Fourier transform on compact Hausdorff groups

Mykola Yaremenko ${ }^{\text {a }}$
${ }^{a}$ Department of Partial Differential Equations, The National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

Abstract

This article deals with the generalization of the abstract Fourier analysis on the compact Hausdorff group. In this paper, the generalized Fourier transform F is defined as $F(\psi)(\alpha)=\int \psi(h) M_{\alpha}\left(h^{-1}\right) d \mu(h)$ for all $\psi \in L^{2}(G) \cap L^{1}(G)$, where M_{α} is a continuous unitary representation $M_{\alpha}: G \rightarrow U C\left(C^{n(\alpha)}\right)$ of the group G in $C^{n(\alpha)}$, and its properties are studied. Also, we define the symplectic Fourier transform and the generalized Wigner function $W_{A}(\psi, \varphi)$ and establish the Moyal equality for the Wigner function.

We show that the homomorphism $\pi: G \rightarrow U\left(L^{2}\left(G / K, H_{1}\right)\right)$ induced by $\Lambda: G \times(G / K) \rightarrow U\left(H_{1}\right)$ by $(\pi(\psi))(g, h)=\left(\Lambda\left(h^{-1}, g\right)\right)^{-1}\left(\psi\left(h^{-1} g\right)\right), g \in G / K, h \in G, \psi \in L^{2}\left(G / K, H_{1}\right)$ is a unitary representation of the group G, assuming the mapping $h \mapsto(\pi(\psi))(g, h)$ is continuous as morphism $G \rightarrow U\left(L^{2}\left(G / K, H_{1}\right)\right)$.

We study the unitary representation $\tilde{\pi}: G \rightarrow H$ induced by the unitary representation $V: K \rightarrow U\left(H_{1}\right)$ given by $\tilde{\pi}_{g}(\psi)(t)=\psi\left(g^{-1} t\right)$ for all $t \in G / K$.

1. Introduction

Let G be a compact communicative group equipped with a Haar measure μ and let \hat{G} be a Pontrjagin dual group consisting of the characters of G. A character of the group G is a continuous homomorphism from G to the first unitary group $U(1)$.

The Fourier transform F of the function $\psi \in L^{2}(G) \cap L^{1}(G)$ is defined by

$$
\begin{equation*}
F(\psi)(\chi)=\int \psi(g) \overline{\chi(g)} d \mu(g) \tag{1}
\end{equation*}
$$

for all $\chi \in \hat{G}$.
The inverse Fourier transform F^{-1} can be expressed by a similar formula

$$
\begin{equation*}
F^{-1}(\psi)(\chi)=\int \psi(g) \chi(g) d \mu(g) \tag{2}
\end{equation*}
$$

for all $\chi \in \hat{G}$.

[^0]Mappings F and F^{-1} are connected so that $F(\psi)\left(\chi^{-1}\right)=F^{-1}(\psi)(\chi)$ and

$$
\begin{align*}
& F(\psi)\left(\chi^{-1}\right)=\int \psi\left(g^{-1}\right) \overline{\chi(g)} d \mu(g)= \tag{3}\\
& =\overline{\int \overline{\psi\left(g^{-1}\right) \chi(g)} d \mu(g) .}
\end{align*}
$$

Example. Let us consider a special case when the main group $G=R^{n}$ is an additive group. The representation of R^{n} in a Hilbert space $H=L^{2}\left(R^{n}\right)$ of functions ψ on R^{n} is a shift τ given by $\tau(y, \psi)=\psi(\cdot-y)$. All mappings $\tau(y): R^{n} \rightarrow L^{2}\left(R^{n}\right)$ constitute a semigroup. Assume $\tau(y)$ is bounded on $H=L^{2}\left(R^{n}\right)$ then representation τ is called the regular representation on $H=L^{2}\left(R^{n}\right)$.

The Fourier transform $F(\psi)$ of $\psi \in L^{2}\left(R^{n}\right) \bigcap L^{1}\left(R^{n}\right)$ is defined by

$$
\begin{equation*}
F(\psi)(\lambda)=\hat{\psi}(\lambda)=\int_{R^{n}} \exp (-i \lambda \cdot x) \psi(g) d x \tag{4}
\end{equation*}
$$

for all $\lambda \in R^{n}$. Since the mapping $\exp (-i \lambda \cdot): R^{n} \rightarrow S^{1}$ is continuous with respect to the compact convergence topology, homomorphism $\exp (-i \lambda \cdot): R^{n} \rightarrow S^{1}$ can be rewritten as factorized as follows $\exp (-i \lambda \cdot): \quad G=R^{n} \xrightarrow{\lambda \cdot} R \xrightarrow{\exp (-i \lambda \cdot)} S^{1}=U(1)$. The system $\{\exp (-i \lambda \cdot)\}$ constitutes an orthogonal basis in $H=L^{2}\left(R^{n}\right)$.

The main part of the paper is devoted to the generalization of the Fourier transform and the FourierStieltjes calculus, and developing the basic apparatus of a new approach to problems of quantum physics, so we propose a new type of the Wigner function and establish the Moyal identity for it. The Wigner function $W(\psi, \varphi)$ allows us to define the wavepacket transform $W_{\varphi}(\psi)$ with the window φ by $W_{\varphi}(\psi)=$ $(2 \pi)^{\frac{n}{2}} W(\psi, \varphi)$ where the function $\psi \in S\left(R^{n}\right)$ is going backward and the window $\varphi \in S\left(R^{n}\right)$ moves forward at the same speed.

For a function $\psi \in L^{2}\left(R^{n} \oplus R^{n}\right) \cap L^{1}\left(R^{n} \oplus R^{n}\right)$, the classical symplectic Fourier transform F_{σ} is given by $F_{\sigma}(\psi)(\lambda)=F \psi(J \lambda)$ where J is the standard symplectic matrix $J=\left[\begin{array}{lll}0 & I \\ -I & 0\end{array}\right]$ and I is an identity matrix. We propose to generalize the symplectic Fourier transform as a function defined on \hat{G}_{σ} by an integral $F_{\sigma}(\psi)\left(\chi_{\sigma}\right)=\int \psi(h) \overline{\chi_{\sigma}(h)} d(\mu \otimes \mu)(h)$ where \hat{G}_{σ} is a set of all continuous homomorphisms from $G \oplus G$ to $\operatorname{USp}(2)$, so \hat{G}_{σ} constitutes a group with the operation of pointwise multiplication and the uniform convergence topology. For the generalized Wigner function, the analog of Moyal identity can be proved so for arbitrary $\varphi \in L^{2}(G)$ the mapping $\psi \mapsto W_{A}(\psi, \varphi)$ is a partial isometry on a closed subspace of $L^{2}(G \oplus G)$ thus the wavepacket transform can be defined by $W_{\varphi}^{A}(\psi)=A_{1} W_{A}(\psi, \varphi) \quad: \quad L^{2}(G) \rightarrow L^{2}(G \oplus G)$ with the window $\varphi \in L^{2}(G)$, this approach facilitates analysis of Bopp calculus.

2. The results of Peter-Weyl theorems

Let G be a compact Hausdorff group equipped with a Haar measure μ.
Definition 1. A complete Hilbert algebra of the square-integrable functions on the group G is denoted by $L^{2}(G)$. According to the Peter-Weyl theorem, $L^{2}(G)$ algebra can be represented as an orthogonal sum $\oplus_{\alpha \in R} \Lambda_{\alpha}=$ $L^{2}(G)$ of topologically simple algebras Λ_{α}, where Λ_{α} equals to matrix algebra $M_{n(\alpha)}(C)$ of $(n(\alpha))^{2}$-dimension, where α is a finite-dimensional representation of the compact group G. Each function $\Lambda_{\alpha}: G \rightarrow M_{n(\alpha)}(C)$ is a continuous function on the compact group G.

Definition 2. The set of all equivalence classes of an irreducible representation of the group G is called \hat{G}.
From $\phi_{\alpha}=\sum_{k=1, . ., n(\alpha)} e_{k}$, we have $\sum_{k=1, . ., n(\alpha)} \psi * e_{k}=\psi * \phi_{\alpha}$ for the presentation $\psi=\sum_{\alpha} \psi * \phi_{\alpha}$. Each element Λ_{α} uniquely corresponds with a continuous function, so that for each finite-dimensional representation α there is a decomposition $\Lambda_{\alpha}=\oplus_{1 \leq k \leq n(\alpha)} \Lambda_{\alpha} * m_{k}$ where m_{k} is an irreducible idempotent, and so that $\phi_{\alpha}=\sum_{k=1, \ldots, n(\alpha)} m_{k}$. Let $\left\{a_{k}\right\}_{1 \leq k \leq n(\alpha)}$ be a Hilbert basis in $\Lambda_{\alpha} * m_{1}$ with the condition $a_{k} \in m_{k} * \Lambda_{\alpha} * m_{1}$.

Definition 3. For every finite-dimensional representation α, we define a matrix $M_{\alpha}(g)$ of $n(\alpha) \times n(\alpha)$-dimension with coefficients

$$
\begin{equation*}
a_{i j}(g)=(n(\alpha))^{-1}\left(a_{i}(g) * \overline{a_{j}\left(g^{-1}\right)}\right) \tag{5}
\end{equation*}
$$

for $1 \leq i \leq n(\alpha)$ and $1 \leq j \leq n(\alpha)$.
From definition 3 we have $a_{i i}=m_{i}$.
Definition 4. The Fourier transform $F(\psi)$ of the function $\psi \in L^{1}(G)$ is a mapping defined by

$$
\begin{equation*}
F(\psi)(\alpha)=\int \psi(h) M_{\alpha}\left(h^{-1}\right) d \mu(h) \tag{6}
\end{equation*}
$$

where M_{α} is a continuous unitary representation $M_{\alpha}: G \rightarrow U C\left(C^{n(\alpha)}\right)$ of the group G in $C^{n(\alpha)}$.
We denote the set $\bigcap_{\alpha} M_{n(\alpha)}(C)$ by $\Theta(\hat{G})$.
Theorem (first theorem) 1. Let G be a compact group then the mapping $F: L^{2}(G) \rightarrow L^{2}(\hat{G})$ defined by

$$
\begin{equation*}
F(\psi)(\alpha)=\int \psi(g) M_{\alpha}\left(g^{-1}\right) d \mu(g) \tag{7}
\end{equation*}
$$

is an isometric isomorphism.
For each element $\psi \in L^{2}(G)$, we have a representation

$$
\begin{equation*}
\psi=\sum_{\alpha} n(\alpha) \sum_{i, k=1, \ldots, n(\alpha)}\left\langle\left\langle F(\psi)(\alpha)\left(e_{i}(\alpha)\right),\left(e_{k}(\alpha)\right)\right\rangle\right\rangle \phi_{i k}(\alpha), \tag{8}
\end{equation*}
$$

where $\left\{e_{i}(\alpha)\right\}_{i=1, \ldots, n(\alpha)}$ is an orthonormal basis in $C^{n(\alpha)}$ and coordinate functions $\phi_{i k}$ are defined as

$$
\begin{equation*}
\phi_{i k}(\alpha)(g)=\left\langle M_{\alpha}(g) e_{i}(\alpha), e_{k}(\alpha)\right\rangle \tag{9}
\end{equation*}
$$

for all $g \in G$ and $i, k=1, \ldots, n(\alpha)$.
Theorem (second theorem) 2. Let G be a compact group then the inverse Fourier transform $F^{-1}: L^{2}(\hat{G}) \rightarrow L^{2}(G)$ is defined by

$$
\begin{equation*}
\psi(g)=\sum_{\alpha} n(\alpha) \operatorname{tr}\left(F(\psi)(\alpha) M_{\alpha}(g)\right) \tag{10}
\end{equation*}
$$

for any Fourier transform $F(\psi) \in L^{2}(\hat{G})$ of $\psi \in L^{2}(G)$ and the series converges in L^{2}.

3. The structure of L^{2} - algebra

Let G be a compact group then $L^{2}(G)$ is a separable complete Hilbert algebra. Let ℓ be a closed left ideal of $L^{2}(G)$ and let $\psi, \varphi \in \ell$ then there exist a sequence $\left\{e_{n}\right\}$ of irreducible self-adjoint idempotents e_{n} of ℓ such that $\psi=\sum_{n} \psi e_{n}$ and $\langle\psi, \varphi\rangle=\left\langle\sum_{n} \psi e_{n}, \sum_{n} \varphi e_{n}\right\rangle$.

We remind matrix coefficients of G are mappings $g \mapsto \phi^{*}\left(M_{\alpha}(g) \phi\right)$ for all $\phi^{*}, \phi \in C^{n(\alpha)}$.
Theorem (orthogonality of matrix coefficients). Let α be an irreducible representation of the compact group G in the separable Hilbert space H. Then for all given $\psi_{1}, \varphi_{1}, \psi_{2}, \varphi_{2} \in H$, there is a strictly positive constant d such that

$$
\begin{equation*}
\int_{G}\left\langle\alpha(g) \psi_{1}, \varphi_{1}\right\rangle \overline{\left\langle\alpha(g) \psi_{2}, \varphi_{2}\right\rangle} d \mu(g)=\frac{1}{d}\left\langle\psi_{1}, \psi_{2}\right\rangle\left\langle\varphi_{2}, \varphi_{1}\right\rangle \tag{11}
\end{equation*}
$$

The PeterWeyl theorem allows us to elucidate the structure of $L^{2}(G)$ algebra as follows.

Theorem. (First) 3. Let G be a compact Hausdorff group then $L^{2}(G)$ is a complete Hausdorff-Hilbert algebra, which can be decomposed into a countable or finite Hilbert sum $L^{2}(G)=\oplus_{\alpha \in R} \Lambda_{\alpha}$ of topologically simple orthogonal algebras Λ_{α} under conditions $\Lambda_{\alpha_{1}} \Lambda_{\alpha_{2}}=\{0\}$ for all $\alpha_{1} \neq \alpha_{2}$. Each simple algebra Λ_{α} can be decomposed as a finite sum $\Lambda_{\alpha}=\oplus_{j} \ell_{j}$ of minimal left ideals such that there does not exist a pair of isomorphic ideals ℓ_{j}. Since G is a compact group, there exists an isomorphism of Λ_{α} to finite-dimensional matrix algebra $M_{n(\alpha)}$.
(Second) 4. Let $U: G \rightarrow U_{R}(H)$ be a unitary representation of a group G in the separable Hilbert space H. Then Hilbert space H can be presented as a direct sum of finite irreducible representations each of the representations is equivalent to the matrix $\overline{M_{n(\alpha)}}$.

Proof. The first part follows from the density in Hilbert space $L^{2}(G)$ of the set of matrix coefficients of the compact group G and the theorem of orthogonality of matrix coefficients. Under the density, we mean that for every fixed $\psi \in L^{2}(G)$ and for any $\varepsilon>0$ there exists a matrix coefficient $\tilde{\psi}$ such that $\|\psi-\tilde{\psi}\|<\varepsilon$.

To show the validity of the second part of the theorem, we employ the first part of the theorem so that for any $\varphi \in C(G)$ and $\varepsilon>0$ there exists matrix coefficient $\tilde{\psi}$ such that

$$
\begin{equation*}
\left\|\int_{G}(\varphi(g)-\tilde{\psi}(g)) \alpha(g) f d \mu(g)\right\|<\varepsilon\|f\| \tag{12}
\end{equation*}
$$

for all $f \in H$.
Let $\breve{\psi}(g)=\phi^{*}(\hat{\alpha}(g) \phi)$ be a matrix coefficient of the same dimensional dual representation $\hat{\alpha}$ on $n E$. We define a nonzero mapping $E^{*} \mapsto H$ by

$$
\begin{equation*}
\left(\phi \mapsto \int_{G} \phi^{*}\left(\hat{\alpha}\left(g^{-1}\right) \phi\right) \alpha(g) f d \mu(g)\right) \in \operatorname{Hom}^{G}\left(E^{*}, H\right) \tag{13}
\end{equation*}
$$

The image $\left(\phi \mapsto \int_{G} \phi^{*}\left(\hat{\alpha}\left(g^{-1}\right) \phi\right) \alpha(g) f d \mu(g)\right)\left(E^{*}\right)$ is a nonempty finite-dimensional subspace of H. We partially order a set Ξ of finite-dimensional irreducible invariant subsets by the inclusion. Employing the choice axion, we have that there exists a maximal $\theta_{\max }$ element of the partially ordered set Ξ. Assuming the span of $\theta_{\max }$ does not coincide with Hilbert space H then the complement of the span of $\theta_{\max }$ contains at least one irreducible subspace so $\theta_{\max }$ can not be maximal since their union is larger than $\theta_{\max }$, thus we obtain that the span of $\theta_{\max }$ does coincides with the Hilbert space H.

By the second part of the last theorem, we have obtained that let $U: G \rightarrow U_{R}\left(L^{2}(G)\right)$ a unitary representation of a compact group G in $L^{2}(G)$. Then $L^{2}(G)$ decomposed into a direct sum of finite irreducible representations each of the representations is equivalent to the matrix $\overline{M_{n(\alpha)}}$.

4. Induce representation of a locally compact group

Let G be a locally compact separable group and let K be a closed subgroup of G. The G / K is a metrizable space with a positive Borel measure μ on G / K. Our goal is to construct a unitary representation $\pi: G \rightarrow$ $U(H)$ and the Hilbert space H under the assumption that the unitary representation $V: K \rightarrow U\left(H_{1}\right)$ is given and H_{1} is a separable Hilbert space.

Let $\left\{\phi_{k}\right\}$ be a Hilbert basis of H_{1} so that an arbitrary function $\psi: G / K \rightarrow H_{1}$ can be presented as a convergent sequence $\sum_{k} \psi_{k} \phi_{k}=\psi$, where $\psi_{k}: G / K \rightarrow C$ so that we take

$$
\begin{equation*}
\|\psi(g)\|_{H_{1}}^{2}=\sum_{k}\left|\psi_{k}(g)\right|^{2} \tag{14}
\end{equation*}
$$

The Egoroff theorem yields that the μ-measurability of each function $\psi_{k}: G / K \rightarrow C$ of the sequence $\left\{\psi_{k}\right\}$ implies the μ-measurability of the function $\psi: G / K \rightarrow H_{1}$. For the arbitrary basis $\left\{\phi_{k}\right\}$ of a Hilbert basis of H_{1}, we denote $L^{2}\left(G / K, H_{1}\right)$ the space of all μ-measurable functions $G / K \rightarrow H_{1}$ so that we have the following equalities

$$
\int_{G / K}\|\psi(g)\|_{H_{1}}^{2} d \mu(g)=\sum_{k} \int_{G / K}\left|\psi_{k}(g)\right|^{2} d \mu(g)=\sum_{k}\left\|\psi_{k}\right\|_{L^{2}}^{2}
$$

The inner product in $L^{2}\left(G / K, H_{1}\right)$ is given by

$$
\int_{G / K}\langle\psi(g), \varphi(g)\rangle d \mu(g)=\sum_{k} \int_{G / K} \psi_{k}(g) \overline{\varphi_{k}(g)} d \mu(g)
$$

for any pair $\psi, \varphi \in L^{2}\left(G / K, H_{1}\right)$ which is presented as $\psi=\sum_{k} \psi_{k} \phi_{k}$ and $\varphi=\sum_{k} \varphi_{k} \phi_{k}$. Now, we can consider a quotient space of $L^{2}\left(G / K, H_{1}\right)$ as a space of all classes of equivalent functions of $L^{2}\left(G / K, H_{1}\right)$, this quotient space will be again denoted by $L^{2}\left(G / K, H_{1}\right)$.

Theorem. Let G be a locally compact separable group and K be a closed subgroup of G. Let μ be a positive Borel measure μ on G / K. Then the space $L^{2}\left(G / K, H_{1}\right)$ of all equivalence classes of all μ-measurable functions $G / K \rightarrow H_{1}$ is a separable Hilbert space under the assumption that H_{1} is a separable Hilbert space.

Proof. Assume the sequence $\left\{\psi_{j}=\sum_{k} \psi_{j, k} \phi_{k}\right\} \subset L^{2}\left(G / K, H_{1}\right)$ satisfies the Cauchy condition in $L^{2}\left(G / K, H_{1}\right)$, for any $\varepsilon>0$, there exists some j_{0} such that the inequality

$$
\begin{aligned}
& \int_{G / K}\left\|\psi_{i}(g)-\psi_{j}(g)\right\|_{H_{1}}^{2} d \mu(g)= \\
& =\sum_{k} \int_{G / K}\left|\psi_{i, k}-\psi_{j, k}\right|^{2} d \mu(g) \leq \varepsilon
\end{aligned}
$$

holds for all $i, j>j_{0}$. Thus, the sequence $\left\{\psi_{i, k}\right\}_{i \geq 1} \subset L^{2}\left(H_{1}, C\right)$ satisfies the Cauchy condition. So, for any $\varepsilon>0$, there exists an element $\gamma_{k} \in L^{2}\left(H_{1}, C\right)$ and some k_{0} such that we have

$$
\sum_{k=1, \ldots, k_{0}}\left\|\gamma_{k}-\psi_{j, k}\right\|_{L^{2}}^{2} \leq \varepsilon
$$

and

$$
\sum_{k=1, \ldots, k_{0}}\left\|\gamma_{k}\right\|_{L^{2}}^{2} \leq \sum_{k=1, \ldots, k_{0}}\left\|\gamma_{k}-\psi_{j, k}\right\|_{L^{2}}^{2}+\sum_{k=1, \ldots, k_{0}}\left\|\psi_{j, k}\right\|_{L^{2}}^{2} \leq \varepsilon+\left\|\psi_{j}\right\|_{L^{2}}^{2}
$$

so $\sum_{k=1, \ldots .}\left\|\gamma_{k}\right\|_{L^{2}}^{2}=\|\gamma\|^{2}<\infty$, the inequality

$$
\sum_{k=1, \ldots .}\left\|\gamma_{k}-\psi_{j, k}\right\|_{L^{2}}^{2} \leq \varepsilon
$$

holds for all $j>j_{0}$, thus, we have

$$
\lim _{j \rightarrow \infty} \psi_{j}=\gamma
$$

the limit is understood in a topology of $L^{2}\left(G / K, H_{1}\right)$. The set of functions $\psi=\sum_{k=1, \ldots, k_{0}} \psi_{k} \phi_{k}$ that can be presented as a finite linear combination of μ-measurable $\psi_{k}(g)=\left\langle\psi(g), \phi_{k}\right\rangle$ and elements of the basis $\left\{\phi_{k}\right\}$ is dense in $L^{2}\left(G / K, H_{1}\right)$ with the natural norm.

Definition. Let a linear automorphism $\Lambda: G \times(G / K) \rightarrow G L\left(H_{1}\right)$ satisfies the conditions:
$\Lambda(e, a)=$ id $\left(H_{1}\right)$ for all $a \in G / K$
and

$$
\Lambda(g h, a)=\Lambda(g, h \cdot a) \cdot \Lambda(h, a)
$$

for all for all $g, h \in G$ and $a \in G / K$. Then the mapping $\Lambda: G \times(G / K) \rightarrow G L\left(H_{1}\right)$ will be called a cocycle of the group G in a general linear group over H_{1}.

Theorem. Let $V: K \rightarrow U\left(H_{1}\right)$ be a unitary representation of K in H_{1}. Let μ be an outer regular, σ-inner regular, finite on compact subsets Borel measure such that

$$
\begin{equation*}
\mu\left(g^{-1} E\right)=\mu(E) \tag{15}
\end{equation*}
$$

for all $g \in G$ and all μ - measurable sets E. Let each cocycle $\Lambda: G \times(G / K) \rightarrow U\left(H_{1}\right)$ satisfies the following conditions: for all $s \in K$, there is $\Lambda(s, a)=U(s)$; for each $t \in G$ and $\psi \in L^{2}\left(G / K, H_{1}\right)$, the mapping $G / K \rightarrow H_{1}$ given by $g \mapsto \Lambda(g, t)(\psi(g))$ is μ - measurable.

Then the homomorphism $\pi: G \rightarrow U\left(L^{2}\left(G / K, H_{1}\right)\right)$ induced by $\Lambda: G \times(G / K) \rightarrow U\left(H_{1}\right)$ according to

$$
(\pi(\psi))(g, h)=\left(\Lambda\left(h^{-1}, g\right)\right)^{-1}\left(\psi\left(h^{-1} g\right)\right), g \in G / K, \quad h \in G, \quad \psi \in L^{2}\left(G / K, H_{1}\right)
$$

is a unitary representation of the group G, if the mapping $h \mapsto(\pi(\psi))(g, h)$ is continuous as $G \rightarrow U\left(L^{2}\left(G / K, H_{1}\right)\right)$.
Proof. Assume $\psi \in L^{2}\left(G / K, H_{1}\right)$ and $g, h \in G$, we have

$$
\|(\pi(\psi))(g, h)\|_{H_{1}}=\left\|\left(\Lambda\left(h, h^{-1} g\right)\right)\left(\psi\left(h^{-1} g\right)\right)\right\|_{H_{1}}=\left\|\psi\left(h^{-1} g\right)\right\|_{H_{1}}
$$

so

$$
\int_{G / K}\left\|\psi\left(h^{-1} g\right)\right\|_{H_{1}}^{2} d \mu(g)=\int_{G / K}\|\psi(g)\|_{H_{1}}^{2} d \mu(g),
$$

thus, we obtain $\|(\pi(\psi))(h)\|_{L^{2}\left(G / K, H_{1}\right)}=\|\psi\|_{L^{2}\left(G / K, H_{1}\right)}$ for all $\psi \in L^{2}\left(G / K, H_{1}\right)$.
Thus, we have constructed the unitary representation $\pi: G \rightarrow U\left(L^{2}\left(G / K, H_{1}\right)\right)$ defined as $(\pi(\psi))(g, h)=$ $\left(\Lambda\left(h^{-1}, g\right)\right)^{-1}\left(\psi\left(h^{-1} g\right)\right)$ induced by the unitary representation $V: K \rightarrow U\left(H_{1}\right)$ and cocycle $\Lambda: G \times(G / K) \rightarrow$ $U\left(H_{1}\right)$.

5. The Gerald Folland modified method

Now, we are going to construct a Hilbert space H and unitary representation $\tilde{\pi}: G \rightarrow H$ induced by $V: K \rightarrow U\left(H_{1}\right)$ assuming that K is a closed subgroup of G and μ is an outer regular, σ-inner regular, finite on compact subsets Borel measure such that $\mu\left(g^{-1} E\right)=\mu(E)$ for all $g \in G$ and all μ-measurable sets E.

Let a continuous function $\phi: G \rightarrow H_{1}$ be supported on a compact set. We define a function $g \mapsto \varphi_{\phi}(g)$ by an integral formula

$$
\varphi_{\phi}(g)=\int_{K} V(h)(\phi(h g)) d v_{K}(h)
$$

where v_{K} is Haar's measure on the subgroup K.
The Hilbert space H is defined as the completion of the set of all functions φ_{ϕ} in the norm naturally induced by the inner product given by

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{G / K}\left\langle\psi_{1}(g), \psi_{2}(g)\right\rangle_{H_{1}} d \mu(g K)
$$

for all functions ψ_{1} and ψ_{2} such that sets $P\left(\sup p\left(\psi_{k}\right)\right), \quad k=1,2$ are compact and $\psi_{k}(g h)=V\left(h^{-1}\right)\left(\psi_{k}(g)\right)$, $k=1,2$ for all $g \in G, \quad h \in K$, where $P: G \rightarrow G / K$ is the quotient mapping.

The unitary representation $\tilde{\pi}: G \rightarrow H$ induced by unitary representation $V: K \rightarrow U\left(H_{1}\right)$ is defined as $\tilde{\pi}_{g}(\psi)(t)=\psi\left(g^{-1} t\right)$ for all $t \in G / K$.

Let G be a compact separable group and let K be a closed subgroup of G. Let us take $H_{1}=C$ then to construct a unitary representation $G \mapsto L^{2}(G / K, C)$, we can use the Peter-Weyl theorem to consider a restriction $W: K \rightarrow U\left(C^{n(\alpha)}\right)$ of representation $M_{\alpha}: G \rightarrow U\left(C^{n(\alpha)}\right)$ on the subgroup K. By the second Peter-Weyl theorem, we can define orthogonal projection $P_{n(\alpha)}: C^{n(\alpha)} \rightarrow P_{n(\alpha)}\left(C^{n(\alpha)}\right) \subset C^{n(\alpha)}$ by

$$
M_{\alpha}\left(\frac{1}{n(\bar{\alpha})} \chi(\bar{\alpha})\right)=\frac{1}{n(\alpha)} \int_{K} M_{\alpha}(h) \overline{\chi(\alpha)(h)} d v_{K}(h)
$$

So, there is decomposition $C^{n(\alpha)}=\underset{\beta}{\oplus} P_{\beta}\left(C^{\beta}\right)$ where β is representation on K, and the Hilbert space $L^{2}(G / K, C)$ can be presented in the form $\oplus L_{\alpha}$ of a Hilbert series of subspaces $L_{\alpha} \subset \Lambda_{\alpha}$ so that $L_{\alpha}=$ $\underset{i=1, \ldots, d, d=1, \ldots, n(\alpha)}{\oplus} C \cdot\left(n(\alpha) a_{i}(g) * \overline{a_{j}\left(g^{-1}\right)}\right)$ if the trivial representation γ of the subgroup K is $d=\frac{\alpha}{\gamma} \geq 1$ times in the restriction of M_{α} to K.
6. The symplectic Fourier transform and a generalization of the ambiguity function and Wigner functions

The set $S p(2 n, K)$ of all symplectic matrices over the field K is called a symplectic group. The compact symplectic group $S p(2 n, C) \bigcap U(2 n)$ is denoted by $U S p(2 n)$.

Now, let G be a compact communicative group with a Haar measure μ on G. We define a group \hat{G}_{σ} as a group of all continuous homomorphisms from $G \oplus G$ to USp (2).

Definition 5. The symplectic Fourier transform F_{σ} of $\psi \in L^{2}(G \oplus G) \cap L^{1}(G \oplus G)$ is defined by

$$
\begin{equation*}
F_{\sigma}(\psi)\left(\chi_{\sigma}\right)=\int_{G \times G} \psi(h) \overline{\chi_{\sigma}(h)} d(\mu \otimes \mu)(h) \tag{16}
\end{equation*}
$$

for all $\chi_{\sigma} \in \hat{G}_{\sigma}$.
The inverse of the symplectic Fourier transform F_{σ}^{-1} is the same Fourier transform F_{σ}.
Now, let A be a compact communicative algebra.
Let $\psi, \varphi \in L^{2}(A)$. We define the pair of functions $\operatorname{Am}(\psi, \varphi)$ and $W_{A}(\psi, \varphi)$ by formulae

$$
\begin{equation*}
\operatorname{Am}(\psi, \varphi)(\chi, z)=\int_{A} \overline{\chi(y)} \psi\left(y+\frac{1}{2} z\right) \overline{\varphi\left(y-\frac{1}{2} z\right)} d \mu(y) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{A}(\psi, \varphi)(\chi, z)=\int_{A} \overline{\chi(y)} \psi\left(z+\frac{1}{2} y\right) \overline{\varphi\left(z-\frac{1}{2} y\right)} d \mu(y) \tag{18}
\end{equation*}
$$

these functions will be called ambiguity and Wigner functions respectively.
The classical ambiguity and Wigner functions are defined by integrals with respect to the Lebesgue measure

$$
\begin{equation*}
\operatorname{Amb}(\psi, \varphi)(p, z)=\left(\frac{1}{2 \pi}\right)^{n} \int_{A} \exp (-i p \cdot y) \psi\left(y+\frac{1}{2} z\right) \overline{\varphi\left(y-\frac{1}{2} z\right)} d y \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
W(\psi, \varphi)(p, z)=\left(\frac{1}{2 \pi}\right)^{n} \int_{A} \exp (-i p \cdot y) \psi\left(z+\frac{1}{2} y\right) \overline{\varphi\left(z-\frac{1}{2} y\right)} d y \tag{20}
\end{equation*}
$$

By changing variables $u=y+\frac{1}{2}, \quad v=y-\frac{1}{2} z$, we obtain that the classical Wigner function has an exact marginal $\langle W(\psi, \varphi)(\cdot, z)\rangle=\psi(z) \overline{\varphi(z)}$ and $\langle W(\psi, \varphi)(p, \cdot)\rangle=F(\psi(p)) \overline{F(\varphi(p))}$. So, we introduce the next definition.

Definition 6. . Let ψ, φ be $L^{2}(A)$. If functions $A m(\psi, \varphi)$ and $W_{A}(\psi, \varphi)$ defined (17) and (18) such that $W_{A}(\psi, \varphi)$ satisfies the marginal conditions

$$
\int_{A} W_{A}(\psi, \varphi)(\chi, z) d \mu(\chi)=\psi(z) \overline{\varphi(z)}
$$

and

$$
\int_{A} W_{A}(\psi, \varphi)(\chi, y) d \mu(y)=F(\psi(\chi)) \overline{F(\varphi(\chi))}
$$

then functions $A m(\psi, \varphi)$ and $W_{A}(\psi, \varphi)$ are called the ambiguity and Wigner functions respectively. The centralizer $C_{A}(a)$ of a in A is the set given by

$$
C_{A}(a)=\{g \in A: g a=a g\}
$$

For $g, h \in A$ we have

$$
\chi(g) \overline{\chi(h)}=\left\{\begin{array}{l}
\left|C_{A}(g)\right|, \quad \text { if } g \text { and } h \text { are conjugate } \\
0 \text { otherwise. }
\end{array}\right.
$$

We calculate an integral

$$
\left.\left.\begin{array}{l}
\int_{\hat{A}} \int_{A} W_{A}\left(\psi_{1}, \varphi_{1}\right)(\chi, z) W_{A}\left(\psi_{2}, \varphi_{2}\right)(\chi, z) d \mu(z) d \mu(\chi)= \\
=\int_{\hat{A}} \int_{A} \int_{A} \int_{A} \overline{\chi(y)} \chi(x) \psi_{1}\left(z+\frac{1}{2} y\right) \overline{\psi_{2}\left(z+\frac{1}{2} x\right) \times} \\
\varphi_{1}\left(z-\frac{1}{2} y\right)
\end{array} \varphi_{2}\left(z-\frac{1}{2} x\right) d \mu(y) d \mu(x) d \mu(z) d \mu(\chi)=-\overline{\psi_{2}}\right\rangle\left\langle\overline{\varphi_{1}}, \varphi_{2}\right\rangle\right)
$$

so we have obtained an analog of the Moyal identity in the form of the following theorem.

Theorem 5. The Moyal equality

$$
\left\langle W_{A}\left(\psi_{1}, \varphi_{1}\right), W_{A}\left(\psi_{2}, \varphi_{2}\right)\right\rangle_{L^{2}}=|A|\left\langle\psi_{1}, \overline{\psi_{2}}\right\rangle_{L^{2}}\left\langle\overline{\varphi_{1}}, \varphi_{2}\right\rangle_{L^{2}}
$$

or

$$
\left\langle W_{A}\left(\psi_{1}, \varphi_{1}\right), W_{A}\left(\psi_{2}, \varphi_{2}\right)\right\rangle_{L^{2}}=|A|\left(\psi_{1}, \psi_{2}\right)_{L^{2}} \overline{\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{L^{2}}}
$$

holds for all $\psi_{1}, \varphi_{1}, \psi_{2}, \varphi_{2} \in L^{2}(A)$.

References

[1] E. Liflyand Functions of Bounded Variation and their Fourier transforms. Springer International Publishing, (2019).
[2] F. Krien, A.I. Lichtenstein, and G. Rohringer Fluctuation diagnostic of the nodal/antinodal dichotomy in the Hubbard model at weak coupling: A parquet dual fermion approach, Phys. Rev. B 102, 235133 (2020).
[3] T. Schafer and A. Toschi How to read between the lines of electronic spectra: the diagnostics of fluctuations in strongly correlated electron systems, Journal of Physics: Condensed Matter (2021).
[4] Wentzell N., Li G., Tagliavini A., Taranto C., Rohringer G., Held K., Toschi A., and Andergassen S. High-frequency asymptotics of the vertex function: Diagrammatic parametrization and algorithmic implementation, Phys. Rev. B 102, 085106 (2020).
[5] J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Parigi, M. C. Soriano, and R. Zambrini, Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing, Commun. Physics 4, 53 (2021).
[6] Arvidsson-Shukur D. R. M., Yunger Halpern N., Lepage H. V., Lasek A. A., Barnes C. H. W., and Lloyd S. Quantum advantage in postselected metrology, Nat. Commun. 11, 3775 (2020).
[7] D. Vilardi, P. M. Bonetti, and W. Metzner, Dynamical functional renormalization group computation of order parameters and critical temperatures in the two-dimensional Hubbard model, Phys. Rev. B 102, 245128 (2020).
[8] P. M. Bonetti, Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group, Phys. Rev. B 102, 235160 (2020).
[9] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278-301, (Jan. 2020).
[10] A. De Martino, K. Diki, On the quaternionic short-time Fourier and Segal-Bargamann transforms, Mediterr. J. Math. 18, (2021).
[11] B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga, Deep neural networks are effective at learning high-dimensional Hilbertvalued functions from limited data, arXiv preprint arXiv:2012.06081, (2020).
[12] J. Feliu-Faba, Y. Fan, and L. Ying, Meta-learning pseudo-differential operators with deep neural networks, Journal of Computational Physics, 408 (2020), p. 109309.
[13] H. Gao, J.-X. Wang, and M. J. Zahr, Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning, arXiv preprint arXiv:1911.03808, (2019).
[14] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok, Numerical solution of the parametric diffusion equation by deep neural networks, arXiv preprint arXiv:2004.12131, (2020).
[15] Y. Korolev, Two-layer neural networks with values in a Banach space, arXiv preprint arXiv:2105.02095, (2021).
[16] P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Vol. 130, Siam, (2013).
[17] M. Walschaers, N. Treps, B. Sundar, L. D. Carr, and V. Parigi, Emergent complex quantum networks in continuous-variables non-gaussian states, arXiv:2012. 15608 [quant-ph] (2021).
[18] Q. Yu and A. S. Avestimehr, "Entangled polynomial codes for secure, private, and batch distributed matrix multiplication: Breaking the "cubic" barrier," CoRR, vol. abs/2001.05101, (2020).
[19] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, "GCSA codes with noise alignment for secure coded multi-party batch matrix multiplication," in 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, (Jun. 2020).
[20] M.I. Yaremenko, Calderon-Zygmund Operators and Singular Integrals, Applied Mathematics \& Information Sciences: Vol. 15: Iss. 1, Article 13, (2021).

[^0]: 2020 Mathematics Subject Classification. Primary 42A16, 35S30, 42A38, 42A16, 42 A38. Keywords. Fourier transform; Wigner function; Compact group; Peter-Weyl theorem.
 Received: 21 September 2022; Accepted: 25 March 2023
 Communicated by Dragan S. Djordjević
 Email address: Math.kiev@gmail.com (Mykola Yaremenko)

