On the set of all generalized Drazin invertible elements in a ring

Fei Peng ${ }^{\text {a }}$, Xiaoxiang Zhang ${ }^{\text {a,* }}$
${ }^{a}$ School of Mathematics, Southeast University, Nanjing 210096, China

Abstract

Berkani and Sarihr [Studia Math. (2001) 148: 251-257] showed that the set of all Drazin invertible elements in an algebra over a filed is a regularity in the sense of Kordula and Müller [Studia Math. (1996) 119: 109-128]. In this paper, the above result is extended to the case of a ring. Counterexamples are provided to show that the set of all generalized Drazin invertible elements in a ring need not be a regularity in general. We determine when the set of all generalized Drazin invertible matrices in the 2×2 full matrix ring over a commutative local ring is a regularity. We also give a sufficient condition for the set of all generalized Drazin invertible elements in a ring to be a regularity.

1. Introduction

To develop the axiomatic theory of spectrum, Kordula and Müller [14] introduced the notion of a regularity in a complex Banach algebra using a purely algebraic method. Here we restate the definition of a regularity in the setting of rings. Thus, a non-empty subset S in a ring R is called a regularity if the following two conditions are satisfied:
(1) for any $a \in R$ and positive integer $n, a \in S \Leftrightarrow a^{n} \in S$, and
(2) for any mutually commutative elements $a, b, c, d \in R$ such that $a c+b d=1, a b \in S \Leftrightarrow a, b \in S$.

In 2001, Berkani and Sarihr [1] proved that the set of all Drazin invertible elements in an algebra over a filed is a regularity. For the case of generalized Drazin inverse, Lubansky [16] obtained a similar result in a complex Banach algebra.

In this note, the Berkani-Sarihr's result mentioned above is extended to the case of a ring. Counterexamples are provided to show that the set of all generalized Drazin invertible elements in a ring need not be a regularity in general. We determine when the set of all generalized Drazin invertible matrices in the 2×2 full matrix ring over a commutative local ring is a regularity. We also give a sufficient condition for the set of all generalized Drazin invertible elements in a ring to be a regularity.

Throughout this paper, all rings R are associative with unity 1 . The symbol $U(R)$ stands for the set of all invertible elements of R. Write $\mathrm{J}(R)$ to denote the Jacobson radical of R. The commutant of $a \in R$ is denoted by $\operatorname{comm}(a)$, i.e.,

$$
\operatorname{comm}(a)=\{x \in R: x a=a x\} .
$$

[^0]Similarly, the double commutant $\operatorname{comm}^{2}(a)=\{y \in R: y x=x y$ for all $x \in \operatorname{comm}(a)\}$. Following Harte [11], an element $a \in R$ is said to be quasi-nilpotent if $1-a x \in \mathrm{U}(R)$ for each $x \in \operatorname{comm}(a)$, which is equivalent to $\left\|a^{n}\right\|^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow+\infty$ in case R is a complex Banach algebra. Nilpotent elements and elements in the Jacobson radical are well-known examples of quasi-nilpotent elements. We denote by $R^{\text {qnil }}$ the set of all quasi-nilpotent elements of R.

Recall that the Drazin inverse of $a \in R$, whenever it exists, is the unique element $y \in R$ (denoted by a^{D}) such that yay $=y \in \operatorname{comm}(a)$ and $y a^{k+1}=a^{k}$ for some non-negative integer k [9]. It is known that $y=a^{\mathrm{D}}$ if and only if yay $=y \in \operatorname{comm}^{2}(a)$ and $a-a y a$ is nilpotent. Based on this fact, Koliha and Patrício [15] introduced the notion of generalized Drazin inverses in a ring. They called $b \in R$ a generalized Drazin inverse of a if $b a b=b \in \operatorname{comm}^{2}(a)$ and $a-a b a \in R^{\text {qnil }}$. The generalized Drazin inverse of a is unique if it exists, and will be denoted by a^{gD}. It is worth mentioning that if R is a complex Banach algebra, then $b=a^{\mathrm{gD}}$ if and only if $b a b=b \in \operatorname{comm}(a)$ and $a-a b a \in R^{\text {qnil }}$ (see [13] for the proof and much more, including topological and spectral properties of the generalized Drazin inverse). By R^{D} and R^{gD} we mean the set of all elements which have Drazin inverses and generalized Drazin inverses in R, respectively. An element $a \in R$ is called quasipolar [15] if there exists $p \in R$ such that $p^{2}=p \in \operatorname{comm}^{2}(a)$, $a p \in R^{\text {quil }}$ and $a+p \in \mathrm{U}(R)$. Following [18], a ring R is said to be quasipolar if each element in R is quasipolar. It is shown [15] that $a \in R^{\mathrm{gD}}$ if and only if it is quasipolar. This fact will be used below repeatedly.

2. Main results

Proposition 2.1. The set R^{D} of all Drazin invertible elements in any ring R is a regularity.
Proof. First of all, R^{D} is nonempty since $0, \pm 1 \in R^{\mathrm{D}}$. According to [9, Theorem 4], $a \in R^{\mathrm{D}}$ if and only if there is a positive integer m such that

$$
a^{m} R=a^{m+1} R=a^{m+2} R=\cdots \quad \text { and } \quad R a^{m}=R a^{m+1}=R a^{m+2}=\cdots
$$

From this fact, it is easy to see that, for each integer $n \geq 1, a \in R^{\mathrm{D}}$ if and only if $a^{n} \in R^{\mathrm{D}}$ (see [2, Theorem 11.5], [9, Theorem 2] and [12, Theorem 2.1] for different proofs).

Let $a, b, c, d \in R$ be mutually commuting elements such that $a c+b d=1$. If $a, b \in R^{\mathrm{D}}$, then $a^{k} \in a^{k+1} R \cap$ $R a^{k+1}$ and $b^{k} \in b^{k+1} R \cap R b^{k+1}$ for some positive integer k. One easily shows that $(a b)^{k} \in(a b)^{k+1} R \cap R(a b)^{k+1}$. Thus $a b \in R^{\mathrm{D}}$ in view of [9, Theorem 4].

Conversely, suppose $a b \in R^{\mathrm{D}}$ with $(a b)^{m}=(a b)^{m+1}(a b)^{\mathrm{D}}$, we shall prove $a, b \in R^{\mathrm{D}}$. From the binomial expansion of $(a c+b d)^{2 m+1}=1$ one can obtain $c^{\prime}, d^{\prime} \in \operatorname{comm}(a) \cap \operatorname{comm}(b)$ such that $a^{m+1} c^{\prime}+b^{m+1} d^{\prime}=1$. Let $y=a^{m}-a^{m+1} b(a b)^{\mathrm{D}}$, then $a^{m}=y+a^{m+1}(a b)^{\mathrm{D}} b$ and

$$
\begin{aligned}
y & =\left(a^{m+1} c^{\prime}+b^{m+1} d^{\prime}\right) y \\
& =a^{m+1} c^{\prime} y+d^{\prime} b^{m+1}\left[a^{m}-a^{m+1} b(a b)^{\mathrm{D}}\right] \\
& =a^{m+1} c^{\prime} y+d^{\prime} b\left[(a b)^{m}-(a b)^{m+1}(a b)^{\mathrm{D}}\right] \\
& =a^{m+1} c^{\prime} y \in a^{m+1} R .
\end{aligned}
$$

So we have $a^{m} \in a^{m+1} R$. Similarly, $a^{m} \in R a^{m+1}$ and $b^{m} \in b^{m+1} R \cap R b^{m+1}$. Therefore $a, b \in R^{\mathrm{D}}$.
The following lemma will be repeatedly used in the sequel.
Lemma 2.2. Let $a \in R$. If $a^{n} \in R^{\mathrm{gD}}$ for some integer $n>1$, then $a \in R^{\mathrm{gD}}$ with $a^{\mathrm{gD}}=a^{n-1}\left(a^{n}\right)^{\mathrm{gD}}=\left(a^{n}\right)^{\mathrm{gD}} a^{n-1}$ and $\left(a^{n}\right)^{\mathrm{gD}}=\left(a^{\mathrm{gD}}\right)^{n}$. In particular, $a^{n} \in R^{\text {qnil }}$ implies $a \in R^{\text {qnil }}$.

Proof. Suppose $a^{n} \in R^{\mathrm{gD}}$. Then $a \in R^{\mathrm{gD}}$ and $a^{\mathrm{gD}}=\left(a^{n}\right)^{\mathrm{gD}} a^{n-1}$ (see, for instance, [12, Theorem 2.7 (i)]). From $\left(a^{n}\right)^{\mathrm{gD}} \in \operatorname{comm}^{2}\left(a^{n}\right)$ and $a^{n-1} \in \operatorname{comm}\left(a^{n}\right)$, we derive $\left(a^{n}\right)^{\mathrm{gD}} a^{n-1}=a^{n-1}\left(a^{n}\right)^{\mathrm{gD}}$, and hence $\left(a^{\mathrm{gD}}\right)^{n}=a^{\mathrm{gD}} a\left(a^{\mathrm{gD}}\right)^{n}=$ $\left[\left(a^{n}\right)^{\mathrm{gD}} a^{n-1}\right] a\left(a^{\mathrm{gD}}\right)^{n}=\left(a^{n}\right)^{\mathrm{gD}} a^{n}\left(a^{\mathrm{gD}}\right)^{n}=\left(a^{n}\right)^{\mathrm{gD}} a a^{\mathrm{gD}}=\left(a^{n}\right)^{\mathrm{gD}} a\left[a^{n-1}\left(a^{n}\right)^{\mathrm{gD}}\right]=\left(a^{n}\right)^{\mathrm{gD}}$.

The last statement follows from the fact that $a \in R^{\text {quil }}$ if and only if $a^{\mathrm{gD}}=0$.

Next, we provide two examples of rings in which the set of all generalized Drazin invertible elements is not a regularity.

Example 2.3. Let $S=\mathbb{Z}_{2}\left[t_{1}, t_{2}, \ldots\right]$ be the ring of all polynomials in countably many indeterminates over the field \mathbb{Z}_{2} of integers modulo 2 and $S_{\left(t_{1}\right)}$ denote the localization of S at the prime ideal $\left(t_{1}\right)$. Consider the ring endomorphism $\sigma: S_{\left(t_{1}\right)} \rightarrow S_{\left(t_{1}\right)}$ induced by $\sigma\left(t_{i}\right)=t_{i+1}$ for all $i \geq 1$. Let $S_{\left(t_{1}\right)}[[x ; \sigma]]$ be the skew formal power series ring over $S_{\left(t_{1}\right)}$ subject to $x a=\sigma(a) x$ for all $a \in S_{\left(t_{1}\right)}$ and $R=\mathrm{T}_{2}\left(S_{\left(t_{1}\right)}[[x ; \sigma]]\right)$ be the ring of all 2×2 upper triangular matrices over $S_{\left(t_{1}\right)}[[x ; \sigma]]$, then
(i) $A=\left(\begin{array}{cc}t_{2} & x \\ 0 & -t_{1}\end{array}\right) \in R^{g D}$ but $A^{2}=\left(\begin{array}{cc}t_{2}^{2} & 0 \\ 0 & t_{1}^{2}\end{array}\right) \notin R^{g D}$;
(ii) $B=\left(\begin{array}{cc}t_{2} & 0 \\ 0 & t_{1}\end{array}\right), C=\left(\begin{array}{cc}t_{2}^{-1} & 0 \\ 0 & 0\end{array}\right)$ and $D=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ commute with each other, $B C+D^{2}=I$, where I denotes the identity of R, and $B D \in R^{\mathrm{gD}}$ but $B \notin R^{\mathrm{gD}}$.

Proof. (i) We claim that $A \in R^{\text {qnil }}$. Indeed, suppose that

$$
X=\left(\begin{array}{cc}
\sum_{i=0}^{\infty} \mu_{i} x^{i} & \sum_{i=0}^{\infty} v_{i} x^{i} \\
0 & \sum_{i=0}^{\infty} \rho_{i} x^{i}
\end{array}\right) \in R
$$

commutes with A. Write $\mu_{-1}=v_{-1}=\rho_{-1}=0$. Then, we have

$$
A X=\left(\begin{array}{cc}
\sum_{i=0}^{\infty} t_{2} \mu_{i} x^{i} & \sum_{i=0}^{\infty}\left[t_{2} v_{i}+\sigma\left(\rho_{i-1}\right)\right] x^{i} \\
0 & -\sum_{i=0}^{\infty} t_{1} \rho_{i} x^{i}
\end{array}\right)
$$

and

$$
X A=\left(\begin{array}{cc}
\sum_{i=0}^{\infty} \mu_{i} t_{2+i} x^{i} & \sum_{i=0}^{\infty}\left[\mu_{i-1}-v_{i} t_{1+i}\right] x^{i} \\
0 & \sum_{i=0}^{\infty}-\rho_{i} t_{1+i} x^{i}
\end{array}\right)
$$

Now $A X=X A$ implies

$$
\begin{align*}
& \left(t_{2}-t_{2+i}\right) \mu_{i}=0 \tag{1}\\
& \left(t_{1}-t_{1+i}\right) \rho_{i}=0 \tag{2}\\
& t_{2} v_{i}+\sigma\left(\rho_{i-1}\right)=\mu_{i-1}-v_{i} t_{1+i} \tag{3}
\end{align*}
$$

for all $i \in \mathbb{N}$.
From the above equalities (1) and (2) one can see that $\mu_{j}=\rho_{j}=0$ for $j \geq 1$ since $t_{2}-t_{2+j}$ and $t_{1}-t_{1+j}$ are invertible in $S_{\left(t_{1}\right)}[[x ; \sigma]]$. Combining this fact with the above equality (3), we obtain

$$
\left(t_{2}+t_{1}\right) v_{0}=0, \sigma\left(\rho_{0}\right)=\mu_{0} \text { and }\left(t_{2}+t_{1+j}\right) v_{j}=0 \text { for } j>1
$$

Consequently, it follows that $v_{0}=v_{2}=v_{3}=\cdots=0$ and $t_{2} \mu_{0} \neq 1$. We thus conclude

$$
I-A X=\left(\begin{array}{cc}
1-t_{2} \mu_{0} & \left(\mu_{0}-v_{1} t_{2}\right) x \\
0 & 1+t_{1} \rho_{0}
\end{array}\right) \in \mathrm{U}(R)
$$

This shows $A \in R^{\text {qnil }}$ and hence $A \in R^{\mathrm{gD}}$ with $A^{\mathrm{gD}}=0$.
Assume that $A^{2} \in R^{\mathrm{gD}}$. By Lemma 2.2, we have $\left(A^{2}\right)^{\mathrm{gD}}=\left(A^{\mathrm{gD}}\right)^{2}=0$, which means $A^{2} \in R^{\text {qnil }}$. However, there is a matrix $C=\left(\begin{array}{cc}t_{2}^{2} & 0 \\ 0 & 0\end{array}\right) \in R$ such that $A^{2} C=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=C A^{2}$ and $I-A^{2} C \notin \mathrm{U}(R)$, a contradiction.
(ii) It is clear that B, C and D commute with each other, $B C+D^{2}=I$ and $B D \in \mathrm{~J}(R) \subseteq R^{\mathrm{gD}}$. From [5, Example 2.11], we know that B is not quasipolar, i.e., not generalized Drazin invertible.

Example 2.4. Let $\mathbb{Z}_{(3)}$ be the localization of the ring \mathbb{Z} of integers at the prime ideal $3 \mathbb{Z}$ and $R=M_{2}\left(\mathbb{Z}_{(3)}\right)$ be the ring of all 2×2 matrices over $\mathbb{Z}_{(3)}$. Consider the following matrices

$$
A=\left(\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 6 \\
2 & 3
\end{array}\right), C=\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) \text { and } D=I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \in R .
$$

An easy computation shows that A, B, C and D are mutually commutative, $A C+B D=I_{2}$ and $A B \in \mathrm{~J}(R) \subseteq R^{\mathrm{gD}}$. However, in view of [6, Corollary 2.14], $B \notin R^{g D}$ because $\operatorname{det} B \in \mathrm{~J}\left(\mathbb{Z}_{(3)}\right), \operatorname{tr} B \in \mathrm{U}\left(\mathbb{Z}_{(3)}\right)$ and the equation $x^{2}=(\operatorname{tr} B)^{2}-4 \operatorname{det} B=52$ has no solution in $U\left(\mathbb{Z}_{(3)}\right)$, where $\operatorname{det} B$ and $\operatorname{tr} B$ denote, respectively, the determinant and trace of B.

Remark 2.5. Let $\mathrm{M}_{2}(R)$ be the 2×2 full matrix ring over an arbitrary commutative local ring R. We remark that $\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ is "almost" a regularity, i.e., (1) for any integer $n>1, X \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ if and only if $X^{n} \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}} ;(2)$ if $A, B, C, D \in \mathrm{M}_{2}(R)$ are mutually commutative, $A C+B D=I_{2}$ and $A, B \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$, then $A B \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$. Indeed, according to Lemma 2.2, it suffices to show $A B \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ under the hypothesis of $A, B \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ and $A B=B A$. First of all, using [7, Proposition 4.1], we have $\left(A-A A^{\mathrm{gD}} A\right)^{2},\left(B-B B^{\mathrm{gD}} B\right)^{2} \in$ $\mathrm{J}\left(\mathrm{M}_{2}(R)\right)$. Then, by $A^{\mathrm{gD}} \in \operatorname{comm}^{2}(A)$ and $B^{\mathrm{gD}} \in \operatorname{comm}^{2}(B)$, it follows that $B^{\mathrm{gD}} A^{\mathrm{gD}} A B B^{\mathrm{gD}} A^{\mathrm{gD}}=B^{\mathrm{gD}} A^{\mathrm{gD}} \in$ $\operatorname{comm}(A B)$ and

$$
\begin{aligned}
\left(A B-A B B^{\mathrm{gD}} A^{\mathrm{gD}} A B\right)^{2} & =\left[\left(A-A A^{\mathrm{gD}} A\right) B+A A^{\mathrm{gD}} A\left(B-B B^{\mathrm{gD}} B\right)\right]^{2} \\
& =\left(A-A A^{\mathrm{gD}} A\right)^{2} B^{2}+\left(A A^{\mathrm{gD}} A\right)^{2}\left(B-B B^{\mathrm{gD}} B\right)^{2} \\
& \in \mathrm{~J}\left(\mathrm{M}_{2}(R)\right) \subseteq\left(\mathrm{M}_{2}(R)\right)^{\mathrm{qnil}}
\end{aligned}
$$

Consequently, $A B-A B B^{\mathrm{gD}} A{ }^{\mathrm{gD}} A B \in\left(\mathrm{M}_{2}(R)\right)^{\text {qnil }}$ by Lemma 2.2. Let $P=I_{2}-A B B^{\mathrm{gD}} A^{\mathrm{gD}}$, from the proof of [15, Theorem 4.2], one can see that $P^{2}=P \in \operatorname{comm}(A B), A B P \in\left(\mathrm{M}_{2}(R)\right)^{\text {qnil }}$ and $A B+P \in \mathrm{U}\left(\mathrm{M}_{2}(R)\right)$. Therefore, we obtain $A B \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ by [7, Proposition 3.5].

For the $n \times n$ full matrix ring over a commutative local ring without zero divisor, we have the following result.

Proposition 2.6. Let n be any integer greater than 1 and $\mathrm{M}_{n}(R)$ be the ring of all $n \times n$ matrices over a commutative local ring R without zero divisor. If $A, B \in\left(\mathrm{M}_{n}(R)\right)^{\mathrm{gD}}$ and $A B=B A$, then $A B \in\left(\mathrm{M}_{n}(R)\right)^{\mathrm{gD}}$.

Proof. Let $C=A B$ for convenience. Similarly to Remark 2.5, by virtue of [4, Theorem 2.5], we conclude that there exists $P \in \mathrm{M}_{n}(R)$ such that $P^{2}=P \in \operatorname{comm}(C), C P \in\left(\mathrm{M}_{n}(R)\right)^{\text {qnil }}$ and $C+P \in \mathrm{U}\left(\mathrm{M}_{n}(R)\right)$. Note that R is projective free (see, e.g., [10, Charpter VIII, Proposition 4.8]). From [3, Charpter 0, Proposition 4.5], there is $V \in \mathrm{U}\left(\mathrm{M}_{n}(R)\right)$ such that $P=V\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right) V^{-1}$, where $0 \leq r \leq n$. If $r=0$ then C is invertible and hence the result is clear. If $r=n$ then $C \in\left(\mathrm{M}_{n}(R)\right)^{\text {qnil }} \subseteq\left(\mathrm{M}_{n}(R)\right)^{\mathrm{gD}}$.

Now suppose $0<r<n$ and write $V^{-1} C V=\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)$, where C_{1} is an $r \times r$ matrix over R. Then $C P=P C$ implies $C_{2}=C_{3}=0$. Moreover,

$$
V\left(\begin{array}{cc}
C_{1}+I_{r} & 0 \\
0 & C_{4}
\end{array}\right) V^{-1}=V\left(\begin{array}{cc}
C_{1} & 0 \\
0 & C_{4}
\end{array}\right) V^{-1}+V\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) V^{-1}=C+P \in \mathrm{U}\left(\mathrm{M}_{n}(R)\right)
$$

implies $C_{4} \in \mathrm{U}\left(\mathrm{M}_{n-r}(R)\right)$. Furthermore,

$$
V\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right) V^{-1}=V\left(\begin{array}{cc}
C_{1} & 0 \\
0 & C_{4}
\end{array}\right) V^{-1} V\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) V^{-1}=C P \in\left(\mathrm{M}_{n}(R)\right)^{\text {qnil }}
$$

gives rise to $\left(\begin{array}{cc}C_{1} & 0 \\ 0 & 0\end{array}\right) \in\left(\mathrm{M}_{n}(R)\right)^{\text {qnil }}$ by [6, Lemma 2.3]. For any $D \in \operatorname{comm}\left(C_{1}\right)$, we have $\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}C_{1} & 0 \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{cc}C_{1} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right)$, and hence $\left(\begin{array}{cc}I_{r}-C_{1} D & 0 \\ 0 & I_{n-r}\end{array}\right) \in \mathrm{U}\left(\mathrm{M}_{n}(R)\right)$. This means $I_{r}-C_{1} D \in \mathrm{U}\left(\mathrm{M}_{r}(R)\right)$, i.e., $C_{1} \in\left(\mathrm{M}_{r}(R)\right)^{\text {qnil }}$. From [4, Theorem 2.5] it follows that $C_{1}^{k} \in J\left(\mathrm{M}_{r}(R)\right)$ for some $k \geq 1$. Write $W=V^{-1} C^{k} V=\left(\begin{array}{cc}C_{1}^{k} & 0 \\ 0 & C_{4}^{k}\end{array}\right)$ and $X=\left(\begin{array}{cc}0 & 0 \\ 0 & C_{4}^{-k}\end{array}\right)$. We proceed to show that $W \in\left(\mathrm{M}_{n}(R)\right)^{\mathrm{gD}}$ with $W^{\mathrm{gD}}=X$. A trivial verification gives
that $X W X=X$ and $W-W X W \in J\left(\mathrm{M}_{n}(R)\right) \subseteq\left(\mathrm{M}_{n}(R)\right)^{\text {qnil }}$. We next prove $X \in \operatorname{comm}^{2}(W)$. For any $Y=\left(\begin{array}{ll}Y_{1} & Y_{2} \\ Y_{3} & Y_{4}\end{array}\right) \in \operatorname{comm}(W)$ with $Y_{1} \in \mathrm{M}_{r}(R)$, one has

$$
\left(\begin{array}{ll}
C_{1}^{k} Y_{1} & C_{1}^{k} Y_{2} \\
C_{4}^{k} Y_{3} & C_{4}^{k} Y_{4}
\end{array}\right)=W Y=Y W=\left(\begin{array}{ll}
Y_{1} C_{1}^{k} & Y_{2} C_{4}^{k} \\
Y_{3} C_{1}^{k} & Y_{4} C_{4}^{k}
\end{array}\right) .
$$

Write $f(x)=a_{0}+a_{1} x+\cdots+x^{n-r}$ for the characteristic polynomial of C_{4}^{k}. Clearly $a_{0} \in \mathrm{U}(R)$ since $C_{4} \in$ $\mathrm{U}\left(\mathrm{M}_{n-r}(R)\right)$. By the Hamilton-Cayley theorem, $f\left(C_{4}^{k}\right)=0$ and so $\left(C_{4}^{k}\right)^{D^{4}}=\left(C_{4}^{k}\right)^{-1}=g\left(C_{4}^{k}\right)$, where $g(x)=$ $-a_{0}^{-1} a_{1}-\cdots-a_{0}^{-1} x^{n-r-1}$. Let F be the quotient field of R. Note that C_{1}^{k} is Drazin invertible in $\mathrm{M}_{r}(F)$ (see [9, Corollary 5]). Then we have

$$
\left(C_{1}^{k}\right)^{\mathrm{D}} Y_{2}=Y_{2}\left(C_{4}^{k}\right)^{\mathrm{D}}=Y_{2} g\left(C_{4}^{k}\right)=g\left(C_{1}^{k}\right) Y_{2}
$$

where the first equality can be obtained by a similar argument to the proof of [8, Theorem 2.2], and the last equality follows from $Y_{2} C_{4}^{k}=C_{1}^{k} Y_{2}$. Hence

$$
\left[I_{r}-C_{1}^{k}\left(C_{1}^{k}\right)^{\mathrm{D}}\right] Y_{2}=Y_{2}-C_{1}^{k} Y_{2}\left(C_{4}^{k}\right)^{\mathrm{D}}=Y_{2}\left[I_{r}-C_{4}^{k}\left(C_{4}^{k}\right)^{\mathrm{D}}\right]=0,
$$

and so $Y_{2}=C_{1}^{k}\left(C_{1}^{k}\right)^{D} Y_{2}$. Consequently,

$$
\begin{aligned}
{\left[I_{r}-g\left(C_{1}^{k}\right) C_{1}^{k}\right] Y_{2} } & =Y_{2}-g\left(C_{1}^{k}\right) C_{1}^{k} Y_{2} \\
& =C_{1}^{k}\left(C_{1}^{k}\right)^{\mathrm{D}} \Upsilon_{2}-C_{1}^{k} g\left(C_{1}^{k}\right) Y_{2} \\
& =C_{1}^{k}\left[\left(C_{1}^{k}\right)^{\mathrm{D}} Y_{2}-Y_{2} g\left(C_{4}^{k}\right)\right] \\
& =C_{1}^{k}\left[\left(C_{1}^{k}\right)^{\mathrm{D}} Y_{2}-Y_{2}\left(C_{4}^{k}\right)^{\mathrm{D}}\right] \\
& =0 .
\end{aligned}
$$

Since $C_{1}^{k} \in \mathrm{~J}\left(\mathrm{M}_{r}(R)\right)=\mathrm{M}_{r}(\mathrm{~J}(R))$ and all the coefficients of $g(x)$ are in R, we conclude that $g\left(C_{1}^{k}\right) C_{1}^{k} \in \mathrm{M}_{r}(\mathrm{~J}(R))=$ $\mathrm{J}\left(\mathrm{M}_{r}(R)\right)$. This forces $I_{r}-g\left(C_{1}^{k}\right) C_{1}^{k} \in \mathrm{U}\left(\mathrm{M}_{r}(R)\right)$ and hence $Y_{2}=0$ as we have seen that $\left[I_{r}-g\left(C_{1}^{k}\right) C_{1}^{k}\right] Y_{2}=0$. In the same manner one can show that $Y_{3}=0$. In addition, the equation $C_{4}^{k} Y_{4}=Y_{4} C_{4}^{k}$ implies $C_{4}^{-k} Y_{4}=Y_{4} C_{4}^{-k}$. Whence it follows that $Y X=X Y$, showing $X \in \operatorname{comm}^{2}(W)$. Thus, $W^{g D}=X$ as desired. In view of [6, Lemma 2.3], $C^{k}=V W V^{-1} \in\left(\mathrm{M}_{n}(R)\right)^{\mathrm{gD}}$. Finally, we obtain that $C=A B \in\left(\mathrm{M}_{n}(R)\right)^{\mathrm{gD}}$ by Lemma 2.2.

The above Example 2.4 and Remark 2.5 motivate us to consider under what condition $\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ is a regularity.

Theorem 2.7. Let $\mathrm{M}_{2}(R)$ be the 2×2 matrix ring over a commutative local ring R. Then $\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ is a regularity if and only if $\mathrm{M}_{2}(R)$ is quasipolar.

Proof. Suppose that $\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$ is a regularity. By [7, Theorem 3.7], it suffices to prove that for any $u \in \mathrm{U}(R)$ and $j \in \mathrm{~J}(R),\left(\begin{array}{cc}0 & j \\ 1 & u\end{array}\right)$ is quasipolar. Let

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & j \\
1 & u
\end{array}\right), C=\left(\begin{array}{cc}
u^{-1}-u-2 u^{-1} j & j \\
1 & u^{-1}-2 u^{-1} j
\end{array}\right), \\
& B=\left(\begin{array}{cc}
-u & j \\
1 & 0
\end{array}\right), D=\left(\begin{array}{cc}
2 u^{-1} j-u^{-1} & j \\
1 & 2 u^{-1} j-u^{-1}+u
\end{array}\right) .
\end{aligned}
$$

One can check that A, B, C and D are mutually commutative, $A C+B D=I_{2}$ and $A B \in \mathrm{~J}\left(\mathrm{M}_{2}(R)\right) \subseteq\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$. Therefore $A \in\left(\mathrm{M}_{2}(R)\right)^{\mathrm{gD}}$, i.e., A is quasipolar.

The converse is obvious.

We refer the readers to [6, 7] for more sufficient and necessary conditions under which the 2×2 matrix ring $\mathrm{M}_{2}(R)$ over a commutative local ring R is quasipolar.

Recall that a ring R is said to be abelian if every idempotent in R is central. Following Nicholson and Zhou [17], we say that idempotents in a ring R lift strongly modulo an ideal I if, whenever $a^{2}-a \in I$, there exists $e^{2}=e \in a R$ (equivalently $e^{2}=e \in R a$) such that $e-a \in I$. As usual, we write $\sqrt{\mathrm{J}(R)}=\left\{x \in R: x^{n} \in\right.$ $\mathrm{J}(R)$ for some positive integer $n\}$.

Theorem 2.8. Let R be an abelian ring such that $R^{\text {qnil }} \subseteq \sqrt{\mathrm{J}(R)}$ and idempotents in R lift strongly modulo $\mathrm{J}(R)$, then $R^{g D}$ is a regularity.

Proof. We will use the following fact repeatedly in the sequel: if $a, x \in R$ satisfy $x a x=x$, then $x \in \operatorname{comm}^{2}(a)$. Indeed, for any $y \in \operatorname{comm}(a), y x=y(x a) x=(x a) y x=x(y a) x=x y(a x)=x(a x) y=(x a x) y=x y$ since R is abelian.

Given an integer $n \geq 1$, if $a^{n} \in R^{\mathrm{gD}}$, then by Lemma 2.2, we have $a \in R^{\mathrm{gD}}$. Conversely, suppose $a \in R^{\mathrm{gD}}$. Then $\left(a^{\mathrm{gD}}\right)^{n} a^{n}\left(a^{\mathrm{gD}}\right)^{n}=\left(a^{\mathrm{gD}}\right)^{n}$ and hence $\left(a^{\mathrm{gD}}\right)^{n} \in \operatorname{comm}^{2}\left(a^{n}\right)$. Note that $a-a a^{\mathrm{gD}} a \in R^{\text {qnil }} \subseteq \sqrt{\mathrm{J}(R)}$. We have $\left(a-a a^{\mathrm{gD}} a\right)^{k n} \in \mathrm{~J}(R) \subseteq R^{\text {qnil }}$ for some integer $k \geq 1$. Consequently, it follows that $a^{n}-a^{n}\left(a^{\mathrm{gD}}\right)^{n} a^{n}=\left(a-a a^{\mathrm{gD}} a\right)^{n} \in$ $R^{\text {qnil }}$ by Lemma 2.2. Thus, $a^{n} \in R^{g D}$.

Now let $a, b, c, d \in R$ be mutually commutative elements such that $a c+b d=1$. If $a, b \in R^{\mathrm{gD}}$ then it follows that $b^{\mathrm{gD}} a^{\mathrm{gD}} a b b^{\mathrm{gD}} a^{\mathrm{gD}}=b^{\mathrm{gD}} b b^{\mathrm{gD}}\left(a^{\mathrm{gD}} a\right) a^{\mathrm{gD}}=b^{\mathrm{gD}} a^{\mathrm{gD}} \in \operatorname{comm}^{2}(a b)$ and

$$
\left(a b-a b b^{\mathrm{gD}} a^{\mathrm{gD}} a b\right)^{l}=\left(a-a a^{\mathrm{gD}} a\right)^{l} b^{l}+\left(a a^{\mathrm{gD}} a\right)^{l}\left(b-b b^{\mathrm{gD}} b\right)^{l} \in \mathrm{~J}(R) \subseteq R^{\mathrm{qnil}}
$$

for some positive integer l. Using Lemma 2.2 we get $a b-a b b^{\mathrm{gD}} a^{\mathrm{gD}} a b \in R^{\text {qnil }}$. This shows $b^{\mathrm{gD}} a^{\mathrm{gD}}=(a b)^{\mathrm{gD}}$. Conversely, if $a b \in R^{\mathrm{gD}}$, write $p=1-a b(a b)^{\mathrm{gD}}$. Since $a b p \in R^{\text {qnil }} \subseteq \sqrt{\mathrm{J}(R)}$, it follows that $(a b p)^{t} \in \mathrm{~J}(R)$ for some positive integer t. Note that $a, b, c, d, p,(a b)^{\mathrm{gD}}$ commute with each other as $(a b)^{\mathrm{gD}} \in \operatorname{comm}^{2}(a b)$ and $a, b, c, d \in \operatorname{comm}(a b)$. Let $g=b(a b)^{\mathrm{gD}}+p c$ and $h=1-(1-g a)^{t}$, then $h \in a R \cap R a$ and

$$
\begin{aligned}
a^{t}-a^{t} h & =(a-a g a)^{t}=\left(a-a b(a b)^{\mathrm{gD}} a-a p c a\right)^{t} \\
& =(p a-a p c a)^{t}=[a p(1-a c)]^{t} \\
& =(a p b d)^{t}=(a b p)^{t} d^{t} \in \mathrm{~J}(R) .
\end{aligned}
$$

Hence

$$
a^{t}+\mathrm{J}(R)=a^{t} h+\mathrm{J}(R)=h a^{t}+\mathrm{J}(R) \in\left[a^{t+1} R+\mathrm{J}(R)\right] \cap\left[R a^{t+1}+\mathrm{J}(R)\right]
$$

This implies that $a+\mathrm{J}(R) \in(R / \mathrm{J}(R))^{\mathrm{D}}$ by [9, Theorem 4]. Let $x \in R$ with $x+\mathrm{J}(R)=(a+\mathrm{J}(R))^{\mathrm{D}}$, one has that $a x-(a x)^{2} \in \mathrm{~J}(R)$ and $(a-a x a)^{m} \in \mathrm{~J}(R)$ for some positive integer m. As idempotents in R lift strongly modulo $\mathrm{J}(R)$, there is an idempotent $e \in R$ such that $a x-e \in \mathrm{~J}(R)$ and $e=a x w$ for some $w \in R$. It is easily seen that $(x w e) a(x w e)=x w e \in \operatorname{comm}^{2}(a)$ and

$$
[a-a(x w e) a]^{m}=[(1-e) a]^{m}=[(a-a x a)+(a x-e) a]^{m} \in \mathrm{~J}(R) \subseteq R^{\text {qnil }}
$$

By Lemma 2.2, $a-a(x w e) a \in R^{\text {qnil }}$. Therefore $a \in R^{\mathrm{gD}}$ with $a^{\mathrm{gD}}=x w e$. Similarly one gets $b \in R^{\mathrm{gD}}$.
Remark 2.9. (1) Note that the ring \mathbb{Z} of integers, the polynomial ring $\mathbb{Z}[x]$, the formal power series ring $\mathbb{Z}[[x]]$ and all local rings satisfy the hypothesis of Theorem 2.8.
(2) Let $R=R_{1} \times R_{2}$ be the direct product of two rings R_{1} and R_{2} such that R_{1}^{gD} and R_{2}^{gD} are regularities, then $R^{\mathrm{gD}}=R_{1}^{\mathrm{gD}} \times R_{2}^{\mathrm{gD}}$ is a regularity. Thus, one can construct more examples of rings R in which R^{gD} is a regularity.

References

[1] M. Berkani, M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), 251-257.
[2] J. L. Chen, Algebraic theory of generalizd inverses: groups inverses and Drazin inverses, J. Nanjing Univ. Math. Biq. 38 (2021), 1-113.
[3] P. M. Cohn, Free rings and their relations, (2nd edition), Academic Press, London, 1985.
[4] J. Cui, Quasinilpotents in rings and their applications, Turkish J. Math. 42 (2018), 2847-2855.
[5] J. Cui, J. L. Chen, Quasipolar triangular matrix rings over local rings, Comm. Algebra 40 (2012), 784-794.
[6] J. Cui, J. L. Chen, When is a 2×2 matrix ring over a commutative local ring quasipolar?, Comm. Algebra 39 (2011), 3212-3221.
[7] J. Cui, X. B. Yin, Quasipolar matrix rings over local rings, Bull. Korean Math. Soc. 51 (2014), 813-822.
[8] M. P. Drazin, Commuting properties of generalized inverses, Linear Multilinear Algebra 61 (2013), 1675-1681.
[9] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[10] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1980.
[11] R. Harte, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16.
[12] Y. Jiang, Y. X. Wen, Q. P. Zeng, Generalizations of Cline's formula for three generalized inverses, Rev. Un. Mat. Argentina 58 (2017), 127-134.
[13] J. J. Koliha, A generalized Drazin inverse, Glasg. Math. J. 38 (1996), 367-381.
[14] V. Kordula, V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128.
[15] J. J. Koliha, P. Patricío, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), 137-152.
[16] R. A. Lubansky, Koliha-Drazin invertibles form a regularity, Math. Proc. R. Ir. Acad. 107A (2007), 137-141.
[17] W. K. Nicholson, Y. Q. Zhou, Strong lifting, J. Algebra 265 (2005), 795-818.
[18] Z. L. Ying, J. L. Chen, On quasipolar rings, Algebra Colloq. 19 (2012), 683-692.

[^0]: 2020 Mathematics Subject Classification. 16U90.
 Keywords. Regularity; Drazin inverse; Generalized Drazin inverse; Ring.
 Received: 13 January 2023; Accepted: 11 February 2023
 Communicated by Dragana Cvetković-Ilić
 Research supported by the National Natural Science Foundation of China (No. 11871145, 12171083) and the Qinglan Project of Jiangsu Province of China

 * Corresponding author: Xiaoxiang Zhang

 Email addresses: pfmath@163.com (Fei Peng), 101009915@seu.edu.cn (Xiaoxiang Zhang)

