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Abstract. Lp-moment mixed quermassintegrals of convex bodies in Rn are introduced. The Brunn-
Minkowski type inequality and Aleksandrov-Fenchel type inequality are established for Lp-moment mixed
quermassintegrals that imply affine mixed quermassintegrals inequality, Lutwak’s mixed polar projection
inequality, and isoperimetric inequality for Lp-moment mixed quermassintegrals. Inequalities of Lp-moment
mixed quermassintegrals of polar bodies are proved.

1. Introduction

The combination of Minkowski addition and volume leads to the rich and powerful classical Brunn-
Minkowski theory for compact convex sets, which constitutes the core of modern convex geometry. As the
first milestone of the Brunn-Minkowski theory, the Brunn-Minkowski inequality plays a fundamental role
in attacking problems in analysis, geometry, information theory, and many other fields, which states that if
K,L are convex bodies (compact convex subsets with nonempty interiors) in Euclidean n-space Rn, then

V(K + L)1/n
≥ V(K)1/n + V(L)1/n.

Here V and+ denote volume and Minkowski sum. Equality holds if and only if K and L are homothetic. It is
a far-reaching generalization of the isoperimetric inequality. The classic treatise of Schneider [25] provides
a detailed survey of the Brunn-Minkowski theory and a host of references. For later developments, we refer
to [2, 4, 6, 15, 26].

The classical Brunn-Minkowski theory is also known as the theory of mixed volumes. The notion
of mixed volumes, which forms a central part of the Brunn-Minkowski theory of convex bodies, was
created by Minkowski [23, 24] and subsequently attracted the attentions of many scholars, see e.g., [3, 8,
12, 18–20]. Around 1935, Aleksandrov [1] and Fenchel [7] discovered the relation between mixed volumes
independently, which is called by Aleksandrov-Fenchel inequality, that is, if K1, . . . ,Kn are compact convex
subsets in Rn, for 1 ≤ m ≤ n, then

V(K1, . . . ,Kn)m
≥

m∏
i=1

V(Ki, . . . ,Ki︸    ︷︷    ︸
m

,Km+1, . . . ,Kn). (1)
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Here V(K1, . . . ,Kn) is the mixed volume of K1, . . . ,Kn. The complete equality conditions for the Aleksandrov-
Fenchel inequality are not known. The following special case is useful: If Km+1, . . . ,Kn are smooth convex
bodies, and the dimensions of K1, . . . ,Km are more than or equal to m, then the equality in (1) holds if and
only if K1, . . . ,Km are homothetic. It is not difficult to find that the Aleksandrov-Fenchel inequality implies
Minkowski’s first inequality [25].

One of the most fundamental concepts in convex geometry is quermassintegrals of a compact convex
subsets in Rn, which have an intimate connection with the mixed volumes. It can be shown that if K is a
convex body in Rn, for 1 ≤ i ≤ n − 1, then the (n − i)-th quermassintegral Wn−i(K) of K is defined by

Wn−i(K) =
ωn

ωi

∫
Gn,i

Vi(K|ξ)dµi(ξ), (2)

where define Wn(K) = ωn, W0(K) = V(K) and ωn is volume of unit ball inRn. Let Gn,i denote the Grassmann
manifold of all i-dimensional linear subspaces inRn. For ξ ∈ Gn,i, Vi(K|ξ) denotes the i-dimensional volume
of the orthogonal projection of K onto ξ, and the integral with respect to Haar probability measure µi over
Gn,i. For more information, we refer to [9, 16, 25, 27, 28].

However, quermassintegrals of a convex body K are not invariant under volume-preserving affine
transformations, so it is tempting to find an analogous notion which is invariant under such transformations.
By replacing the L1-norm in (2) by the L−n-norm, Lutwak [16] proposed to define affine quermassintegrals for
a convex body K by taking Φ0(K) = V(K),Φn(K) = ωn, and for 1 ≤ i ≤ n − 1,

Φn−i(K) =
ωn

ωi

(∫
Gn,i

Vi(K|ξ)−ndµi(ξ)
)−1/n

. (3)

It was showed by Grinberg [11] that these geometric quantities are invariant under volume-preserving
affine transformations. Consequently, the affine quermassintegrals have become a central pillar of affine
convex geometry.

In order to obtain the sharp lower bound of Φi(K), Lutwak [21] put forward the following insightful
conjecture as

Φi(K) ≥ Φi(BK), i = 1, . . . ,n − 1, (4)

where BK denotes the Euclidean ball having the same volume as K, and equality holds if and only if K is
an ellipsoid. Zou and Xiong [29] posed another lower bound for Φi(K) by the (n − i)-th projection mean
ellipsoid.

By Jensen’s inequality, the affine inequality (4) is stronger than the classical isoperimetric inequality.
Two nontrivial cases of i = 1 and i = n− 1 in (4) are true, they follow, respectively, from the Petty projection
inequality and the Blaschke-Santaló inequality. For i = 2, . . . ,n − 2, the Lutwak’s conjecture (4) is recently
confirmed by Milman and Yehudayoff [22]. In [22], they extended affine quermassintegrals to more general
Lp-moment quermassintegrals and obtained the isoperimetric inequalities for them. For 1 ≤ i ≤ n and
p ∈ R \ {0}, the (n − i)-th Lp-moment quermassintegrals of a convex body K are defined by

Qn−i,p(K) =
ωn

ωi

(∫
Gn,i

Vi(K|ξ)pdµi(ξ)
)1/p

.

The case p = 0 is interpreted in the limiting sense as

Qn−i,0(K) =
ωn

ωi
exp

(∫
Gn,i

log Vi(K|ξ)dµi(ξ)
)
.

Notice that p = −n is the unique value of p ∈ R for which Qi,p(K) is invariant under volume-preserving affine
transformations [11]. Some special cases such as Qi,−n(K) = Φi(K),Qi,1(K) = Wi(K), and Qi,−1(K) = Ŵi(K) (
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the harmonic quermassintegral introduced by Hadwiger [13]) show that Lp-moment quermassintegrals are
the generalization of classical quermassintegrals.

Based on the importance of mixed volume in the Brunn-Minkowski theory and motivated by the excel-
lent paper [22], we’re going to consider the mixed form of Lp-moment quermassintegrals, namely Lp-moment
mixed quermassintegrals. Let K1, . . . ,Ki are convex bodies inRn and ξ ∈ Gn,i. We use Vξ(K1|ξ,K2|ξ, . . . ,Ki|ξ) to
denote the mixed volume of K1|ξ,K2|ξ, . . . ,Ki|ξ in the subspace ξ. Suppose 0 ≤ i ≤ n and p ∈ R\{0}, then the
(n− i)-th Lp-moment mixed quermassintegrals Qn−i,p(K1,K2, . . . ,Ki) for convex bodies K1, . . . ,Ki are defined,
by letting Q0,p(K1, . . . ,Kn) = V(K1, . . . ,Kn),Qn,p(K1, . . . ,Ki) = ωn and, for 1 ≤ i ≤ n − 1,

Qn−i,p(K1, . . . ,Ki) =
ωn

ωi

(∫
Gn,i

Vξ(K1|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p

. (5)

The case of p = 0 is interpreted in the limiting sense as

Qn−i,0(K1, . . . ,Ki) =
ωn

ωi
exp

(∫
Gn,i

log Vξ(K1|ξ, . . . ,Ki|ξ)dµi(ξ)
)
. (6)

In some special cases, we can get Qn−i,p(K, . . . ,K) = Qn−i,p(K) when K1 = · · · = Ki = K and Qn−i,−n(K, . . . ,K) =
Φn−i(K). In Section 3, some fundamental properties for Lp-moment mixed quermassintegrals are introduced.
In Section 4, we prove that the functional Q1/i

n−i,p from Kn to [0,∞) is concave, this is an analogous Brunn-
Minkowski inequality. The Aleksandrov-Fenchel type inequality for Lp-moment mixed quermassintegrals
is established as following.

Theorem 1.1. Suppose K1, . . . ,Km are convex bodies in Rn, Km+1, . . . ,Ki are smooth convex bodies in Rn and
1 ≤ m ≤ i, for p ≤ 0, then

Qn−i,mp(K1, . . . ,Ki)m
≥

m∏
j=1

Qn−i,mp(K j, . . . ,K j︸     ︷︷     ︸
m

,Km+1, . . . ,Ki),

with equality if and only if K1, . . . ,Km are homothetic.

Theorem 1.1 implies affine mixed quermassintegrals inequality (Corollary 4.7) and Lutwak’s mixed
polar projection inequality (Corollary 4.8). For convex bodies K1, . . . ,Ki in Rn and p ≥ −n, Theorem 1.1
together with (4) yields the isoperimetric inequality for Lp-moment mixed quermassintegrals

Qn−i,p(K1, . . . ,Ki) ≥ Qn−i,p(BK1 , . . . ,BKi ), (7)

with equality if and only if K1, . . . ,Ki are balls.
In Section 5, we consider inequalities of Lp-moment mixed quermassintegrals of polar bodies and

establish the following inequality.

Theorem 1.2. Suppose that K1 is a smooth convex body containing the origin in its interior in Rn, K2, . . . ,Ki are
convex bodies in Rn. For 0 ≤ i ≤ n and p ≥ 0, then

Qn−i,p(K1,K2, . . . ,Ki)Qn−i,p(K∗1,K2, . . . ,Ki) ≥ Qn−i,p(B,K2, . . . ,Ki)2,

with equality if and only if K1 is a ball.

2. Preliminaries

As usual, Sn−1 denotes the unit sphere, B the unit ball and o the origin in n-dimensional Euclidean space
Rn. A convex body is a compact convex subset of Rn with non-empty interior. The set of convex bodies in
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Rn is denoted by Kn and the set of convex bodies in Rn that contain the origin in their interiors is denoted
by Kn

o . And Kn
s denotes the set of centrally symmetric convex bodies in Kn. For real number c > 0 and

K ∈ Kn, we have V(cK) = cnV(K). For K,L ∈ Kn are said to be homothetic if there exists a real number c > 0
and a vector x ∈ Rn such that K = cL + x. For K is a subset of Rn, its polar set K∗ is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 f or all y ∈ K},

where x · y is the standard inner product of x and y in Rn. In particular, if K ∈ Kn
o , we have K∗∗ = K.

Let K ∈ Kn, then its support function h(K, ·) is defined by

h(K,u) = max{u · x : x ∈ K,u ∈ Sn−1
}.

The projection body of a convex body K is the centered convex body ΠK, which is defined by

h(ΠK,u) = Vn−1(K|u⊥),

for each u ∈ Sn−1, where K|u⊥ is the orthogonal projection of K on u⊥.
If K1, . . . ,Kn−1 ∈ K

n, Lutwak [17] introduced the mixed projection body of K1, . . . ,Kn−1 denoted by
Π(K1, . . . ,Kn−1), and defined by

h(Π(K1, . . . ,Kn−1),u) = Vn−1(K1|u⊥, . . . ,Kn−1|u⊥), (8)

where Vn−1(K1|u⊥, . . . ,Kn−1|u⊥) is the mixed volume of the compact convex sets K1|u⊥, . . . ,Kn−1|u⊥ in the
(n − 1)-dimensional space u⊥. We use Π∗(K1, . . . ,Kn−1) to denote the polar body of Π(K1, . . . ,Kn−1).

Suppose K1, . . . ,Kn ∈ K
n, the mixed volume of K1, . . . ,Kn is denoted by V(K1, . . . ,Kn). In general, for

r1 + · · · + rk = n, we introduce the abbreviation

V(K1, . . . ,K1︸     ︷︷     ︸
r1

, . . . ,Kk, . . . ,Kk︸     ︷︷     ︸
rk

) := V(K1, r1; . . . ; Kk, rk).

Similarly, for ξ ∈ Gn,i, Vξ(K1|ξ, . . . ,Ki|ξ) denotes the i-dimensional mixed volume of body K1|ξ, . . . ,Ki|ξ
in subspace ξ.

Let M ∈ Kn
s and c > 0. A body K ∈ Kn is said to have constant relative i-brightness with respect to M [5],

for 0 < i < n − 1, if

Vi(K|ξ) = cVi(M|ξ), f or all ξ ∈ Gn,i.

In general, K1, . . . ,Ki ∈ K
n are said to have constant relative mixed i-brightness with repsect to M [5], for

0 < i < n − 1, if

Vξ(K1|ξ, . . . ,Ki|ξ) = cVi(M|ξ), f or all ξ ∈ Gn,i.

If K1, . . . ,Ki ∈ K
n and 0 ≤ i ≤ n − 1, the affine mixed quermassintegral of K1, . . . ,Ki is defined by

Φn−i(K1, . . . ,Ki) =
ωn

ωi

(∫
Gn,i

Vξ(K1|ξ, . . . ,Ki|ξ)−ndµi(ξ)
)−1/n

and letting by Φ0(K1, . . . ,Kn) = V(K1, . . . ,Kn). It is clear to notice that Qn−i,−n(K1, . . . ,Ki) is equivalent to
Φn−i(K1, . . . ,Ki).

The following Lemma, will be needed several times, shows that i-dimensional mixed volumes of
orthogonal projections to ξ can be expressed by mixed volumes in Rn [25].

Lemma 2.1. Suppose K1, . . . ,Ki ∈ K
n and ξ ∈ Gn,i, for 0 ≤ i ≤ n, then

Vξ(K1|ξ, . . . ,Ki|ξ) = cn,iV(K1, . . . ,Ki; B ∩ ξ⊥,n − i), (9)

where cn,i =
(n

i)
ωn−i

.
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The following inequality for mixed volumes of polar bodies which proved by Ghandehari [10] will be
applied to set up inequality for Lp-moment mixed quermassintegrals of polar bodies.

Lemma 2.2. Suppose K1 ∈ K
n
o and K1 is smooth, K2, . . . ,Kn ∈ K

n, then

V(K1,K2, . . . ,Kn)V(K∗1,K2, . . . ,Kn) ≥ V(B,K2, . . . ,Kn)2, (10)

with equality if and only if K1 is a ball.

3. Lp-moment mixed quermassintegrals

In this section, some fundamental properties for Lp-moment mixed quermassintegrals are introduced.
By the translation invariance and positive homogeneity of mixed volume Vξ(K1|ξ, . . . ,Ki|ξ), then such

properties of Lp-moment mixed quermassintegrals can be obtained immediately.

Proposition 3.1. Suppose K1, . . . ,Ki ∈ K
n and p ∈ R, then

Qn−i,p(K1 + x1, . . . ,Ki + xi) = Qn−i,p(K1, . . . ,Ki),

for x1, . . . , xi ∈ Rn, and

Qn−i,p(λ1K1, . . . , λiKi) = λ1 · · ·λiQn−i,p(K1, . . . ,Ki), (11)

for p ∈ R and λ1, . . . , λi > 0.

Since the classical mixed volume in Rn is multilinear, it is obvious to notice that the Lp-moment mixed
quermassintegrals are multilinear when p = 1. The following proposition will state Lp-moment mixed
quermassintegrals are not multilinear when p , 1.

Proposition 3.2. Suppose K0,K1, . . . ,Ki ∈ K
n and a, b ≥ 0 for p > 1, then

Qn−i,p(aK0 + bK1,K2, . . . ,Ki) ≤ aQn−i,p(K0,K2, . . . ,Ki) + bQn−i,p(K1,K2, . . . ,Ki). (12)

If 0 , p < 1, then (12) holds with the inequality sign reversed. Equality in (12) holds if K0 and K1 are homothetic.

Proof. Combining the fact that the classical mixed volume in Rn is multilinear and Lemma 2.1, for all
ξ ∈ Gn,i, then

Vξ(aK0 + bK1|ξ,K2|ξ, . . . ,Ki|ξ)
= cn,iV(aK0 + bK1,K2, . . . ,Ki; B ∩ ξ⊥,n − i)
= cn,i

(
aV(K0,K2, . . . ,Ki; B ∩ ξ⊥,n − i) + bV(K1,K2, . . . ,Ki; B ∩ ξ⊥,n − i)

)
= aVξ(K0|ξ,K2|ξ, . . . ,Ki|ξ) + bVξ(K1|ξ,K2|ξ, . . . ,Ki|ξ). (13)

Applying Minkowski’s inequality for p > 1 and (13), we have

Qn−i,p(aK0 + bK1,K2, . . . ,Ki)

=
ωn

ωi

(∫
Gn,i

(aVξ(K0|ξ,K2|ξ, . . . ,Ki|ξ) + bVξ(K1|ξ,K2|ξ, . . . ,Ki|ξ))pdµi(ξ)
)1/p

≤
ωn

ωi

(∫
Gn,i

apVξ(K0|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p

+
ωn

ωi

(∫
Gn,i

bpVξ(K1|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p

= aQn−i,p(K0,K2, . . . ,Ki) + bQn−i,p(K1,K2, . . . ,Ki).

The inequality is reversed if p < 1 and p , 0. If K0 and K1 are homothetic, then Vξ(K0|ξ, . . . ,Ki|ξ) and
Vξ(K1|ξ, . . . ,Ki|ξ) are proportional, that is, equality in (12) holds.
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Proposition 3.3. Suppose K,L,K1, . . . ,Ki−2 are compact convex subsets in Rn such that K ∪ L is compact convex in
Rn, for 2 ≤ i ≤ n, then

Qn−i,p(K,L,K1, . . . ,Ki−2) = Qn−i,p(K ∪ L,K ∩ L,K1, . . . ,Ki−2). (14)

Proof. By the theorem proved by Groemer [12]: If K,L,K1, . . . ,Ki−2 are compact convex subsets in Rn such
that K ∪ L is compact convex in Rn, then

V(K,L,K1, . . . ,Ki−2) = V(K ∪ L,K ∩ L,K1, . . . ,Ki−2). (15)

Applying Lemma 2.1 and integrating over Gn,i give that

Qn−i,p(K,L,K1, . . . ,Ki−2)

=
ωn

ωi

(∫
Gn,i

Vξ(K|ξ,L|ξ,K1|ξ, . . . ,Ki−2|ξ)pdµi(ξ)
)1/p

=
ωn

ωi

(∫
Gn,i

cp
n,iV(K,L,K1, . . . ,Ki−2; B ∩ ξ⊥,n − i)pdµi(ξ)

)1/p

=
ωn

ωi

(∫
Gn,i

cp
n,iV(K ∪ L,K ∩ L,K1, . . . ,Ki−2; B ∩ ξ⊥,n − i)pdµi(ξ)

)1/p

=
ωn

ωi

(∫
Gn,i

Vξ((K ∪ L)|ξ, (K ∩ L)|ξ,K1|ξ, . . . ,Ki−2|ξ)pdµi(ξ)
)1/p

= Qn−i,p(K ∪ L,K ∩ L,K1, . . . ,Ki−2).

Proposition 3.4. Suppose K1, . . . ,Ki ∈ K
n and p, q ∈ R satisfied p < q, then

Qn−i,p(K1, . . . ,Ki) ≤ Qn−i,q(K1, . . . ,Ki), (16)

with equality if and only if K1, . . . ,Ki have constant relative mixed i-brightness with respect to B.

Proof. It can be deduced follows Jensen’s inequality, and equality holds if and only if Vξ(K1|ξ, . . . ,Ki|ξ)
is a constant for all ξ ∈ Gn,i, that is, equality holds if and only if K1, . . . ,Ki have constant relative mixed
i-brightness with respect to B.

Lp-moment mixed quermassintegrals have the following monotone property.

Proposition 3.5. Suppose K,L,K2, . . . ,Ki ∈ K
n and K ⊂ L, for p ∈ R, then

Qn−i,p(K,K2, . . . ,Ki) ≤ Qn−i,p(L,K2, . . . ,Ki). (17)

Proof. From Lemma 2.1, for all ξ ∈ Gn,i, we have

Vξ(K|ξ,K2|ξ, . . . ,Ki|ξ) = cn,iV(K,K2, . . . ,Ki; B ∩ ξ⊥,n − i)
≤ cn,iV(L,K2, . . . ,Ki; B ∩ ξ⊥,n − i)
= Vξ(L|ξ,K2|ξ, . . . ,Ki|ξ).

Then, for p ∈ R, we get(∫
Gn,i

Vξ(K|ξ,K2|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p

≤

(∫
Gn,i

Vξ(L|ξ,K2|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p

,

that is the desired (17).
It is easily to verify (17) is true for p = 0.
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4. Lp-moment mixed quermassintegrals inequalities

The following theorem shows that the functional Q1/i
n−i,p fromKn to [0,∞) is concave.

Theorem 4.1. Given p ∈ R satisfied ip ≤ 1, suppose K1, . . . ,Km ∈ K
n, then

Qn−i,p(K1 + · · · + Km)1/i
≥ Qn−i,p(K1)1/i + · · · +Qn−i,p(Km)1/i, (18)

with equality if and only if K1, . . . ,Km are homothetic.

Proof. By applying the Brunn-Minkowski inequality in subspaceξ ∈ Gn,i and combining the fact (
∑m

j=1 K j)|ξ =∑m
j=1(K j|ξ), we have

Vi((K1 + · · · + Km)|ξ)1/i
≥ Vi(K1|ξ)1/i + · · · + Vi(Km|ξ)1/i, (19)

with equality if and only if K1|ξ, . . . ,Km|ξ are homothetic for all ξ ∈ Gn,i, and therefore K1, . . . ,Km are
homothetic follows [9, Theorem 3.1.3].

Combining (19) with the reverse Minkowski’s inequality for ip ≤ 1 and p , 0, then

Qn−i,p(
m∑

j=1

K j)1/i =
(
ωn

ωi

)1/i
(∫

Gn,i

Vi((K1 + · · · + Km)|ξ)pdµi(ξ)
)1/ip

=
(
ωn

ωi

)1/i
(∫

Gn,i

Vi(K1|ξ + · · · + Km|ξ)ip/idµi(ξ)
)1/ip

≥

(
ωn

ωi

)1/i
(∫

Gn,i

(Vi(K1|ξ)1/i + · · · + Vi(Km|ξ)1/i)ipdµi(ξ)
)1/ip

≥

m∑
j=1

Qn−i,p(K j)1/i.

When ip = 1, the equality condition follows (19) immediately. When ip < 1, assume the equality holds
in (18), then we have equality in both inequalities above. Equality in the third line implies by (19) that
K1, . . . ,Km are homothetic. Equality in the fourth line implies Vi(Kk|ξ) and Vi(K j|ξ) are proportional for
1 ≤ k, j ≤ m. Therefore, they are also homothetic. On the other hand, if K1, . . . ,Km are homothetic, it is
obvious that the equality holds in (18).

When p = 0, we will prove (18). For this aim, [14, Theorem 184] will turn out to be the key to finish that,
which says that: For K1, . . . ,Km ∈ K

n, it follows that

exp
(∫

Gn,i

log
(
Vi(K1|ξ)1/i + · · · + Vi(Km|ξ)1/i

)
dµi(ξ)

)
≥ exp

(∫
Gn,i

log Vi(K1|ξ)1/idµi(ξ)
)
+ · · · + exp

(∫
Gn,i

log Vi(Km|ξ)1/idµi(ξ)
)
,
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with equality if and only if Vi(Kk|ξ) and Vi(K j|ξ) are proportional for 1 ≤ k, j ≤ m. By (5) and (19), we have

Qn−i,0(K1 + · · · + Km)1/i

=
(
ωn

ωi

)1/i
(
exp

(∫
Gn,i

log Vi((K1 + · · · + Km)|ξ)dµi(ξ)
))1/i

=
(
ωn

ωi

)1/i
exp

(∫
Gn,i

log Vi(K1|ξ + · · · + Km|ξ)1/idµi(ξ)
)

≥

(
ωn

ωi

)1/i
exp

(∫
Gn,i

log
(
Vi(K1|ξ)1/i + · · · + Vi(Km|ξ)1/i

)
dµi(ξ)

)
≥

(
ωn

ωi

)1/i m∑
j=1

exp
(∫

Gn,i

log Vi(K j|ξ)1/idµi(ξ)
)

=

m∑
j=1

Qn−i,0(K j)1/i.

The equality condition is obtained for p = 0 in the same way as above.

Theorem 4.2. Suppose K,L ∈ Kn and 0 < λ < 1, for ip ≤ 1, then

Qn−i,p((1 − λ)K + λL) ≥ Qn−i,p(K)1−λQn−i,p(L)λ, (20)

with equality if and only if K and L are translates.

Proof. Let K2 = · · · = Ki = cK in (11), we have Qn−i,p(cK) = ciQn−i,p(K) for p ∈ R. From this and (18), we get

Qn−i,p((1 − λ)K + λL)1/i
≥ Qn−i,p((1 − λ)K)1/i +Qn−i,p(λL)1/i

= (1 − λ)Qn−i,p(K)1/i + λQn−i,p(L)1/i. (21)

Then apply the arithmetic-geometric inequality to (21), that is

Qn−i,p((1 − λ)K + λL)1/i
≥ Qn−i,p(K)(1−λ)/iQi,p(L)λ/i.

The equality in (21) holds if and only if K,L are homothetic and the equality condition of arithmetic-
geometric inequality is Qi,p(K) = Qi,p(L). Thus, equality in (20) holds if and only if K and L are translates.

Lemma 4.3. Suppose K1, . . . ,Ki ∈ K
n, Km+1, . . . ,Ki are smooth, 1 ≤ m ≤ i, then

Vξ(K1|ξ, . . . ,Ki|ξ)m
≥

m∏
j=1

Vξ(K j|ξ, . . . ,K j|ξ︸          ︷︷          ︸
m

,Km+1|ξ, . . . ,Ki|ξ), (22)

with equality if and only if K1, . . . ,Km are homothetic.
Moreover, if m = i in (22), then

Vξ(K1|ξ, . . . ,Ki|ξ)i
≥ Vi(K1|ξ) · · ·Vi(Ki|ξ), (23)

with equality if and only if K1, . . . ,Ki are homothetic.

Proof. For all ξ ∈ Gn,i and K1, . . . ,Ki ∈ K
n, the Aleksandrov-Fenchel inequality (1) for compact convex sets

K1|ξ, . . . ,Ki|ξ in subspace ξ yields (22). In order to show the equality condition in (1), we need to prove
Km+1|ξ, . . . ,Ki|ξ are smooth convex bodies in subspace ξ. For the sake of simplicity, we assume that the
smooth convex body K is of (at least) C2 and has positive curvature, which is equivalent to its support
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function hK is of C2. Since ρK∗ = h−1
K , that hK is C2 is equivalent to ρK∗ is C2, that is, ∂K∗ is C2. Then ∂K∗ ∩ ξ

is C2 for all ξ ∈ Gn,i, and therefore we obtain ∂ (K∗ ∩ ξ)∗ is C2, where the latter polar operation is taken in ξ.
By the relationship (see (0.38) in [9])

K|ξ = (K∗ ∩ ξ)∗ ,

and thus, K|ξ is a smooth convex body in ξ. Therefore, Km+1|ξ, . . . ,Ki|ξ are smooth convex bodies in subspace
ξ.

Then the equality condition in Aleksandrov-Fenchel inequality implies that equality holds in (22) if and
only if K1|ξ, . . . ,Km|ξ are homothetic for ξ ∈ Gn,i. [9, Theorem 3.1.3] shows that such equality condition is
equivalent to that K1, . . . ,Km are homothetic.

The following theorem is the Aleksandrov-Fenchel type inequality for Lp-moment mixed quermassin-
tegrals.

Theorem 4.4. Suppose K1, . . . ,Ki ∈ K
n, Km+1, . . . ,Ki are smooth, for 1 ≤ m ≤ i, for p ≤ 0, then

Qn−i,mp(K1, . . . ,Ki)m
≥

m∏
j=1

Qn−i,mp(K j, . . . ,K j︸     ︷︷     ︸
m

,Km+1, . . . ,Ki), (24)

with equality if and only if K1, . . . ,Km are homothetic.

Proof. By (22) and Hölder’s inequality for p , 0, we have

Qn−i,mp(K1, . . . ,Ki)m

=
(
ωn

ωi

)m
(∫

Gn,i

Vξ(K1|ξ, . . . ,Ki|ξ)mpdµi(ξ)
)1/p

≥

(
ωn

ωi

)m


∫

Gn,i

m∏
j=1

Vξ(K j|ξ, . . . ,K j|ξ︸          ︷︷          ︸
m

,Km+1|ξ, . . . ,Ki|ξ)pdµi(ξ)


1/p

≥

(
ωn

ωi

)m m∏
j=1


∫

Gn,i

Vξ(K j|ξ, . . . ,K j|ξ︸          ︷︷          ︸
m

,Km+1|ξ, . . . ,Ki|ξ)p·mdµi(ξ)


1/pm

=

m∏
j=1

Qn−i,mp(K j, . . . ,K j︸     ︷︷     ︸
m

,Km+1, . . . ,Ki).

Assume the equality holds in (24), then equalities in the third line and the fourth line both hold. The
first equality condition can deduced from (23), that is, K1, . . . ,Km are homothetic. The equality condition of
Hölder’s inequality implies that Vξ(Kk|ξ,m; Km+1|ξ, . . . ,Ki|ξ) and Vξ(Kl|ξ,m; Km+1|ξ, . . . ,Ki|ξ) are proportional
for 1 ≤ k, l ≤ m. Therefore, they are also homothetic. On the other hand, if K1, . . . ,Km are homothetic, it is
obvious that the equality holds in (24).

Similarly, the case of p = 0 can be deduced by applying the properties of logarithmic function, exponen-
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tial function and (6), we obtain

Qn−i,0(K1, . . . ,Ki)m

=
(
ωn

ωi

)m
exp

(∫
Gn,i

log Vξ(K1|ξ, . . . ,Ki|ξ)mdµi(ξ)
)

≥

(
ωn

ωi

)m
exp


∫

Gn,i

log
m∏

j=1

Vξ(K j|ξ, . . . ,K j|ξ︸          ︷︷          ︸
m

,Km+1|ξ, . . . ,Ki|ξ)dµi(ξ)


=

(
ωn

ωi

)m
exp


m∑

j=1

∫
Gn,i

log Vξ(K j|ξ, . . . ,K j|ξ︸          ︷︷          ︸
m

,Km+1|ξ, . . . ,Ki|ξ)dµi(ξ)


=

(
ωn

ωi

)m m∏
j=1

exp


∫

Gn,i

log Vξ(K j|ξ, . . . ,K j|ξ︸          ︷︷          ︸
m

,Km+1|ξ, . . . ,Ki|ξ)dµi(ξ)


=

m∏
j=1

Qn−i,0(K j, . . . ,K j︸     ︷︷     ︸
m

,Km+1, . . . ,Ki). (25)

The equality condition in (25) follows (22) immediately.

Moreover, if m = i in (24), then

Corollary 4.5. Suppose K1, . . . ,Ki ∈ K
n, for p ≤ 0, then

Qn−i,ip(K1, . . . ,Ki)i
≥ Qn−i,ip(K1) · · ·Qn−i,ip(Ki), (26)

with equality if and only if K1, . . . ,Ki are homothetic.

As a special case, let K1 = · · · = K j = K and K j+1 = · · · = Km = L in Theorem 4.4, we can get

Corollary 4.6. Suppose K,L,Km+1, . . . ,Ki ∈ K
n, Km+1, . . . ,Ki are smooth and 1 ≤ j ≤ m ≤ i, for p ≤ 0, then

Qn−i,mp(K, j;L,m − j; Km+1, . . . ,Ki)m

≥ Qn−i,mp(K,m; Km+1, . . . ,Ki) jQn−i,mp(L,m; Km+1, . . . ,Ki)m− j,

with equality if and only if K,L are homothetic.
Moreover, if m = i, it follows that

Qn−i,ip(K, j; L, i − j)i
≥ Qn−i,ip(K) jQn−i,ip(L)i− j,

with equality if and only if K,L are homothetic.

When p = −n/i, then (26) yields the following inequality.

Corollary 4.7. Suppose K1, . . . ,Ki ∈ K
n, then

Φn−i(K1, . . . ,Ki)i
≥ Φn−i(K1) · · ·Φn−i(Ki),

with equality if and only if K1, . . . ,Ki are homothetic.

The inequality (26) implies the following inequality for Π∗(K1, . . . ,Kn−1), which was proved by Lutwak
[17].
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Corollary 4.8. Suppose K1, . . . ,Kn−1 ∈ K
n, then

V(Π∗(K1, . . . ,Kn−1))n−1
≤ V(Π∗(K1)) · · ·V(Π∗(Kn−1)),

with equality if and only if K1, . . . ,Kn−1 are homothetic.

Proof. The volume of Π∗(K1, . . . ,Kn−1) can be formulated as

V(Π∗(K1, . . . ,Kn−1)) =
1
n

∫
Sn−1

Vn−1(K1|u⊥, . . . ,Kn−1|u⊥)−ndu. (27)

Then put i = n − 1, p = n/(1 − n) in Qn−i,ip(K1, . . . ,Kn−1), it follows that

Q1,−n(K1, . . . ,Kn−1) =
ωn

ωn−1

(∫
Gn,n−1

Vξ(K1|ξ, . . . ,Kn−1|ξ)−ndξ
)−1/n

=
ωn

ωn−1

(
1

nωn

∫
Sn−1

Vn−1(K1|u⊥, . . . ,Kn−1|u⊥)−ndu
)−1/n

=
ωn

ωn−1

( 1
ωn

V(Π∗(K1, . . . ,Kn−1))
)−1/n

.

When K1 = · · · = Kn−1 = K ∈ Kn, we have

Q1,−n(K) =
ωn

ωn−1

( 1
ωn

V(Π∗(K))
)−1/n

.

Therefore, the desired result follows (26) immediately.

The following theorem is the isoperimetric inequality for Lp-moment mixed quermassintegrals.

Theorem 4.9. Suppose K1, . . . ,Ki ∈ K
n and p ≥ −n, then

Qn−i,p(K1, . . . ,Ki) ≥ Qn−i,p(BK1 , . . . ,BKi ), (28)

with equality if and only if K1, . . . ,Ki are balls.

Proof. From Proposition 3.4, Corollary 4.7, (4) and (11), for p ≥ −n, we have

Qn−i,p(K1, . . . ,Ki) ≥ Qn−i,−n(K1, . . . ,Ki)
= Φn−i(K1, . . . ,Ki)

≥ Φn−i(K1)1/i
· · ·Φn−i(Ki)1/i

≥ Φn−i(BK1 )1/i
· · ·Φn−i(BKi )

1/i

= Qn−i,p(BK1 , . . . ,BKi ).

If the equality holds in (28), then we have equalities in all inequalities above. Equality in the fourth line
implies that K1, . . . ,Ki are ellipsoids. Equality in the third line implies that K1, . . . ,Ki are homothetic, then
K1, . . . ,Ki are homothetic ellipsoids. Let E is an ellipsoid such that λ1K1 + x1 = · · · = λiKi + xi = E, then
Qn−i,p(K1, . . . ,Ki) = λ−1

1 · · ·λ
−1
i Qn−i,p(E) and Qn−i,−n(K1, . . . ,Ki) = λ−1

1 · · ·λ
−1
i Qn−i,−n(E). Therefore, equality in

the first line implies that Qn−i,p(E) = Qn−i,−n(E), then it follows Jensen’s inequality that Vi(E|ξ) is a constant
for all ξ ∈ Gn,i, therefore, E must be a ball.
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5. Lp-moment mixed quermassintegrals inequalities of polar bodies

Lemma 5.1. Suppose K1 ∈ K
n
o and K1 is smooth, K2, . . . ,Ki ∈ K

n and ξ ∈ Gn,i with 0 ≤ i ≤ n, then

Vξ(K1|ξ,K2|ξ, . . . ,Ki|ξ)Vξ(K∗1|ξ,K2|ξ, . . . ,Ki|ξ) ≥ Vξ(B|ξ,K2|ξ, . . . ,Ki|ξ)2, (29)

with equality if and only if K1 is a ball.

Proof. From the Lemma 2.1 and Lemma 2.2, we have

Vξ(K1|ξ,K2|ξ, . . . ,Ki|ξ)Vξ(K∗1|ξ,K2|ξ, . . . ,Ki|ξ)

= c2
n,iV(K1,K2, . . . ,Ki; B ∩ ξ⊥,n − i)V(K∗1,K2, . . . ,Ki; B ∩ ξ⊥,n − i)

≥ c2
n,iV(B,K2, . . . ,Ki; B ∩ ξ⊥,n − i)2

= Vξ(B|ξ,K2|ξ, . . . ,Ki|ξ)2.

the equality condition can be obtain from Lemma 2.2.

Letting K2 = · · · = Ki = B in Lemma 5.1 gives the following inequality.

Corollary 5.2. Suppose K ∈ Kn
o and K is smooth, for ξ ∈ Gn,i with 0 ≤ i ≤ n, then

Vξ(K|ξ,B|ξ, . . . ,B|ξ)Vξ(K∗|ξ,B|ξ, . . . ,B|ξ) ≥ ω2
i , (30)

with equality if and only if K is a ball.

Theorem 5.3. Suppose K1 ∈ K
n
o and K1 is smooth, K2, . . . ,Ki ∈ K

n. For 0 ≤ i ≤ n and p ≥ 0, then

Qn−i,p(K1,K2, . . . ,Ki)Qn−i,p(K∗1,K2, . . . ,Ki) ≥ Qn−i,p(B,K2, . . . ,Ki)2, (31)

with equality if and only if K1 is a ball.

Proof. For p > 0, from the definition of Qn−i,p together with Cauchy-Schwarz inequality, and Lemma 5.1, we
have

Qn−i,p(K1,K2, . . . ,Ki)Qn−i,p(K∗1,K2, . . . ,Ki)

=
(
ωn

ωi

)2
(∫

Gn,i

Vξ(K1|ξ,K2|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p (∫

Gn,i

Vξ(K∗1|ξ,K2|ξ, . . . ,Ki|ξ)pdµi(ξ)
)1/p

≥

(
ωn

ωi

)2
(∫

Gn,i

Vξ(K1|ξ,K2|ξ, . . . ,Ki|ξ)p/2Vξ(K∗1|ξ,K2|ξ, . . . ,Ki|ξ)p/2dµi(ξ)
)2/p

≥

(
ωn

ωi

)2
(∫

Gn,i

Vξ(B|ξ,K2|ξ, . . . ,Ki|ξ)pdµi(ξ)
)2/p

= Qn−i,p(B,K2, . . . ,Ki)2.

Assume the equality holds in (31), then we get equality in all inequality above. The equality in third line
yields that Vξ(K1|ξ,K2|ξ, . . . ,Ki|ξ) and Vξ(K∗1|ξ,K2|ξ, . . . ,Ki|ξ) are proportional. And the equality in fourth
line holds when K1 is a ball follows Lemma 2.2. Therefore, the equality condition in (31) is that K1 is a ball.

The case of p = 0 can be obtained by the properties of logarithmic function, exponential function and
Lemma 2.2.

The following result can be obtained from Theorem 31 as a special case by letting K2 = · · · = Ki = B.

Corollary 5.4. Suppose K ∈ Kn
o and K is smooth, for 0 ≤ i ≤ n and p ≥ 0, then

Qn−i,p(K,B, . . . ,B)Qn−i,p(K∗,B, . . . ,B) ≥ ω2
n,

with equality if and only if K is a ball.
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