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Abstract. In this paper, we study the portfolio optimization model with transaction costs under the
assumption that there exist admissible errors on expected returns and risks of assets. We propose an
admissible efficient portfolio selection problem and design a neural network for the proposed problem.
The presented neural network framework guarantees to obtain the optimal solution of the admissible
portfolio selection problem. The existence and convergence of the trajectories of the network are studied.
The Lyapunov stability and globally convergence of the considered neural network are also shown. We
provide a numerical example to illustrate the proposed effective approach.

1. Introduction

In 1952, Markowitz [1] studied his pioneering work which established the basement of modern portfolio
analysis. Markowitz’s mean–variance model has visited as a foundation for the development of modern
financial theory over the past five decades. The main aim of this problem is to maximize the expected return
for a certain level of risk or minimize the risk for a certain return. But both theory and practice indicate
that variance is not a good risk measure (see Artzneretal. [2, 3]). Therefore, many scholars seek new risk
measures for portfolio selection and risk management. With the continuous attempt of various researchers,
Markowitz’s seminal work has been widely continued. Since then, a large number of papers on portfolio
optimization problem have appeared in the literature. Furthermore, various methods have been proposed
for the modeling of investment risk. For example, see [4]-[13].

It is well known that transaction cost is one of the principal concerns for portfolio managers. It has an
important effect on the portfolio optimization and the frequency of time rebalancing the portfolio. There are
some reports on this subject (see [14]–[20]). Among them, Arnott and Wagner [14] established that ignoring
transaction costs would result in an inefficient portfolio. The experimental analysis done by Yoshimoto [15]
also confirmed this fact. Babazadeh and Esfahanipour in [16] was developed a novel portfolio optimization
model in which Value at Risk (VAR) is utilized as a risk measure to account extreme risk so that VaR is
estimated use of Extreme Value Theory. An enhanced Non-dominated Sorting Genetic Algorithm-II is
developed by utilizing a new repairing mechanism to solve the obtained portfolio problem. Meghwani and
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Thakur in [17] proposed a tri-objective portfolio optimization model with risk, return and transaction cost as
the objectives, where three different models with different risk measures–variance, VaR and conditional VaR
are discussed. They adapted three multi-objective evolutionary algorithms for the proposed models. Simos
et al. in [18] define and studied the time-varying Black–Litterman portfolio optimization under nonlinear
constraints (TV-BLPONC) problem as a nonlinear programming (NLP) problem, where the nonlinear
constraints refer to transaction costs and cardinality constraints. Using the beetle antennae search (BAS)
algorithm, they introduced a computational method to solve the TV-BLPONC problem. Katsikis et al. in
[19] defined the time-varying mean-variance portfolio selection under transaction costs and cardinality
constraint problem as a time-varying NLP problem. Using the BAS algorithm, they also provided an online
solution to the NLP problem. Katsikis et al. in [20] defined and studied the time-varying minimum-cost
portfolio insurance under transaction costs problem in the form of a time-varying NLP problem. Using the
BAS algorithm, they also provided an online solution to the static NLP problem. By adding the transaction
costs to the classical minimum cost portfolio insurance problem, Katsikis and Mourtas in [21] defined and
studied the minimum cost portfolio insurance under transaction costs problem as a NLP problem. They
use the BAS algorithm to provide a solution to the NLP problem.

When some more realistic constraints such as transaction costs, bounded constraints, liquidity con-
straints, minimum transaction lots constraints, and cardinality constraints are studied, the portfolio se-
lection problem becomes a complex programming problem and common optimization algorithms fail to
find the optimal solution efficiently. Therefore, many researchers solve the complex constrained portfolio
problems by using heuristic algorithms, see [22]-[35]. Among utilizing of heuristics in the new researches,
using real-world data sets on a binary Markowitz-based portfolio selection problem, Mourtas and Katsikis
in [22] validated the excellent performance of V-shaped transfer function-based binary BAS on large input
data and demonstrated that it is a marvelous alternative against other ordinary memetic meta-heuristic
optimization algorithms. By converting the classical minimum-cost portfolio insurance problem to a multi-
period minimum-cost portfolio insurance problem, Katsikis and Mourtas in [23] defined and investigated
the obtained problem under transaction costs problem as a nonlinear programming problem. They intro-
duced a well-tuned approach that can solve the given problem. Katsikis and Mourtas in [24] defined a
binary optimal tangency portfolio under cardinality constraint problem and studied it as a NLP problem.
They employed a binary BAS algorithm to provide a solution to the NLP problem. Medvedeva et al. in [25]
described and analyzed the randomized time-varying knapsack problem (RTVKP), which is applied in the
field of finance and converted into a portfolio insurance problem, as a time-varying integer linear program-
ming problem. In this way, they presented the on-line solution to the RTVKP combinatorial optimization
problem and highlight the restrictions of static methods. Katsikis and Mourtas in [26] presented the ORPIT
Matlab toolbox which applies the theory of vector lattices to solve (a) the problem of option replication
and (b) the cost minimization problem of portfolio insurance as well as related sub problems. Katsikis
and Mourtas in [27] proposed an algorithmic process that finds the minimum-cost insured portfolio in the
case where the space of marketed securities is a subspace of C[a, b]. They proposed a heuristic method for
computing appropriate intervals [a, b], so that the existence of a positive basis is guaranteed.

Over the years, neural networks for optimization (see for example [38]–[54]) and their engineering
applications have been widely investigated. These neural networks are essentially governed by a set of
dynamic systems characterized by an energy function, which is the combination of the objective function and
constraints of the original optimization problem, and three common techniques, such as penalty functions,
Lagrange functions and primal and dual functions. In addition, neural networks for solving optimization
problems are hardware-implementable; that is, the neural networks can be implemented by using integrated
circuits. Compared with traditional numerical optimization algorithms, the neural network approach has
several potential advantages. First, the structure of a neural network can be implemented effectively
using very large scale integration and optical technologies. Second, neural networks can solve many
optimization problems with time-varying parameters. Third, the dynamical techniques and the numerical
ODE techniques can be applied directly to the continuous-time neural network for solving constrained
optimization problems effectively. Fourth, the neural networks have fast convergence rate in real-time
solutions. Therefore, neural network methods for optimization have been received considerable attention.
For the mentioned reasons, in this paper, we will examine the admissible portfolio selection problem with
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transaction costs and bounded constraints using a high performance neural network method with good
stability properties and convergence results. An attractive feature of the neural network method described
in this paper is that the starting point need not be in the feasible region. It should be noted that nevertheless,
this admissible portfolio selection problem with transaction costs and bounded constraints has not yet been
well established by a neural network scheme.

The organization of this paper is as follows. The admissible portfolio selection model with transaction
costs and bounded constraints is presented in Section 2. A neural network algorithm is designed to solve
the corresponding portfolio problem in Section 3. Comparing with some other models is stated in Section
4. A numerical example is given to illustrate our proposed effective means and approaches in Section 5.
Some concluding remarks are given in Section 6.

2. The admissible portfolio selection model with transaction costs

We consider a portfolio selection problem with n risky assets. Let r j be the expected return rate of
asset j and let x j be the proportion of capital to be invested in asset j, j = 1, 2, . . . ,n. In order to describe
conveniently, we set x = (x1, x2, . . . , xn)T, r = (r1, r2, . . . , rn)T, e = (1, 1, . . . , 1)T. Then the expected return and
variance associated with the portfolio x = (x1, x2, . . . , xn)T are, respectively, given by

E(r) = rTx, D(r) = xTvx,

where v = (σi j)n×n is the covariance matrix of expected returns.
Markowitz’s mean-variance model of the portfolio selection problem may be described by the following

quadratic programming:

minimize xTvx

subject to rTx = r0,

eTx = 1,
x ≥ 0.

(1)

In order to apply the model (1) in a practical investment problem, we need to estimate r and v = (σi j)n×n.
Let the observation data on returns of assets over m periods be given. At the discrete time k (k = 1, 2, . . . ,m),
n kinds of returns are denoted as a vector rk = (rk1, rk2, . . . , rkn)T. The expected return r̄ = (r̄1, r̄2, . . . , r̄n)T and
covariance v̄ = (σ̄i j)n×n are given as follows

r̄ j =

∑m
k=1(hkjrkj)∑m

k=1 hkj
, j = 1, 2, . . . ,n, (2)

σ̄i j =

∑m
k=1(rki − r̄i)(rkj − r̄ j)hki j∑m

k=1 hki j
, i, j = 1, 2, . . . ,n, (3)

where hkj is a possibility grade to reflect a similarity degree between the future state of asset j and the kth
sample offered by experts, hki j is a possibility grade to reflect a similarity degree between the future state
of the relation between asset i and asset j and the kth sample offered by experts. Since r j; j = 1, 2, . . . ,n
are affected by uncertain factors, the expected returns and risks of assets cannot be predicted accurately.
In Zhang and Nie [55], Zhang et al. [56], and Zhang and Wang [57], the admissible average return and
covariance are respectively defined as

r∗j = r̄ j + ϕ j, ϕ jl ≤ ϕ j ≤ ϕ jh, j = 1, 2, . . . ,n, (4)

and

σ∗i j = σ̄i j + εi j, εi jl ≤ εi j ≤ εi jh, j = 1, 2, . . . ,n, (5)
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where ϕ j is the admissible error for r̄ j,ϕ jl and ϕ jh are the lower and upper bounds of ϕ j; εi j is the admissible
error for σ̄i j, εi jl and εi jh are the lower and upper bounds of εi j.
In order to describe conveniently, we use the following notations:

a = (r̄1, r̄2, . . . , r̄n)T, Σ = (σ̄i j)n×n,

Φ = (ϕ1, ϕ2, . . . , ϕn)T, Vε = (εi j)n×n,

Φl = (ϕ1l, ϕ2l, . . . , ϕnl)T, Φh = (ϕ1h, ϕ2h, . . . , ϕnh)T,

Vεl = (εi jl)n×n, Vεh = (εi jh)n×n.

a + Φ is called as the admissible return vector. Σ + Vε is called as the admissible covariance matrix. Thus,
the admissible return and covariance associated with portfolio x are defined respectively by

r̂ = (a + Φ)Tx, (6)

and

σ̂2 = xT(Σ + Vε)x. (7)

For any x ≥ 0 the admissible return and covariance associated with portfolio x satisfy

(a + Φl)Tx ≤ r̂ ≤ (a + Φh)Tx,

and

xT(Σ + Vεl)x ≤ σ̂2
≤ xT(Σ + Vεh)x.

We now consider the admissible portfolio selection problem with transaction costs. Here we assume the
transaction cost is a V-shaped function of the difference between a new portfolio x = (x1, x2, . . . , xn), and the
existing portfolio x0 = (x0

1, x
0
2, . . . , x

0
n). That’s to say, the transaction cost for asset i is ci = ki|xi − x0

i |, the total
transaction cost is

∑n
i=1 ci =

∑n
i=1 ki|xi − x0

i | Thus, the admissible return after paying transaction costs is

(a + Φ)Tx −
n∑

i=1

ki|xi − x0
i |.

Moreover, it is known that very small weighting of an asset will have no distinct influence on the portfolio’s
return, but the administrative and monitoring costs will be increased. Similarly, very high weighting in any
asset will cause investors to suffer from a larger risk. So bounded constraints should be considered when
we construct portfolios in reality. Therefore, the admissible portfolio selection problem with transaction
costs and bounded constraints can be formulated as follows:

minimize xT(Σ + Vε)x

subject to (a + Φ)Tx −
n∑

i=1

ki|xi − x0
i | ≥ r0,

l ≤ x ≤ u,

eTx = 1,

(8)

where l = (l1, l2, . . . , ln)T, u = (u1,u2, . . . ,un)T, and li and ui are the minimum and maximum investment
proportions in asset i, i = 1, 2, . . . ,n. If (Φ,Vε) = (Φh,Vεl) then (4) can be rewritten as follows:

minimize xT(Σ + Vεl)x

subjec to (a + Φh)Tx −
n∑

i=1

ki|xi − x0
i | ≥ r0,

l ≤ x ≤ u,

eTx = 1.

(9)
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If (Φ,Vε) = (Φl,Vεh) then (4) can be rewritten as follows:

minimize xT(Σ + Vεh)x

subject to (a + Φl)Tx −
n∑

i=1

ki|xi − x0
i | ≥ r0,

l ≤ x ≤ u,

eTx = 1.

(10)

The optimal solution of the problems (9) and (10) is called the upper and lower admissible efficient portfolio
respectively. The problem (9) means that the investor estimates the return and risk optimistically. The
problem (10) means that the investor estimates the return and risk pessimistically. The problem (4) covers
the scenario where the investor makes his portfolio selection neither too optimistically nor pessimistically.

3. A recurrent neural network algorithm for the admissible portfolio selection

It is generally admitted that the optimal portfolio selection problem with transaction costs is a complex
mathematical programming problem. Because of the complexity of the problem, the traditional optimiza-
tion algorithms cannot be applied. Thus, we use a neural network model to solve admissible portfolio
selection model with transaction costs and bounded constraints.

It is clear that the upper and lower admissible efficient portfolio optimization problems (9) and (10) are
quadratic programming problems. We thus solve these problems by a recurrent neural network model.

Let us consider the following general form of quadratic programming problem as

minimize
1
2

xTQx + dTx, (11)

subject to
{

Ax − b ≤ 0,
eTx − 1 = 0, (12)

where Q ∈ Rn×n is a symmetric and positive semidefinite matrix, A ∈ R(2n+1)×n, b ∈ R2n+1, e = (1, 1, ..., 1)T

and x ∈ Rn.
We now give a neural network model for solving problem (11) and (12). To simplify the network

architecture, we give the following lemma.

Lemma 3.1. x∗is an optimal solution of (11) and (12) if and only if there exist u∗ ≥ 0 such that (x∗T,u∗T)T satisfies:

(I − P̃)[Qx∗ + d + ATu∗] + Q̃(eTx∗ − 1) = 0, (13)
(u∗ + Ax∗ − b)+ − u∗ = 0, (14)

where P̃ = e(eTe)−1eT, Q̃ = e(eTe)−1, and (u)+ = ([u1]+, · · · , [u2n+1]+)T, [ui]+ = max{0,ui}.

Proof. If x∗ is an optimal solution of (11) and (12), according to the KKT conditions for convex optimization,
there exists (x∗T,u∗T, v∗T)T,u∗ ≥ 0 such that the following equations are satisfied.

Qx∗ + d + ev∗ + ATu∗ = 0, (15)

eTx∗ − 1 = 0, (16)

Ax∗ ≤ b, u∗ ≥ 0, (u∗)T(Ax∗ − b) = 0. (17)

It is clear that (14) and (17) are equivalent. That is,

(Ax∗ − b) ≤ 0, u∗ ≥ 0, (u∗)T(Ax∗ − b) = 0⇐⇒ (u∗ + Ax∗ − b)+ − u∗ = 0.
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Next, we only prove the solutions of (13) and the solutions of (15) and (16) are equivalent. From (15), one
has

−eT(Qx∗ + d + ev∗ + ATu∗) = 0.

Add the above equation with (16), we have

eTx∗ − 1 − eT(Qx∗ + d) − eTev∗ − eTATu∗ = 0.

Thus,

ev∗ = e(eTe)−1(eTx∗ − 1) − e(eTe)−1eT(Qx∗ + d + ATu∗). (18)

Substituting (18) into (15), one has

[I − e(eTe)−1eT](Qx∗ + d + ATu∗) + e(eTe)−1(eTx∗ − 1) = 0.

Let P̃ = e(eTe)−1eT and Q = e(eTe)−1, then the above equation can be written as

(I − P̃)[Qx∗ + d + ATu∗] +Q(eTx∗ − 1) = 0.

Conversely, if there exists u∗ such that (x∗T,u∗T)T satisfies (13). Multiply eT to both sides of (13), one has

eT(I − P̃)[Qx∗ + d + ATu∗] + eTQ(eTx∗ − 1) = 0.

Noting that eT(I − P̃) = 0 and eTQ = I; we thus have

eTx∗ − 1 = 0,
(I − P̃)(Qx∗ + d + ATu∗) = 0.

Let v∗ = −(eTe)−1eT(Qx∗ + d + ATu∗). One has

Qx∗ + d + ev∗ + ATu∗ = Qx∗ + d + ATu∗ − e(eTe)−1eT(Qx∗ + d + ATu∗)

= (I − P̃)(Qx∗ + d + ATu∗) = 0.

Thus, there exists (x∗T,u∗T, v∗T)T such that (15) and (16) in the KKT conditions are satisfied. This completes
the proof.

From the Lemma 3.1, we propose a capable neural network for solving (11) and (12) as follows:
dx
dt
= η{−(I − P̃)[Qx + d + AT(u + Ax − b)+] − Q̃(eTx − 1)},

2du
dt
= η{−u + (u + Ax − b)+},

(19)

where η is a scaling factor and indicates the convergence rate of the neural network (19). Throughout this
paper, we let η = 1.

In the following, we give a more technical description of the proposed neural network algorithm whose
framework is shown in Algorithm 1. The procedures start with choosing an arbitrary initial vector. Then
iterative procedures are controlled by the principal while-loop of Algorithm 1. In each iteration, calculate the
right side of system (19), update initial vector, calculation of error and stopping criteria, must be scheduled.
The pseudo code that explains the implementation of the proposed algorithm is stated as follows:
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——————————————————
Algorithm 1: The working of the proposed neural network algorithm.

Step 1: Initialization
Arbitrary choose initial vector x ∈ Rn and u ∈ R2n+1, ∆t > 0, t = 0 and error ϵ = 10−9, while t ≤ T
(maximum iteration)
Step 2: With an arbitrary value of η, calculate

ν(t) = η{−(I − P̃)[Qx + d + AT(u + Ax − b)+] − Q̃(eTx − 1)},

ϑ(t) =
η

2
{−u + (u + Bx − d)+}.

Step 3: Update the initial vector

x(t + ∆t) = x(t) + ∆tν(t),
u(t + ∆t) = u(t) + ∆tϑ(t).

Step 4: Calculation

r(t) =
n∑

i=1

ν2
i (t), s(t) =

2n+1∑
j=1

ϑ j(t)2,

Step 5: Stopping criteria: if r and s < ϵ ; else t = t + 1.
end.
Output:

x(t + ∆t), u(t + ∆t).

——————————————————

Remark 3.1. By Lemma 3.1, it is easy to know that x∗ is an optimal solution of (11) and (12) if and only if there exists
u∗ ≥ 0 such that (x∗T,u∗T)T is an equilibrium point of (19). So, when the neural network converges to its equilibrium
point, the state trajectory x(t) converges to the optimal solution of problem (11) and (12).

In this section, we will prove the global convergence of the neural network (19). Let Ωe denote the
equilibrium point set of neural network (19).

Lemma 3.2. Let (x∗T,u∗T)T
∈ Ωe be an equilibrium point of (19) and

V(x,u) =
1
2

xTQx + dTx − (
1
2

x∗TQx∗ + dTx∗) +
1
2
∥(u + Ax − b)+∥2 −

1
2
∥(u∗ + Ax∗ − b)+∥2

− (x − x∗)T(Qx∗ + d + ATu∗) − (u − u∗)Tu∗ +
1
2
∥x − x∗∥2 +

1
2
∥u − u∗∥2.

(20)

Then

(I) V(x,u) ≥
1
2
∥x − x∗∥2 +

1
2
∥u − u∗∥2,

(II)
dV
dt
≤ −∥(I − P̃)[Qx + d + AT(u + Ax − b)+] + Q̃(eTx − 1)∥2 −

1
2
∥u − (u + Ax − b)+∥2.
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Proof. (I) It is easy to verify that
1
2

xTQx+ dTx+
1
2
∥(u+Ax− b)+∥2 is a convex differentiable function [37] and

∇(
1
2

xTQx + dTx +
1
2
∥(u + Ax − b)+∥2) =

[
Qx + d + AT(u + Ax − b)+

(u + Ax − b)+

]
.

Thus,

1
2

xTQx + dTx − (
1
2

x∗TQx∗ + dTx∗) +
1
2
∥(u + Ax − b)+∥2 −

1
2
∥(u∗ + Ax∗ − d)+∥2

≥ (x − x∗)T(Qx + d + ATu∗)(u − u∗)Tu∗.

i.e.

V(x,u) ≥
1
2
∥x − x∗∥2 +

1
2
∥u − u∗∥2.

(II) Calculating the derivative of V with respect to t,

dV
dt
=
∂V
∂x

dx
dt
+
∂V
∂u

du
dt

= − [Qx + d + AT(u + Ax − b)+ − (Qx∗ + d) − ATu∗ + x − x∗]T

{(I − P̃)[Qx + d + AT(u + Ax − b)+] + Q̃(eTx − 1)}

−
1
2

[u − (u + Ax − b)+]T[(u + Ax − b)+ − 2u∗ + u]

= − [Q(x − x∗) + x − x∗ + AT(u + Ax − b)+ − ATu∗]T

{(I − P̃)[Q(x − x∗) + AT(u + Ax − b)+ − ATu∗)] + P̃(x − x∗)}

−
1
2

[u − (u + Ax − b)+]T[u − (u + Ax − b)+ + 2(u + Ax − b)+ − 2u∗]

= − {[Q(x − x∗)]T(I − P̃)[Q(x − x∗)]

+ [Q(x − x∗)]T(I − P̃)[AT(u + Ax − b)+ − ATu∗]

+ [Q(x − x∗)]TP̃(x − x∗)

+ (x − x∗)T(I − P̃)[AT(u + Ax − b)+ − ATu∗]

+ (x − x∗)TP̃(x − x∗)

+ [AT(u + Ax − b)+ − ATu∗]T(I − P̃)[Q(x − x∗)]

+ [AT(u + Ax − b)+ − ATu∗]T(I − P̃)[AT(u + Ax − b)+ − ATu∗]

+ [AT(u + Ax − b)+ − ATu∗]TP̃(x − x∗)}

−
1
2
∥u − (u + Ax − b)+∥2 + [(u + Ax − b)+ − u]T[(u + Ax − b)+ − u∗].

Noting that

(I − P̃)2 = I − P̃, P̃2 = P̃, P̃(I − P̃) = 0, (u + Ax − b)+ − u = Ax − b + (−u + b − Ax)+

we have

dV
dt
=

dV
dt
= − [Q(x − x∗)]T(I − P̃)2[Q(x − x∗)]

− 2[Q(x − x∗)]T(I − P̃)2[AT(u + Ax − b)+ − ATu∗]

− [AT(u + Ax − b)+ − ATu∗]T(I − P̃)2[AT(u + Ax − b)+ − ATu∗]
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− (x − x∗)TP̃2(x − x∗) − (x − x∗)T[Q(x − x∗)]

− (x − x∗)T[AT(u + Ax − b)+ − ATu∗]

−
1
2
∥u − (u + Ax − b)+∥2 + [Ax − b + (−u + b − Ax)+]T[(u + Ax − b)+ − u∗]

= −∥(I − P̃)[Q(x − x∗)] + (I − P̃)[AT(u + Ax − b)+ − ATu∗] + P̃(x − x∗)∥2

− (x − x∗)T[Q(x − x∗)] − (x − x∗)T[AT(u + Ax − b)+ − ATu∗]

−
1
2
∥u − (u + Ax − b)+∥2 + (Ax − b)T(u + Ax − b)+ − (Ax − b)Tu∗

+ [(−u + b − Ax)+]T(u + Ax − b)+ − [(−u + b − Ax)+]Tu∗

= − ∥(I − P̃)[Qx + d + AT(u + Ax − b)+] + Q̃(eTx − 1)∥2

− (x − x∗)T[Q(x − x∗)] − (x − x∗)T[AT(u + Ax − b)+ − ATu∗]

−
1
2
∥u − (u + Ax − b)+∥2 + (Ax − b)T[(u + Ax − b)+] − (Ax − b)Tu∗

+ [(−u + b − Ax)+]T(u + Ax − b)+ − [(−u + b − Ax)+]Tu∗

= − ∥(I − P̃)[Qx + d + AT(u + Ax − b)+] + Q̃(eTx − 1)∥2

−
1
2
∥u − (u + Ax − b)+∥2 − (x − x∗)T[Q(x − x∗)] − [(−u + b − Ax)+]Tu∗

+ [A(x∗ − x) + A(x − x∗)]Tu∗ − (Ax∗ − b)Tu∗

+ [A(x − x∗) + A(x∗ − x)]T(u + Ax − b)+ + (Ax∗ − b)T(u + Ax − b)+.

It is easy to verify

[(−u + b − Ax)+]T(u + Ax − b)+ = 0,
(Ax∗ − b)Tu∗ = 0,
[(−u + b − Ax)+]Tu∗ ≥ 0,
(Ax∗ − b)T[(u + Ax − b)+] ≤ 0.

Since Q is a positive semi-definite matrix, we have

(x − x∗)T[Q(x − x∗)] ≥ 0.

Thus

dV
dt
≤ −∥(I − P̃)[Qx + d + AT(u + Ax − b)+] + Q̃(eTx − 1)∥2 −

1
2
∥u − (u + Ax − b)+∥2 ≤ 0. (21)

This completes the proof.

Remark 3.2. It is easy to see that V(x,u) is a Lyapunov function. From the proof of Lemma 3.2, we have
dV
dt
≤ 0.

Thus, the neural network (19) is stable in the sense of Lyapunov.

Theorem 3.1. For any initial point (x(0)T,u(0)T)T
∈ R3n+1, there exists a unique continuous solution (x(t)T,u(t)T)T

∈

R3n+1 of (19) for t ≥ 0.

Proof. The projection operation (.)+ is nonexpansive. It is clear that (I−P̃)[Qx−d+AT(u+Ax−b)+]+Q̃(eTx−1)
and (u+Ax−b)+−u are locally Lipschitz continuous. From the local existence theorem of ordinary differential
equation [63], there exists one unique continuous solution of (19) on [0,T).
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Let [0,T) be its maximal interval of existence. By Lemma 3.2, we know that V is a non-increasing
function with respect to t, so

1
2
∥x(t) − x∗∥2 +

1
2
∥u(t) − u∗∥2 ≤ V(x(t),u(t)) ≤ V(x(0),u(0)), ∀t ≥ 0, (22)

This shows the state trajectory of neural network (19) is bounded. Thus T = +∞. This completes the
proof.

Theorem 3.2. The state trajectory of neural network (19) converges to an equilibrium point for any initial point
(x(0)T,u(0)T)T

∈ R3n+1. In particular, the neural network (19) with any initial point (x(0)T,u(0)T)T
∈ R3n+1 is

globally asymptotically stable when Ωe has unique equilibrium point.

Proof. Define

D(x,u) = ∥(I − P̃)[Qx + d + AT(u + Ax − b)+] + Q̃(eTx − 1)∥2 +
1
2
∥u − (u + Ax − b)+∥2.

Then D(x,u) = 0, if and only if (xT,uT)T is an equilibrium point of neural network (19). From the proof of
Theorem 3.1, we have the state trajectory (x(t)T,u(t)T)T of neural network (19) is bounded. Therefore, there
exists an increasing sequence {tn}with limn→∞ tn −→ ∞ and a limit point (x̂T, ûT)T such that limn→∞ x(tn) −→
x̂ and limn→∞ u(tn) −→ û. Next, we will prove (x̂T, ûT)T

∈ Ωe and the state trajectory (x(t)T,u(t)T)T globally
converge to the equilibrium point (x̂T, ûT)T.

Firstly, we prove that D(x̂, û) = 0, i.e. (x̂T, ûT)T is an equilibrium point of the neural network (19). If it
does not hold, that is D(x̂, û) > 0. Since D(x,u) is continuous with respect to x and u, respectively, there exist
ε > 0, q > 0 and a ε neighborhood of (x̂T, ûT)T,

B((x̂T, ûT)T, ε) = {(xT,uT)T : ∥x − x̂∥ + ∥u − û∥ ≤ ε},

such that D(x,u) > q, for all (xT,uT)T
∈ B((x̂, û), ε). Noting that limn→∞ x(tn) −→ x̂ and limn→∞ u(tn) −→ û,

there exists a positive integer N, such that for all n ≥ N, ∥x(tn) − x̂∥ ≤
1
4
ε, ∥u(tn) − û∥ ≤

1
4
ε.

From (19) and the boundedness of (x(t)T,u(t)T)T we have ẋ and u̇ are also bounded, denoted by M.
Considering t ∈ [tn −

ε
8M
, tn +

ε
8M

], n ≥ N we have

∥x(t) − x̂∥ + ∥u(t) − û∥ ≤∥x(t) − x(tn)∥ + ∥u(t) − u(tn)∥ + ∥x(tn) − x̂∥ + ∥u(tn) − û∥
=∥ẋ(ξ1)∥ × |t − tn| + ∥u̇(ξ2)∥ × |t − tn|

+∥x(tn) − x̂∥ + ∥u(tn) − û∥

≤2M|t − tn| +
ε
2
≤ ε.

That is, for all t ∈ [tn −
ε

8M
, tn +

ε
8M

], n ≥ N, (xT,uT)T
∈ B((x̂, û), ε). Therefore, D(x(t),u(t)) > q, for all

t ∈ [tn−
ε

8M
, tn+

ε
8M

], n ≥ N. Since limn→∞ tn = ∞, and the Lebesgue measure of set t ∈ ∪n≥N[tn−
ε

8M
, tn+

ε
8M

]
is infinite, then we have∫

∞

0
D(x(t),u(t)) dt = ∞. (23)

However,∫
∞

0
D(x(t),u(t)) dt = lim

s→∞

∫ s

0
D(x(t),u(t)) dt
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≤ − lim
s→∞

∫ s

0
V̇(x(t),u(t)) dt

= lim
s→∞

[V(x(0),u(0)) − V(x(s),u(s))]

≤V(x(0),u(0)),

which contradicts (23). So, D(x̂, û) = 0, which means (x̂T, ûT)T
∈ Ωe. Secondly, we prove the state trajectory

(x(t)T,u(t)T)T globally converge to the equilibrium point (x̂, û). Define a Lyapunov function

V̂(x,u) =
1
2

xTQx + dTx − (
1
2

x̂TQx̂ + dTx̂) +
1
2
∥(u + Ax − b)+∥2 −

1
2
∥(û + Ax̂ − b)+∥2

− (x − x̂)T(Qx̂ + d + ATû) − (u − û)Tû +
1
2
∥x − x̂∥2 +

1
2
∥u − û∥2.

one has V̂(x̂, û) = 0. Since limn→∞ x(tn) −→ x̂ and limn→∞ u(tn) −→ û, ∀ε > 0, there exists a tk, such that
V̂(x(tk),u(tk)) < ε. By the Lemma 3.2, we have

1
2
∥x(t) − x̂∥2 +

1
2
∥u(t) − û∥2 ≤ V̂(x(t),u(t)),

and V̂ is nonincreasing. Therefore, for all t ≥ tk, we have

1
2
∥x(t) − x̂∥2 +

1
2
∥u(t) − û∥2 ≤ V̂(x(t),u(t)) ≤ V̂(x(tk),u(tk)) ≤ ε.

That means, limn→∞ x(t) = x̂, and limn→∞ u(t) = û. So the state trajectory of the neural network (19) globally
converges to the equilibrium point (x̂T, ûT)T. In particular, if Ωe = {(x∗T,u∗T)T

}, then the state trajectory
(x(t)T,u(t)T)T with any initial point (x(0)T,u(0)T)T will approach to (x∗T,u∗T)T by the analysis above. Then
the neural network is globally asymptotically stable.

4. Comparison with some neural networks

In order to see how well the presented neural network (19) can be applied to solve (11) and (12), we
compare it with some existing neural network models.

There is a kind of neural network model called the gradient model. In order to use the gradient
neural network model, a constrained optimization problem can be approximated by an unconstrained
optimization problem. Then the energy function is constructed by the penalty function method. It is
noticeable that the gradient neural network model has an advantage as the model may be defined directly
using the derivatives of the energy function. But its shortcoming is that the convergence is not guaranteed,
especially in the case of unbounded solution sets [61]. Moreover, the gradient neural network based on the
penalty function requires any adjustable parameter called the penalty parameter. For instance, utilizing the
penalty method, the constrained optimization problem (11) and (12) can be approximated by the following
unconstrained optimization problem

minimize E1(x) =
1
2

xTQx + dTx +
γ

2

2n+1∑
k=1

[(Ax − b)+k ]2 + (eTx − 1)2

 ,
where γ is a penalty parameter. The gradient neural network model is then given by

dx
dt

= −∇E1(x) = −
(
Qx + d + γ[AT(Ax − b)+ + eT(ex − 1)]

)
. (24)

The system in (24) is referred to as Kennedy and Chua’s neural network model [38]. This network is not
capable to find an exact optimal solution due to a finite penalty parameter and is difficult to implement when
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the penalty parameter is very large. Thus, this network only converges to an approximate solution of (11)
and (12) for any given finite penalty parameter. It can be also shown that Kennedy–Chua’s neural network
(24) is not globally convergent to an exact optimal solution of some convex programming problems. For
instance, one can see the first Example in [54].

In [62], Nazemi and Nazemi presented a gradient model for dealing with the problem (11) and (12) as

d(y(t))
dt

= −∇E2(y(t)), (25)

y(0) = y0, y(t) = (x(t),u(t), v(t))T, (26)

where

E2(y) =
1
2
∥ρ(y)∥2, (27)

ρ(y) =

 Qx + d + eTv + ATu
−eTx + 1

ϕεFB (u, b − Ax)

 = 0, (28)

and

ϕεFB(a, b) = (a + b) −
√

a2 + b2 + ε, ε→ 0+.

In [42], Nazemi proposed a Lagrangian neural network model to solve (11) and (12) as

dy
dt
= Φ(y), (29)

y(t0) = y0, y(t) = (x(t),u(t), v(t))T, u(t0) > 0, (30)

where

Φ(y) =

 −
(
Qx + d + 1

2 ATu2 + eTv
)

diag(u1, ...,u2n+1)(Ax − b)
eTx − 1

 .
Effati and Ranjbar in [60] proposed a dual neural network which can be modeled for (11) and (12)

without equality constraint eTx − 1 = 0 as

θ = −Q−1(d̃ + ATu), (31)
du
dt
= D̃u + d̃, u ≥ 0, (32)

u(t0) = u0, (33)

where u is the dual Lagrangian variable and D̃ = −AQ−1AT and d̃ = −b − AQ−1d.
In the models (25)-(26) and (29)-(30), the state variables are x ∈ Rn,u ∈ R2n+1 and v ∈ R. So this neural

network has 3n+ 2 neurons. However, our neural network has only 3n+ 1 neurons. More importantly, the
convergence of the models (25)-(26), (29)-(30) and (31)-(33) is guaranteed only under the condition that Q
is positive definite matrix for all x ∈ Rn and uk ≥ 0. Thus, these models can not solve linear programming
problems which limits their application. Moreover, our neural network can converge to the optimal solution
under the condition of positive semidefinite matrix Q for all x ∈ Rn and uk ≥ 0.

In [54], Nazemi also proposed the following neural network for solving the problem (11) and (12):

dx
dt
= −
(
Qx + d + AT(u + Ax + b)+ + eTv

)
, (34)

du
dt
= (u + Ax − b)+ − u, (35)
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dv
dt
= eTx − 1. (36)

Leung et al. in [58], constructed the following neural network for solving the problem (11) and (12) as

dx
dt
= −uT(Ax − b) · ATu + AT[b − Ax − |b − Ax|] (37)

−∇
2
xxL(y)∇xL(y) − e(eTx − 1), (38)

du
dt
= −uT(Ax − b) · A + A∇xL(u) − (u − |u|), (39)

dv
dt
= eT
∇xL(y), (40)

y(t0) = y0, y(t) = (x(t),u(t), v(t))T, (41)

where ∇2
xxL(y) is the Hessian matrix of the function L(y) with respect to x, and

L(y) =
1
2

xTQx + dTx + uT(Ax − b) − vT(eTx − 1),

∇xL(y) = Qx + d + ATu − ev.

In the models (34)-(36) and (37)-(41), the state variables are x ∈ Rn,u ∈ R2n+1 and v ∈ R. So these neural
networks have 3n + 2 neurons. However, our neural network has only 3n + 1 neurons.

5. Numerical example

Example 5.1. [59] To illustrate our proposed effective means and approaches in this paper, we consider a practical
example introduced by Markowitz [36]. In this example,

x0 = (0.1, 0.4, 0, 0, 0, 0, 0.3, 0.2, 0),
l = (0, 0, 0, 0, 0, 0, 0, 0, 0),
u = (0.2, 0.2, 0.3, 0.3, 0.35, 0.40, 0.2, 0.25, 0.3),
the possibility grade hk is defined by

hki j = hki = hk = 0.1 + 0.3
k − 1

17
, k = 1, 2, . . . , 18.

Vϵ = 0, Φh and Φl are given by

Φh = (0.014, 0.014, 0.039, 0.041, 0.047, 0.01, 0.027, 0.043, 0.028)T, Φl = −Φh.

Using (2) we obtained a, a + Φl, a + Φh as follows:

a = (0.07099, 0.07012, 0.19645, 0.20610, 0.23390, 0.05317, 0.13619, 0.21603, 0.14386)T,

a + Φh = (0.08499, 0.08412, 0.23545, 0.24710, 0.28090, 0.06317, 0.16319, 0.25903, 0.17186)T,

a + Φl = (0.05699, 0.05612, 0.15745, 0.16510, 0.18690, 0.04317, 0.10919, 0.17303, 0.11586)T.

Using (3) we obtained the covariance matrix V̄ as follows:

V̄ =



0.04042 0.01593 0.01933 0.03277 0.01046 0.02665 0.0183 0.02816 0.02077
0.01593 0.01119 0.01701 0.01875 0.00771 0.00705 0.00912 0.02106 0.01518
0.01933 0.01701 0.09852 0.06287 0.04545 0.00694 0.0035 0.07752 0.03114
0.03277 0.01875 0.06287 0.07954 0.04465 0.02072 0.00904 0.07894 0.01964
0.01046 0.00771 0.04545 0.04465 0.09713 0.00585 0.01096 0.086 0.0285
0.02665 0.00705 0.00694 0.02072 0.00585 0.0405 0.00953 0.01952 0.01095
0.0183 0.00912 0.0035 0.00904 0.01096 0.00953 0.01986 0.01784 0.0079

0.02816 0.02106 0.07752 0.07894 0.086 0.01952 0.01784 0.13343 0.03455
0.02077 0.01518 0.03114 0.01964 0.0285 0.01095 0.0079 0.03455 0.06211


.
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We solve the upper and lower admissible efficient portfolio optimization problems (9) and (10) with the proposed
model (19). All simulation results show that the state trajectories of the proposed model converge to the unique optimal
solution x∗. Figures (1) and (2) display the values of x(t) of the neural network model in (19). We test the influence
of the parameter η in neural network (19) on the value of ∥x(t) − x∗∥2 of the problems (9) and (10). From Figures (3)
and (4) we see that when η = 1, the neural network (19) generates the slowest decrease of ∥x(t) − x∗∥2, whereas when
η = 20, it generates the fastest decrease of ∥x(t) − x∗∥2.We see that a larger η yields a better convergence rate of the
error ∥x(t) − x∗∥2. Thus, we see that a larger η yields a better convergence rate of the error ∥x(t) − x∗∥2. An l2 norm
error between x and x∗ with 10 random initial points of the problems (9) and (10) are also shown in Figures (5) and
(6) which shows the proposed model is globally convergent to x∗. In fact, Theorem 3.2 guarantees that the stated model
in (19) converges globally to x∗.

Return Am.T. A.T.&T. U.S.S. G.M. A.T.&S. C.C. Bdn. Frstn. S.S. Risk
0.05 0.0563 0.2000 0.0383 0 0.1004 0.2900 0.2000 0 0.1150 0.0161
0.10 0.0698 0.2000 0.0545 0 0.0926 0.2881 0.2000 0 0.0948 0.0161
0.15 0.0368 0.2000 0.1116 0.0168 0.1534 0.1222 0.2000 0 0.1590 0.0190

Table 1: The upper admissible efficient portfolios.

Return Am.T. A.T.&T. U.S.S. G.M. A.T.&S. C.C. Bdn. Frstn. S.S. Risk
0.05 0.0411 0.2000 0.0525 0 0.0622 0.3016 0.2000 0 0.1425 0.0161
0.10 0 0.2000 0.0675 0.0835 0.1772 0.1468 0.2000 0.0065 0.1184 0.0197
0.15 0 0 0.2243 0.0723 0.3500 0 0.1723 0.1811 0 0.0559

Table 2: The lower admissible efficient portfolios.
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Figure 1: Transient behaviors of x1(t), ..., x9(t) with r0 = 0.05 for the problem (9).
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Figure 2: Transient behaviors of x1(t), ..., x9(t) with r0 = 0.05 for the problem (10).
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Figure 3: Convergence behavior of ∥x(t) − x∗∥2 with different values of η and r0 = 0.05 for the problem (9).
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Figure 4: Convergence behavior of ∥x(t) − x∗∥2 with different values of η and r0 = 0.05 for the problem (10).
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Figure 5: The convergence behavior of ∥x(t) − x∗∥2 with η = 15, 10 different initial points and r0 = 0.05 for
the problem (9).
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Figure 6: The convergence behavior of ∥x(t) − x∗∥2 with η = 15, 10 different initial points and r0 = 0.05 for
the problem (10).

6. Conclusion

In this paper, we discussed the admissible portfolio selection problem which includes transaction costs
and bounded constraints. Although there are some traditional algorithms for our proposed problem,
they cannot behave well. Therefore, based on a some concepts of convex programming and differential
equations, we designed a capable neural network to solve the proposed portfolio selection problem. In
contrast to some existing neural networks, the proposed neural network does not require any adjustable
parameter and its structure is simple. Thus, the suggested model is more suitable to be implemented in
hardware. In this manuscript we also analyze the influence of the parameter η in dynamic model (19) on
the convergence rate of the trajectory and the convergence behavior of ∥x(t) − x∗∥2 and obtain that a larger
η leads to a better convergence rate. The simulation results clearly demonstrate the convergence behavior
and the characteristics of the proposed network. We depicted a numerical example of the portfolio selection
problem to illustrate our proposed effective means and approaches. Experiment results show that the neural
network algorithm is effective for solving complex constrained portfolio selection problem and transaction
costs and bounded constraints have a great impact on the portfolio selection decision. Some future topics
are to extend the proposed neural network framework for various portfolio optimization problems with
different risk measures in probabilistic, credibilistic and uncertain spaces (see [64]) which are modeled as
convex quadratic optimization problems.
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