
Filomat 37:21 (2023), 7105–7113
https://doi.org/10.2298/FIL2321105K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Analysis of stable currents and homology of biwarped product
submanifolds in the Euclidean space

Meraj Ali Khana, Cenep Ozelb, Mohd Danish Siddiqic, Sudhakar Kumar Chaubeyid, Sadia Samar Alie

aDepartment of Mathemaatics and Statistics, Imam Muhammad Ibn Saud Islamic University, Riyadh, 11566, Saudi Arabia
bDepartment of Mathematics, College of Science King Abdulaziz University Jeddah, Saudi Arabia

cDepartment of Mathematics, College of Science Jazan University Jazan,45142 Saudi Arabia
dSection of Mathematics, Department of Information Technology University of Technology and Applied Sciences

P.O. box 77, Postal Code 324, Shinas, Oman.
eDepartment of Industrial Engineering Faculty of Engineering

King Abdul-Aziz University, Jeddah Saudi Arabia .

Abstract. This paper examines the topological features of the compact biwarped product submanifolds of
a space form with vanishing constant sectional curvature. More precisely, we show that stable integral p−
current does not exist in a compact oriented biwarped product submanifold in an Euclidean space that meets
some geometric conditions based on Laplacian of warping functions, slant functions. Simultaneously, it is
shown that their homology group are zero under these geometric conditions. Additionally, some special
cases are also described.

1. Introduction

Federer-Fleming was the first to establish the concept of integral currents [14]. By connecting the geo-
metric structure of differentiable manifolds and homological groups with integral coefficients, the concept
of an integral current plays a significant role in presenting the topological informations. The criterion for
the non-existence of stable currents for the submanifolds in the sphere Sn by using second fundamental
form was established by Lawson-Simons [15] in the year 1970.

Alternatively, in [18], non-existence of stable integral currents as well as the vanishing of Homology
were found in a contact CR-warped product submanifold in an odd dimensional sphere, based on Lawson-
Simon result [15], the authors concluded that the homology groups were trivial and that there were no stable
currents in a contact CR-warped product submanifold immersed in a sphere of odd dimension. Further, F.
Sahin [20, 21] showed that the CR-warped product submanifold in Euclidean spaces and the nearly Kaehler
six sphere S6 have equivalent conclusions. Influenced by prior studies, Ali et al [6] adjusted the warping
function and point wise slant functions for a warped product submanifold on the unit sphere with the trivial
homology groups on the point wise slant fiber. Fu and Xu [13] explored some topological properties for the
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Email addresses: mskhan@mamu.edu.sa (Meraj Ali Khan), cenap.ozel@gmail.com (Cenep Ozel), msiddiqi@jazanu.edu.sa (Mohd

Danish Siddiqi), sudhakar.chaubey@shct.edu.om (Sudhakar Kumar Chaubeyi), ssaali@kau.edu.sa (Sadia Samar Ali)



M. A. Khan et al. / Filomat 37:21 (2023), 7105–7113 7106

submanifolds immersed in a hyperbolic space and proved the topological space theorem. Motivated by
the study of Fu and Xu Ali et al [8] obtained some characterization for the non-existence of stable currents
for the CR-warped product submanifolds of the complex hyperbolic space and simultaneously, vanishing
of homology groups for these submanifolds were studied. Various topological sphere theorems have been
extended in [8]. In [7], the authors extend the same work to Lagrangian warped product submanifolds of
the six dimensional sphere. Several researchers derived various conclusions concerning topological and
differentiable structures of the submanifolds by putting specific requirements on the second fundamental
form ([16], [17], [9], [22]-[24]).

2. Preliminaries

Let (Γ̄, 1) be an almost Hermitian manifold with an almost complex structure J. The manifold (Γ̄) is called
Kaehler manifold if the almost complex structure J is parallel with respect to Levi − Civita connection ∇̄ on
Γ, i.e.,

(∇̄e1 J)e2 = 0, (1)

for all e1, e2 ∈ Γ̄Ū, then (Γ̄J, 1) is called a Kaehler manifold.
Let Γ be an n−dimensional Riemannian manifold isometrically immersed in a m−dimensional Rieman-

nian manifold Γ̄. Then the Gauss and Weingarten formulas are

∇̄e1 e2 = ∇e1 e2 + σ(e1, e2)

and
∇̄e1ξ = −Aξe1 + ∇

⊥

e1
ξ,

respectively, for all e1, e2 ∈ TΓ and ξ ∈ T⊥Γ.Where ∇ is the induced Levi-Civita connection on Γ, ξ is a vector
field normal to Γ, σ is the second fundamental form of Γ, ∇⊥ is the normal connection in the normal bundle
T⊥Γ and Aξ is the shape operator of the second fundamental form. The second fundamental form h and
the shape operator are associated by the following formula

1(σ(e1, e2), ξ) = 1(Aξe1, e2). (2)

The equation of Gauss is given by

R(e1, e2, e3, e4) = R̄(e1, e2, e3, e4) + 1(σ(e1, e4), σ(e2, e3)) − 1(σ(e1, e3), σ(e2, e4)), (3)

for all e1, e2, e3, e4 ∈ TΓ.Where, R̄ and R are the curvature tensors of Γ̄ and Γ respectively.
For any e ∈ TΓ and N ∈ T⊥Γ, Je and JN can be decomposed as follows

Je = Pe + Fe (4)

and

JN = tN + f N, (5)

where Pe (resp. tN) is the tangential and Fe (resp. f N) is the normal component of Je ( resp. JN).

The submanifold Γ of an almost Hermitian manifold Γ̄ is called a pointwise slant submanifold if at
each point x ∈ Γ, the wirtinger angle θ(e1) between Je1 and TxΓ is independent of the choice of the nonzero
vector e1 ∈ TxΓ. In this case, the angle θ is treated as a function on Γ, which is called the slant function
of the submanifold, and the submanifold is called the pointwise slant submanifold. If the slant function
θ(X) is constant on Γ, then Γ is a slant submanifold [12]. Now, we have following characterization for the
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pointwise slant submanfold.

The submanifold Γ is pointwise slant submanifold if and only if the endomorphism T satisfies

T2 = −λI (6)

for λ ∈ [0, 1] such that, λ = cos2 θ. From (4) and (6), one can conclude

1(Te1,Te2) = cos2 θ1(e1, e2) (7)

1(Fe1,Fe2) = sin2 θ1(e1, e2) (8)

for any e1, e2 ∈ TΓ.

If θ(e1) = 0 on Γ globally, then the pointwise slant submanifold becomes invariant submanifold. Simi-
larly, if θ(e1) = π2 on Γ globally, then the pointwise slant submanifold becomes anti-invariant or totally real
submanifold.

B. Y. Chen and F. Dillen [1] extended the concept of a warped product submanifold to multiple warped
product manifolds in the following way.

Let {Γi}, i = 1, 2, . . . , k be Riemannian manifolds with respective Riemannian metrics {1i}i=1,2,...,k and
{λi}i=2,3,...,k are positive valued functions on Γ1. Then there is the product manifold Γ = Γ1 × Γ2 × · · · × Γk
which is equipped with the Riemannian metric 1

1 = ϕ∗1(11) +
k∑

i=2

(λi ◦ ϕ1)2ϕ∗i (1i)

is called multiply warped product manifold and denoted by Γ = Γ1×λ2 Γ2× · · ·×λk Γk where ϕi(i = 1, 2, . . . , k)
are the projection maps of Γ onto Γi respectively. The functions λi are called the warping functions [1].
If the warping functions are constants, the warped product is simply Riemannian product of manifolds.
As a special case of multiply warped product manifolds, Biwarped product manifolds can be defined, for
i = 3. For i = 2, multiply warped product manifold becomes the single warped product manifold. Let
Γ = Γ0 ×λ1 Γ1 ×λ2 Γ2 be a biwarped product submanifold with the Levi-Civita connection of Γi for i = 0, 1, 2.
For biwarped product submanifolds, we now have the following result.
Lemma 2.1. [2] Let Γ = Γ0 ×λ1 Γ1 ×λ2 Γ2 be a biwarped product manifold. Then we have

∇e1 e2 = ∇e2 e1 = e1(lnλi)e2 (9)

for e1 ∈ TΓ0 and e2 ∈ TΓi, for i = 1, 2.

For a smooth function λ on a Riemannian manifold Γwith Riemannian metric 1, the gradient of λ is denoted
by ∇λ and is defined as

1(∇λ, e) = eλ, (10)

for all e ∈ TΓ.

From the Proposition 2.4 of [10], for the biwarped product submanifold ΓT ×λ1 Γθ ×λ2 Γ⊥, we can
conclude the following relations

R(e1, e3)e2 =
Hλ1 (e1, e2)
λ1

e3, (11)
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R(e1, e4)e2 =
Hλ2 (e1, e2)
λ2

e4, (12)

where e1, e2 ∈ TΓT, e3 ∈ TΓθ, e4 ∈ TΓ⊥, and Hλi is the Hessian of the function λi, i = 1, 2.

For the Laplacian ∆(lnλi) of the warping functions λi, i = 1, 2,we have

∆(lnλi) = −div(
∇λi

λi
) = −1(∇

1
λi
,∇λi) − λidiv(∇λi) = ∥∇lnλi∥

2 +
∆λi

λi
. (13)

From above equation, we deduce

∆lnλi

λi
= ∆lnλi − ∥∇lnλi∥

2 (14)

3. Main Results

We need the following information from Lawson and Simons [15] in order to establish our main results

Lemma 3.1. [15, 22] For the second fundamental form σ and any positive integers p, q with p+q = n, if the inequality

p∑
α=1

n∑
β=p+1

(2∥σ(uα,uβ)∥2 − 1(σ(uα,uα), σ(uβ,uβ))) < pqc

is satisfied for an n−dimensional compact submanifold Γn in a space form Γ̄(c) of constant curvature c ≥ 0, then there
is no stable p−current i Γn and Hp(Γn,Z) = Hq(Γn,Z) = 0, where Hα(Γn,Z) is the α − th homology group of Γn with
integer coefficients and {eα}1≤α≤ is the orthonormal basis of Mn.

The study of biwarped submanifolds in the Kaehler manifolds has been done by H. M. Tastan [3] which
was followed by M. A. Khan and K. Khan [4]. Basically, M. A. Khan and K. Khan looked on biwarped prod-
uct submanifolds of the type Γ = ΓT ×λ1 Γ⊥ ×λ2 Γθ in the frame of complex space forms, where ΓT, Γ⊥ and Γθ
are the invariant, totally real and pointwise slant submanifolds respectively. Across this paper we consider
n−dimensional biwarped product submanifold Γn = Γ

p
T ×λ2 Γ

t
⊥
×λ3 Γ

s
θ of a complex space form, where p,

t, s are the dimensions of the invariant, totally real and pointwise slant submanifolds. If Γs
θ = {0} then the

biwarped product submanifold becomes the CR-warped product submanifold. Similarly, if Γk2
⊥
= {0} then

the biwarped product submanifold reduces to pointwise semi-slant warped product submanifold.

Now, we have some initial results

Lemma 3.2. [3] Let Γ = ΓT ×λ1 Γ⊥ ×λ2 Γθ be a nontrivial biwarped product submanifold of a Kaehler manifold
(Γ̄, J, 1), then we have

(i) 1(σ(e1, e2), Je3) = 0,
(ii) 1(σ(e2, e3), Je3) = −Je2(lnλ1)∥e3∥

2,
(iii) 1(σ(e2, e4), Je3) = 0,

for any e1, e2 ∈ DT, e3 ∈ D⊥, and e4 ∈ Dθ.

Lemma 3.3. [3] Let Γ = ΓT ×λ1 Γ⊥ ×λ2 Γθ be a nontrivial biwarped product submanifold of a Kaehler manifold
(Γ̄, J, 1), then we have

(i) 1(σ(e1, e2),Fe4) = 0,
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(ii) 1(σ(e2, e3),Fe4) = 0,

(iii) 1(σ(e2, e4),Fe4) = −Je2lnλ2∥e4∥
2,

for any e1, e2 ∈ DT, e3 ∈ D⊥, and e4 ∈ Dθ.

It is well known that the even dimensional Euclidean space with zero constant sectional curvature is
a complex space form. As a result, given a biwarped product submanifold Γ = ΓT ×λ1 Γ⊥ ×λ2 Γθ in a flat
space or the Euclidean space, we get the following nonexistence stable integral p-currents theorem.

Theorem 3.4. Let Γn = Γ
p
T ×λ1 Γ

t
⊥
×λ2 Γ

s
θ be a compact orientable biwarped product submanifold in the Euclidean

space Rp+2t+2s with n = p + q. If the following condition holds

t∆lnλ1 + q∆lnλ2 > t(2 − t)∥∇lnλ1∥
2 + s(1 − s + csc2 θ + cot2 θ)∥∇lnλ2∥

2
−

− q1(∇lnλ1,∇lnλ2).
(15)

Then there does not exist integral p−current in Γn and Hp(Γn,Z) = Hq(Γn,Z) = 0,where Hi(Γn,Z) is the ith homology
group of Γn with integer coefficient, where p, t and s are the dimensions of the submanifolds Γp

T, Γ
t
⊥

and Γs
θ respectively,

with q = t + s.

Proof. Let dim(Γp
T) = p = 2α, dim(Γt

⊥
) = t, and dim(Γs

θ) = s = 2β, where NT, N⊥ and Nθ are the integral man-
ifolds of the distributions DT, D⊥ and Dθ, respectively. Consider {u1,u2, . . . ,uα,uα+1 = Ju1, . . . ,u2α = Juα},
{u2α+1 = û1, . . . ,u2α+t = ût}, and {u2α+t+1 = u∗1, . . . ,u2α+t+β = u∗β,u2α+t+β+1 = u∗β+1 = secθPu∗1, . . . ,u2α+t+2β =

u∗(q=2β) = secθPu∗β} be the orthonormal frames of TΓt
⊥
, TΓt

⊥
and TΓs

θ, respectively. Therefore, the or-

thonormal basis of the normal subbundle JD⊥ and FDθ are {un+1 = ẽ1 = Jê1, . . . ,un+t = ẽt = Jêt} and
{et+1 = ē1 = cscθFu∗1, . . . , et+β = ēβ = cscθFe∗1, et+β+1 = ēβ+1 = cscθ secθFTu∗1, . . . , et+2β = ē2β = cscθ secθFTu∗β}
respectively. Thus, we have

p∑
i=1

n∑
j=1

{2∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))} =
p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=p+1

(σr
i j)

2+

+

p∑
i=1

n∑
j=p+1

{∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))}

=

p+2t+2s∑
r=n+1

p∑
i=1

t∑
j=p+1

(σr
i j)

2 +

p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=t+1

(σr
i j)

2+

+

p∑
i=1

t∑
j=p+1

{∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))}

+

p∑
i=1

s∑
j=t+1

{∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))}.
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Then by the Gauss equation (3) for the Euclidean space Rp+2t+2q, we get

p∑
i=1

n∑
j=1

{2∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))} =
p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=p+1

(σr
i j)

2+

+

p∑
i=1

n∑
j=p+1

{∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))}

=

p+2t+2s∑
r=n+1

p∑
i=1

t∑
j=p+1

(σr
i j)

2 +

p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=t+1

(σr
i j)

2+

+

p∑
i=1

t∑
j=1

1(R(ui,u j)ui,u j) +
p∑

i=1

s∑
j=t+1

1(R(ui,u j)ui,u j).

(16)

We can conclude the following relations from (11) and (12)

p∑
i=1

t∑
j=1

1(R(ui,u j)ui,u j) =
t
λ1

p∑
i=1

1(∇ei∇λ1,ui), (17)

and

p∑
i=1

s∑
j=1

1(R(ui,u j)ui,u j) =
s
λ2

p∑
i=1

1(∇ui∇λ2,ui). (18)

Combining (16), (17), and (18), we get

p∑
i=1

n∑
j=1

{2∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))} =
t
λ1

p∑
i=1

1(∇ui∇λ1,ui)

+
s
λ2

p∑
i=1

1(∇ui∇λ2,ui) +
p+2t+2s∑
r=n+1

p∑
i=1

t∑
j=p+1

(σr
i j)

2

+

p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=t+1

(σr
i j)

2.

(19)

First we compute the terms ∆λ1 and ∆λ2, these are the Laplacian of the warping functions λ1 and λ2

∆λ1 = −

n∑
k=1

1(∇uk (∇λ1),uk) = −
p∑

i=1

1(∇ui (∇λ1),ui) −
t∑

j=1

1(∇û j (∇λ1), û j)

−

s∑
r=1

1(∇u∗r (∇λ1),u∗r)

= −

p∑
i=1

1(∇ui (∇λ1),ui) −
1
λ1

t∑
j=1

1(û j, û j)∥∇λ1∥
2

−

β∑
r=1

1(∇u∗r (∇λ1),u∗r) − sec2 θ

β∑
r=1

1(∇Pu∗r∇λ1,Pu∗r).

(20)
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On using equation (4), the above relation reduces to

∆λ1 = −

p∑
i=1

1(∇ui (∇λ1),ui) −
t
λ1
∥∇λ1∥

2
−

s
λ2
1(∇λ1,∇λ2). (21)

Similarly, we can calculate

∆λ2 = −

p∑
i=1

1(∇ui (∇λ2),ui) −
t
λ1
1(∇λ1,∇λ2) −

s
λ2
∥∇λ2∥

2. (22)

Multiplying (21) by 1
λ1

, we get

∆λ1

λ1
= −

1
λ1

p∑
i=1

1(∇ui (∇λ1),ui) − t∥∇lnλ1∥
2
− s1(∇lnλ1,∇lnλ2), (23)

using the equation (14), the above equation turn up

∆lnλ1 − ∥∇lnλ1∥
2 = −

1
λ1

p∑
i=1

1(∇ui (∇λ1),ui) − t∥∇lnλ1∥
2
− s1(∇lnλ1,∇lnλ2), (24)

rearranging the terms, we get

1
λ1

p∑
i=1

1(∇ui (∇λ1),ui) = −∆lnλ1 + (1 − t)∥∇lnλ1∥
2
− s1(∇lnλ1,∇lnλ2). (25)

In a similar fashion, we derive

1
λ2

p∑
i=1

1(∇ui (∇λ1),ui) = −∆lnλ2 + (1 − s)∥∇lnλ2∥
2
− t1(∇lnλ1,∇lnλ2). (26)

On the other hand

p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=p+1

(σr
i j)

2 =

2β∑
r=1

p∑
i=1

s∑
j=1

1(σ(ui,u∗j), ūr)2 +

t∑
r=1

p∑
i=1

t∑
j=1

1(σ(ui, û j), ũr)2

=

p∑
i=1

β∑
j,r=1

{1(σ(ui,u∗j), cscθFu∗r)
2 + 1(σ(ui,u∗j), cscθ secθFPu∗r)

2
}

+

p∑
i=1

t∑
j,r=1

1(σ(ui, û j), Jûr)2.

(27)

In view of Lemma 3.2 and 3.3, the above equation gives
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p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=p+1

(σr
i j)

2 = 2(csc2 θ + cot2 θ)
α∑

i=1

β∑
j=1

(uilnλ2)21(u∗j,u
∗

j)
2

+ 2(csc2 θ + cot2 θ)
α∑

i=1

β∑
j=1

(Juilnλ2)21(u∗j,u
∗

j)
2

+

p∑
i=1

t∑
j=1

(Juilnλ1)21(û j, û j)2.

(28)

After some routine computations, we arrive

p+2t+2s∑
r=n+1

p∑
i=1

n∑
j=p+1

(σr
i j)

2 = t∥∇lnλ1∥
2 + s(csc2 θ + cot2 θ)∥∇lnλ2∥

2. (29)

Putting the values from equations (25), (26), and (29) in (19), we get

p∑
i=1

n∑
j=1

{2∥σ(ui,u j)∥2 − 1(σ(ui,ui),σ(u j,u j))} = −t∆lnλ1 − s∆lnλ2 + t(1 − t)∥∇lnλ1∥
2+

+ s(1 − s)∥∇lnλ2∥
2
− q1(∇lnλ1,∇lnλ2)

+ t∥∇lnλ1∥
2 + s(csc2 θ + cot2 θ)∥∇lnλ2∥

2.

(30)

If the equation (15) in Theorem 3.4 satisfies, then from above equation, we get

p∑
i=1

n∑
j=1

{2∥σ(ui,u j)∥2 − 1(σ(ui,ui), σ(u j,u j))} < 0. (31)

The final conclusion of our theorem is obtained by applying Lemma 3.1 to the Euclidean space.

Remark 3.5. If Γs
θ = {0}, then the biwarped product submanifold Γn = Γ

p
T ×λ1 Γ

t
⊥
×λ2 Γ

s
θ becomes the CR-warped

product submanifold the type Γn = Γ
p
T ×λ1 Γ

t
⊥

for more details one can see [11]. Moreover, if Γt
⊥
= {0}, then the

biwarped product submanifold Γn = Γ
p
T ×λ1 Γ

t
⊥
×λ2 Γ

s
θ becomes the pointwise semi-slant warped product submanifold

Γn = Γ
p
T ×λ2 Γ

s
θ, as defined in [19].

In the light of above arguments, we have the following results

Corollary 3.6. Let Γn = Γ
p
T ×λ1 Γ

t
⊥

be a compact orientable CR-warped product submanifold in the Euclidean space
Rp+2t with n = p + t. If the following condition holds

t∆lnλ1 > t(2 − t)∥∇lnλ1∥
2. (32)

Then there does not exist integral p−current in Γn and Hp(Γn,Z) = Hq(Γn,Z) = 0, where Hi(Γn,Z) is the
ith homology group of Γn with integer coefficient, where p and t are the dimensions of the submanifolds Γp

T and Γt
⊥

respectively.

Corollary 3.7. (Theorem 3.3 [5]) Let Γn = Γ
p
T ×λ1 Γ

s
θ be a compact orientable pointwise semi-slant warped product

submanifold in the Euclidean space Rp+2s with n = p + s. If the following condition holds

s∆lnλ2 > s(1 − s + csc2 θ + cot2 θ)∥∇lnλ2∥
2. (33)

Then there does not exist integral p−current in Γn and Hp(Γn,Z) = Hq(Γn,Z) = 0,where Hi(Γn,Z) is the ith homology
group of Γn with integer coefficient, where p and s are the dimensions of the submanifolds Γp

T and Γs
θ respectively.
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4. Conclusion

In the context of Kaehler manifolds, there exist two well known classes of warped product submani-
folds: CR-warped product submanifolds and pointwise semi-slant warped product submanifolds. These
classes are quite different from each other and it has always been investigated to explore that how far
the homology of CR-warped product submanifolds differ or resemble with that of pointwise semi-slant
warped product submanifolds. The frame of biwarped product submanifolds in a way unifies the two
classes of these warped products. By studying the homology of biwarped product submanifolds in the
setting of Kaehler manifold, one clearly finds out the deviations in the geometric behavior of the homology
of CR-warped product submanifolds and the pointwise semi-slant warped product submanifolds in the
setting of Kaehler manifold. With this motivation, in the present paper we study the homology of biwarped
product submanifolds in the setting of Kaehler manifolds. The present study investigates the geometric
homology of three well known classes of warped product submanifolds, that is, biwarped products, CR-
warped products, and the pointwise semi-slant warped products.
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