_2^{gD} are regularities, then $R_1^{gD} = R_1^{gD} \times R_2^{gD}$ is a regularity. Thus, one can construct more examples of rings R in which R^{gD} is a regularity.

References

- [1] M. Berkani, M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), 251–257.
- [2] J. L. Chen, Algebraic theory of generalizd inverses: groups inverses and Drazin inverses, J. Nanjing Univ. Math. Biq. 38 (2021), 1–113.

- [3] P. M. Cohn, Free rings and their relations, (2nd edition), Academic Press, London, 1985.
- [4] J. Cui, Quasinilpotents in rings and their applications, Turkish J. Math. 42 (2018), 2847–2855.
- [5] J. Cui, J. L. Chen, Quasipolar triangular matrix rings over local rings, Comm. Algebra 40 (2012), 784–794.
- [6] J. Cui, J. L. Chen, When is a 2 × 2 matrix ring over a commutative local ring quasipolar?, Comm. Algebra 39 (2011), 3212–3221.
- [7] J. Cui, X. B. Yin, Quasipolar matrix rings over local rings, Bull. Korean Math. Soc. 51 (2014), 813–822.
- [8] M. P. Drazin, Commuting properties of generalized inverses, Linear Multilinear Algebra 61 (2013), 1675–1681.
- [9] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514.
- [10] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1980.
- [11] R. Harte, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16.
- [12] Y. Jiang, Y. X. Wen, Q. P. Zeng, Generalizations of Cline's formula for three generalized inverses, Rev. Un. Mat. Argentina 58 (2017), 127-134.
- [13] J. J. Koliha, A generalized Drazin inverse, Glasg. Math. J. 38 (1996), 367–381.
- [14] V. Kordula, V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109–128.
- [15] J. J. Koliha, P. Patricío, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), 137–152.
- [16] R. A. Lubansky, Koliha-Drazin invertibles form a regularity, Math. Proc. R. Ir. Acad. 107A (2007), 137–141.
- [17] W. K. Nicholson, Y. Q. Zhou, Strong lifting, J. Algebra 265 (2005), 795–818.
- [18] Z. L. Ying, J. L. Chen, On quasipolar rings, Algebra Colloq. 19 (2012), 683-692.