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Abstract. This manuscript aims to highlight the existence and uniqueness results for a class of fuzzy non-
linear fractional evolution equations. Our approach is based on the application of an extendedΨ−Caputo
fractional derivative of order q ∈ (0, 1) valid on fuzzy functions paired with Banach contraction principle.
As an example of application, we provide one at the end of this paper to show how the results can be used.

1. Introduction

The subject of fuzzy fractional calculus and its potential applications has received more attention in
recent years, in large part because it has developed into a potent tool with accurate and successful results
in simulating a number of complex phenomena in a variety of seemingly disparate and widespread fields
of science and engineering (see [2, 11, 15, 24, 28, 31, 34, 35]). This theory has been proposed to handle un-
certainty due to incomplete information that appears in many mathematical or computer models of some
deterministic real-world phenomena. We begin by presenting an overview of fuzzy fractional differential
equations in this paper.
Agarwal et al. [3] pioneered the introduction of fuzzy fractional calculus in one of the earliest papers to
handle fractional-order systems with uncertain initial values or ambiguous connections between parame-
ters. In order to establish the existence and uniqueness of fractional differential equations with uncertainty,
Arshad and Lupulescu [8] used the results published in [3]. Then, Allahviranloo et al. [5] used the
Riemann-Liouville extended H-differentiability to solve the fuzzy fractional differential equations (FFDEs)
and reported some novel results in support of this idea. Salahshour et al. [36] solve several types of FFDEs
based on the Riemann-Liouville fuzzy derivative and use the fuzzy Laplace transform approach. Fard et
al. in [21] defined stability criteria for hybrid fuzzy systems on time scales in the Lyapunov sense based on
the delta-Hukuhara derivative for fuzzy valued functions. In [30], Khastan et al. look at whether there are
any solutions to a particular class of uncertain differential equations involving nonlocal derivatives. The
method is founded on the use of an expanded Krasnoselskii fixed point theorem applicable to fuzzy metric
spaces. This theorem leads them to conclude that the relevant problem has a fuzzy solution that is specified
on a particular fuzzy interval. We direct readers to the articles for a variety of fundamental publications
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associated with fuzzy fractional differential equations and the theory of fractional differential equations
[1, 17–20, 37, 40–42] and references therein.

Motivated by the above works, in the present paper, we investigate the existence and uniqueness of
solutions for the following fuzzy fractional evolution problems

cDq
0+u(t) = A(t)u(t), t ∈ J = [0,T],

u(0) = u0,
(1)

and 
cDq

0+u(t) = A(t)u(t) + h(t,u(t)), t ∈ J = [0,T],

u(0) = u0,
(2)

where CDq,Ψ
0+,1H is the extendedΨ−Caputo-Fuzzy fractional derivative of u(t) at order q ∈ (0, 1), T > 0, h is a

fuzzy continuous function andA(t) is a bounded linear operator. Our approach have not yet been studied,
as far as the authors are knowledgeable.

The paper is structured as shown below. Section 2 provides some fundamental characteristics of fuzzy
sets, fuzzy number operations, and precise definitions of fuzzy Ψ−fractional integral and Ψ−fractional
derivative that will be used in the follow-up. We present the existence and uniqueness results of the
solutions to the fractional evolution problems (1) and (2) in Sections 3 and 4. In Section 5, an interesting
example is provided, and Section 6 concludes.

2. Basic definitions and notations

This section will provide a quick overview of some of the notations, terminology, and findings from the
literature on fuzzy sets theory and fuzzy fractional calculus that will be used throughout the remainder of
this work. For details, we refer to [9, 42]

Definition 2.1. [42] A fuzzy number is mapping u : R→ [0, 1] such that

1. u is upper semi-continuous,
2. u is normal,that is, there exist x0 ∈ R such that u(x0) = 1,
3. u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥ min{u(x),u(y)} for all x, y ∈ R and λ ∈ [0, 1],
4. {x ∈ R, u(x) > 0} is compact.

The α − Cut of a fuzzy number u is defined as follows:

[u]α = {x ∈ R | u(x) ≥ α}.

The α − cut of fuzzy number u by [u]α = [ul(α),ur(α)].
We denote by E1 the collection of all fuzzy numbers and 0̃ the fuzzy zero defined by

0̃(x) =
{

1 i f x = 0,
0 elswhere.

•We denote by C(J,E1) the space of all fuzzy-valued functions which are continuous on J.
•We denote by Pc(R) the set of all bounded and closed intervals of R.
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Definition 2.2. [23] Let α ∈ [0, 1] and u ∈ E1 such that [u]α = [ul(α),ur(α)].
We define the diameter of α − level set [u]α of the fuzzy set u as follows:

d([u]α) = ur(α) − ul(α).

Definition 2.3. [23] The generalized Hukuhara difference of two fuzzy numbers u, v ∈ E1 is defined as follows:

u ⊖1H v = w⇔


i) u = v + w,
or
ii) v = u + (−w).

Proposition 2.4. [10] If u ∈ E1 and v ∈ E1, then the following properties hold.

1) If u ⊖1H v exists then it is unique.

2) u ⊖1H u = 0̃.

3) (u + v) ⊖1H v = u.

4) u ⊖1H v = 0̃⇔ u = v.

Definition 2.5. [42] According to the Zadeh’s extension principle, the addition on E1 is defined by:

(u ⊕ v)(z) = sup
z=x+y

min{u(x), v(y)}.

And scalar multiplication of a fuzzy number is given by:

(k ⊙ u)(x) =
{

u(x/k) , k ∈ R − {0},
0̃ , k = 0.

Remark 2.6. [33] Let u, v ∈ E1 and α ∈ [0, 1], then we have

[u + v]α = [u]α + [v]α.

[u − v]α = [uα1 − vα2 ,u
α
2 − vα1 ].

[ku]α = k[u]α =


[
kuα1 , kuα2

]
i f k ≥ 0,[

kuα2 , kuα1
]

i f k ≤ 0.

[uv]α = [minuα1 vα1 ,u
α
1 vα2 ,u

α
2 vα1 ,u

α
2 vα2 ,maxuα1 vα1 ,u

α
1 vα2 ,u

α
2 vα1 ,u

α
2 vα2 ].

Definition 2.7. [9] Let u, v ∈ E1 and α ∈ [0, 1], then the Hausdorf distance between u and v is given by:

D(u, v) = sup
α∈[0,1]

max{| ul(α) − vl(α) |, | ur(α) − vr(α) |}.

Proposition 2.8. [25] D is a metric on E1 and has the following properties:

1. (E1,D) is a complete metric space.
2. D(u + w, v + w) = D(u, v), ∀u, v,w ∈ E1.
3. D(ku, kv) = |k|D(u, v), ∀u, v ∈ E1 and k ∈ R.
4. D(u + w, v + z) ≤ D(u, v) +D(w, z), ∀u, v,w, z ∈ E1.

Remark 2.9. Let x, y ∈ C([J,E1). It is easy to see that the space
(
C(J,E1),Ds

)
is a Banach space where

Dc(x, y) = sup
s∈J

D(u(s), v(s)).



K. Oufkir et al. / Filomat 37:21 (2023), 7231–7240 7234

Definition 2.10. [14] Let f : J → E1 and t0 ∈ J. We say that f is Hukuhara differentiable at t0 if there exists
f ′
1H(t0) ∈ E1 such that:

f ′
1H(t0) = lim

h→0+

f (t0 + h) ⊖1H f (t0)
h

= lim
h→0−

f (t0) ⊖1H f (t0 − h)
h

.

Definition 2.11. [25]

1) A function F : J −→ E1 is strongly measurable if ∀α ∈ [0, 1], the set-valued mapping Fα : J −→ Pc(R) defined
by Fα(t) = [F(t)]α is Lebesgue measurable.

2) A function F : J −→ E1 is called integrably bounded, if there exists an integrable function h such that, |x| < h(t)
∀x ∈ F0(t).

Definition 2.12. Let F : J −→ E1. The integral of F on J denoted by
∫

J
F(t)dt is defined by

[∫
J
F(t)dt

]α
=

∫
J
Fα(t)dt =

{∫
J

f (t)dt | f : J −→ R is a measurable selection for Fα

}
.

for all α ∈ [0, 1].

Proposition 2.13. [25] Let F : J −→ E1 be a fuzzy function. If F is strongly measurable and integrably bounded
then it is integrable.

Definition 2.14. [23] A fuzzy function u : J → E1 is colled d-increasing ,(d-decreasing)on J if for every α ∈ [0, 1]
the real function t→ d([u(t)]α) is nondecreasing ,(nonincreasing)respectively.

Remark 2.15. If u : J→ E1 is d-increasing or d-decreasing on J,then we say that u(t) is d-monotone on J.

2.1. Fuzzy extendedΨ−fractional integrals andΨ−fractional derivatives
Proposition 2.16. [25]If u ∈ E1 then the following properties hold

(1) [u]β ⊂ [u]α i f 0 ≤ α ≤ β ≤ 1.
(2) If αn ⊂ [0, 1] is a nondecreasing sequence which converges to α, then

[u]α =
⋂
n≥1

[u]αn .

Conversely, if Aα = {[uα1 ,u
α
2 ];α ∈ [0, 1]} is a family of closed real intervals verifying (1) and (2), then Aα defined

a fuzzy number u ∈ E1 such that [u]α = Aα.

Let 0 < q < 1 and Ψ ∈ C1(J,R+) such that Ψ′(t) > 0 for all t ∈ J. The left-sided Ψ-Riemann-Liouville
fractional integral at order q of a real function 1 : J→ R is given by

Iq,Ψ
0+ 1(t) =

1
Γ(q)

∫ t

0
Ψ′(s)(Ψ(t) −Ψ(s))q−11(s)ds.

See [7, 16] for more details onΨ−fractional calculus.
Let f (t) ∈ L

(
J,E1

)
such that f (t) = [ f α1 (t), f α2 (t)].

Suppose that f α1 , f α2 ∈ L (J,R) for all α ∈ [0, 1] and let

Aα =
[

1
Γ(q)

∫ t

0
Ψ′(s)(Ψ(t) −Ψ(s))q−1 f α1 (s)ds,

1
Γ(q)

∫ t

0
Ψ′(s)(Ψ(t) −Ψ(s))q−1 f α2 (s)ds

]
, (3)

where Γ(.) is the Euler gamma function.
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Lemma 2.17. [8] The family {Aα;α ∈ [0, 1]} given by (3), defined a fuzzy number u ∈ E1 such that [u]α = Aα .

Definition 2.18. Let α ∈ (0, 1] and h(t) ∈ L
(
J,E1

)
. The fuzzyΨ−fractional integral at order q ∈ (0, 1) of h denoted

by

Iq,Ψ
0+,1Hh(t) =

1
Γ(q)

∫ t

0
Ψ′(s)(Ψ(t) −Ψ(s))q−1

⊙ h(s)ds

is defined by [
Iq,Ψ
0+,1Hh(t)

]α
=

[
Iq,Ψ
0+ hα1 (t), Iq,Ψ

0+ hα2 (t)
]
.

Proposition 2.19. Let f , 1 ∈ L(J,E1) and b ∈ E1, then we have:

1. Iq,Ψ
0+,1H(b f )(t) = bIq,Ψ

0+,1H f (t).

2. Iq,Ψ
0+,1H( f + 1)(t) = Iq,Ψ

0+,1H f (t) + Iq,Ψ
0+,1H1(t).

3. Iq,Ψ
0+,1H f (t) = Iq1+q2,Ψ

0+,1H f (t),where (q1, q2) ∈ [0, 1]2.

Proof. See [7]

Definition 2.20. [36]Let f ∈ C(J,E1) ∩ L(J,E1). The function f is called fuzzy Caputo fractional differentiable of
order 0 < q < 1 at t if there exists an element CDq,Ψ

0+,1H1(t) ∈ E1 such that

CDq,Ψ
0+,1H1(t) =

1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙ 1′
1H(s)ds.

Remark 2.21. Let
[

f (t)
]α = [

f α1 (t), f α2 (t)
]

for each α ∈ [0, 1], then[
CDq,Ψ

0+,1H f (t)
]α
=

[
cDq

0+ f α1 (t),c Dq
0+ f α2 (t)

]
,

where
cDq

0+ f α1 (t) :=
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1( f α1 )′(s)ds,

and
cDq

0+ f α2 (t) :=
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1( f α2 )′(s)ds.

3. Fuzzy linear fractional evolution problem

Definition 3.1. A fuzzy function u(t) is a solution of the problem (1) if and only if

1. u(t) is continuous and u(t) ∈ D(A(t)) for all t ∈ J,
2. CDq,Ψ

0+,1Hu(t) exists and continuous on J, where 0 < q < 1,
3. u(t) satisfies (1).

Lemma 3.2. A d-monotone fuzzy function u(t) is a solution of the problem (1) if and only if

1. u(t) is continuous and u(t) ∈ D(A(t)) for all t ∈ J.
2. u(t) satisfies the following integral equation

u(t) ⊖1H u0 =
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙A(s)u(s))ds.
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3. The function t→ Iq,Ψ
0+,1HA(t)u(t) is d-increasing on J.

Proof. See the proof of Theorem 3 in [23].

We assume the following assumptions throughout the rest of this paper.

(H1) A(t) is a bounded linear operator on E1 for each t ∈ J.

(H2) The function t→A(t) is continuous.

(H3) The function h is continuous and there exists a positive constant K such that

Dc(h(t,u), h(t, v)) ≤ KDc((u, v) f or all u, v ∈ C(J,E1).

Theorem 3.3. Assume that the hypotheses (H1) − (H2) are verified, then (1) has a unique solution on J.

Proof. By using Picard’s iteration method [29] we prove that the problem (1) has a unique solution defined
on J.
Let

A0 = sup
s∈J

D(A(s), 0̃).

and let TΨ : C(J,E1)→ C(J,E1) be the operator defined as follows:

TΨu(t) ⊖1H u0 =
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙A(s)u(s))ds.

Let u, v ∈ C(J,E1), then we have

D(TΨu(t),TΨv(t)) ≤
A0(Ψ(T) −Ψ(0))q

Γ(q + 1)
Dc(TΨu,TΨv),

and by induction we can write

D(T n
Ψu(t),T n

Ψv(t)) ≤

(
A0(Ψ(T)−Ψ(0))q

Γ(q+1)

)n

n!
Dc(T n

Ψu,T n
Ψv),

it follows that

Dc(T n
Ψu,T n

Ψv) ≤

(
A0(Ψ(T)−Ψ(0))q

Γ(q+1)

)n

n!
Dc(T n

Ψu,T n
Ψv).

Finally, since

(
A0(Ψ(T)−Ψ(0))q

Γ(q+1)

)n

n!
< 1 for large n. It follows from the Banach fixed point theorem that the

operator TΨ has a unique fixed point u wich is the solution of the problem (1).

4. Fuzzy quasilinear fractional evolution problem

Definition 4.1. A fuzzy function u(t) is said te be a solution of the problem (2) if and only if

1. u(t) is continuous and u(t) ∈ D(A(t)) for all t ∈ J.
2. u(t) satisfies (2).

Lemma 4.2. A d-monotone fuzzy function u(t) is a solution of (2) if and only if

1. u(t) is continuous and u(t) ∈ D(A(t)) for all t ∈ J.
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2. u(t) satisfies the following integral equation

u(t) ⊖1H u0 =
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙A(s)u(s))ds

+
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙ h(s,u(s))ds.

3. The function t→ Iq
0+ (A(t)u(t) + h(t,u(t)))is d-increasing on J.

Proof. See the proof of Theorem 3 in [23].

Theorem 4.3. The problem (2) has a unique solution on J if the assumptions (H1)−(H3) are satisfied and the following
inequality holds

(A0 + K)(Ψ(T) −Ψ(0))q

Γ(q + 1)
<

1
2
. (4)

Proof. Let LΨ : C(J,E1)→ C(J,E1) be the operator given by

LΨu(t) ⊖1H u0 =
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙A(s)u(s))ds

+
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1

⊙ h(s,u(s))ds.

Let η be a positive real number such that η ≥ 2
(
D(u0, 0̃) +

h0(Ψ(T) −Ψ(0))q

Γ(q + 1)

)
.where h0 = Dc(h, 0̃).

Let us show that LΨBη(0̃, η) ⊂ Bη(0̃, η) where

Bη(0̃, η) = {v ∈ C([J,E1) : D(0̃, v) ≤ η}.

Let u ∈ Bη then we have

D(LΨu(t), 0̃) ≤ D(x0, 0̃) +
A0

Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1D(u(s), 0̃)ds

+
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1D(h(s,u(s)), 0̃)ds

≤ D(x0, 0̃) +
ηA0(Ψ(T) −Ψ(0))q

Γ(q + 1)
+

(ηK + h0)(Ψ(T) −Ψ(0))q

Γ(q + 1)
,

≤ η.

Thus LΨ maps Bη into itself.
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Let u, v ∈ C(J,E1) we have

D(LΨv(t),LΨu(t)) ≤
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1D(A(s)v(s),A(s)u(s))ds,

+
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1D(h(s, v(s)), h(s,u(s)))ds,

≤
1
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1D(A(s)v(s),A(s)u(s))ds,

+
K
Γ(q)

∫ t

0
(Ψ(t) −Ψ(s))q−1D(v(s),u(s))ds,

≤
(A0 + K)(Ψ(T) −Ψ(0))q

Γ(q + 1)
Dc(u, v),

≤
(A0 + K)(Ψ(T) −Ψ(0))q

Γ(q + 1)
Dc(u, v),

hence
Dc(LΨu,LΨv) ≤

1
2

Dc(u, v),

Thus, LΨ is a contraction mapping and hence te operator LΨ has a unique fixed point u wich is the
solution of the problem (2).

5. An illustrative example

Consider the following fuzzy fractional evolution problem
cD

1
2 ,
√

1+t
0+ u(t) =

1
10

sin(t)u(t) +
1

9 + t
u(t), t ∈ [0, 1],

u(0) = u0.

(5)

Here, we consider α = 1
2 ,Ψ =

√
1 + t,T = 1 andA given by

A(t) = 1
10 sin(t) id,where id is the identity mapping defined on E1, and h(t,u) =

1
9 + t

u(t).
It’s clear that A(t) is a bounded linear operator and since the function t → sin(t) is continuous A(t) is
continuous and therefore (H1) and (H2) hold.
On the other hand, we have

D(h(t,u(t)), h(t, v(t))) = D
( 1

9 + t
u(t),

1
9 + t

v(t)
)
,

D(h(t,u), h(t, v)) ≤
1

10
D(u, v),

it follows that (H3) is verified and the Theorem 4.3 holds with K =
1

10
. It remains to check (4) in Theorem

4.3 is also satisfied.
For this purpose we have K = A0 =

1
10 , and(

(K + A0)(Ψ(T) −Ψ(0))α

Γ(α + 1)

)
=

 ( 1
10 +

1
10 ) × (

√
2 − 1)

1
2

Γ( 3
2 )

 = 0.14 <
1
2
.

Finally, all the conditions of Theorem 4.3 are satisfied for the problem (5), then it has a unique solution on
[0, 1].
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6. Conclusion

In this curent paper, we studied the existence and uniqueness of solutions for uncertain fractional
evolution equations involving the extendedΨ−Caputo fractional derivative of an arbitrary order q ∈ (0, 1).
The results are obtained by using fuzzy Ψ−Caputo fractional calculus and the well-known Banach fixed
point theorem. We also provide an example to make our results clear.
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