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Abstract. In this paper, we first show that the quotient ring Z[x]/(x2 + x) is an involution-ring with the
involution ∗ given by (a1 + a2x)∗ = a1 − a2 − a2x, where a1, a2 ∈ Z. Then, we determine explicitly all invertible
elements, regular elements, MP-inverses, group invertible elements, EP elements and SEP elements of
Z[x]/(x2 + x). Furthermore, we give a new characterization for Abel rings.

1. Introduction

The studies of generalized inverses are popular in many branches of mathematics [6–8, 12], such as
matrix theory, operator theory and rings with involution, etc. For instances, the studies of EP, normal and
Hermitian matrices can be seen in [1, 2, 9, 24]. In [3–5], Djordjević and Koliha considered the EP, normal
and Hermitian operators. The researches of EP elements and MP-inverses in C∗-algebras can be found in
[6, 10, 11]. Mosić and Djordjević considered the EP elements, MP-inverses, partial isometries, etc in rings
with involution, see [12–17]. In recent years, the third author in this paper and his cooperators gave some
new characterizations of EP elements, SEP elements, normal elements, partial isometrices, etc in rings with
involution [19–23].

However, there are a few works on the concrete ∗-rings. In this paper, we consider the quotient ring
Z[x]/(x2+x). First, we prove thatZ[x]/(x2+x) is a ∗-ring with the involution ∗given by (a1+a2x)∗ = a1−a2−a2x,
where a1, a2 ∈ Z. We then determine explicitly the invertible elements, regular elements, MP-inverses, group
invertible elements, EP elements and SEP elements of Z[x]/(x2 + x). This paper is organized as follows. In
Section 2, we recall some basic definitions and results, and make preparations for the rest of the paper. In
Section 3, we study the invertible elements, regular elements, MP-inverses, group invertible elements, EP
elements and SEP elements of Z[x]/(x2 + x). Moreover, we give a new characterization of Abel rings.

2. Preliminaries

Throughout, the letter Z stands for the ring of integers. In this section, we first recall the definitions of
involution rings, MP-inverses, EP elements, SEP elements, etc. Then, we review the concept of quotient
ring Z[x]/(x2 + x).
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Let A be a ring and ∗ : A → A be a bijective map. Then ∗ is called an involution of A provided that the
followings hold:

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗. (1)

Definition 2.1. A ring A with an involution ∗ is called an involution ring or a ∗-ring [21].

Definition 2.2. An element a in a ∗-ring A is called an Hermitian element [12] if a∗ = a.

The set of all Hermitian elements of A is denoted by AHer. It is clear that {aa∗, a∗a, a+ a∗} ⊆ AHer for any a ∈ A.

Definition 2.3. An element a in a ∗-ring A is called Moore-Penrose invertible (MP-invertible) (see [24]) if there
exists b ∈ A such that

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba, (2)

and b is called the Moore-Penrose inverse of a, which is unique if it exists and is always written by a+.

The set of all MP-invertible elements in A is denoted by A+.

Definition 2.4. An element a in a ring A is said to be a von Neumann regular element if there exists b ∈ A such that

a = aba, (3)

and b is called an inner inverse of a.

The set of all regular elements in A is denoted by Are1. In general, if a ∈ Are1, the inner inverse of a is not
unique. We denote the set of all inner inverses of a by a{1}, and a− denotes some fixed inner inverse of a.

An element e ∈ A is called idempotent if e2 = e, and the set of all idempotent elements of A is denoted
by E(A).

Definition 2.5. An element e ∈ E(A) is called left (resp. right) semicentral idempotent if ae = eae (resp. ea = eae)
for each a ∈ A. If e is both left and right semicentral idempotent, then e is called central idempotent.

Clearly, e ∈ E(A) is left semicentral if and only if 1 − e is right semicentral.

A is called an Abel ring if each element e ∈ E(A) is central. It is easy to see that A is Abel if and only if each
e ∈ E(A) is left semicentral.

Definition 2.6. An element e ∈ E(A) is called a projection if e∗ = e.

The set of all projections of A is denoted by Aproj. Clearly, e ∈ Aproj if and only if e = ee∗ if and only if e = e∗e.

Definition 2.7. An element a in a ring A is called a group invertible element if there exists x ∈ A such that

a = axa, x = xax, ax = xa,

where x is called the group inverse of a, which is unique if it exists and is denoted by a#.

The set of all group invertible elements of A is denoted by A#. Furthermore, U(A) ⊆ A# and E(A) ⊆ A#,
where U(A) is the set of invertible elements of A. Moreover A# = Are1 when A is commutative.

Definition 2.8. An element a ∈ A#
∩ A+ is said to be EP if a# = a+ [12].

The set of all EP elements of A is denoted by AEP.

Definition 2.9. An element a ∈ AEP is called strongly EP (or SEP) [12, 20, 21, 23] if a+ = a∗.
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The set of all SEP elements of A is denoted by ASEP.

Lemma 2.10. Let A be a ∗-ring. Then the followings hold:
(1) Let a ∈ Are1. Then a{1} = {a− + b − a−abaa−|b ∈ A}, where a− is some fixed inner inverse of a.
(1) U(A) ⊆ A#

∩ A+ ⊆ Are1. Moreover, if a ∈ U(A), then a# = a+ = a−1 and a{1} = {a−1
}.

(3) Aproj = E(A) ∩ AHer.
(4) A is an Abel ring if and only if for each a ∈ Are1, aa− = a−a.

Proof. (1)-(3) is obvious, here we only prove (4).
“⇒” Assume that A is an Abel ring and a ∈ Are1, then aa−, a−a ∈ E(A) ⊆ C(A), the center of A. Hence

aa− = (aa−a)a− = (a−a)(aa−) = a−(aa−)a = a−a.
“⇐” For any e ∈ E(A), x ∈ A, let 1 = e − ex(1 − e), then e1 = 1, 1e = e, 12 = 1. Note that 1e1 = 1, hence

1e = e1 by hypothesis, and so e = 1, i.e., ex(1− e) = 0. By the arbitrariness of x, we have eA(1− e) = 0, which
implies that A is an Abel ring.

Next, we review the concept of the quotient ring Z[x]/(x2 + x). It is easy to see that Z[x]/(x2 + x) has a
Z-basis {1, x}. Let ∗ be the map given by (a1 + a2x)∗ = a1 − a2 − a2x of Z[x]/(x2 + x), where a1, a2 ∈ Z. Then
we have the following result.

Lemma 2.11. The quotient ring Z[x]/(x2 + x) is a ∗-ring with ∗ determined by (a1 + a2x)∗ = a1 − a2 − a2x, where
a1, a2 ∈ Z.

Proof. Let a = a1 + a2x, b = b1 + b2x ∈ Z[x]/(x2 + x), ai, bi ∈ Z, i = 1, 2. Then

(a∗)∗ = ((a1 + a2x)∗)∗

= ((a1 − a2) − a2x)∗

= (a1 − a2) + a2 + a2x
= a1 + a2x
= a,

(a + b)∗ = ((a1 + a2x) + (b1 + b2x))∗

= ((a1 + b1) + (a2 + b2)x)∗

= a1 + b1 − a2 − b2 − (a2 + b2)x
= (a1 − a2 − a2x) + (b1 − b2 − b2x)
= a∗ + b∗,

and

(ab)∗ = ((a1 + a2x)(b1 + b2x))∗

= (a1b1 + a1b2x + a2b1x + a2b2x2)∗

= (a1b1 + (a1b2 + a2b1 − a2b2)x)∗

= (a1b1 − a1b2 − a2b1 + a2b2) − (a1b2 + a2b1 − a2b2)x
= (a1 − a2 − a2x)(b1 − b2 − b2x)
= (b1 − b2 − b2x)(a1 − a2 − a2x)
= (b1 + b2x)∗(a1 + a2x)∗

= b∗a∗.

Thus, by (1), Z[x]/(x2 + x) is a ∗-ring.
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3. EP elements of Z[x]/(x2 + x)

The aim of this section is to determine explicitly all invertible elements, projections, regular elements,
group invertible elements, MP-inverses, EP elements and SEP elements of Z[x]/(x2 + x).

Lemma 3.1. (Z[x]/(x2 + x))Her = Z.

Proof. Assume that a = a1 + a2x ∈ (Z[x]/(x2 + x))Her, a1, a2 ∈ Z, then

a∗ = (a1 + a2x)∗ = a1 − a2 − a2x = a1 + a2x.

So {
a1 − a2 = a1,
−a2 = a2.

(4)

It is easy to see that (k, 0), k ∈ Z are all solutions of (4). It follows that (Z[x]/(x2 + x))Her = Z.

Lemma 3.2. E(Z[x]/(x2 + x)) = {0, 1,−x, 1 + x}.

Proof. Assume that a = a1 + a2x ∈ E(Z[x]/(x2 + x)), a1, a2 ∈ Z, then

a2 = (a1 + a2x)2

= a2
1 + 2a1a2x + a2

2x2

= a2
1 + (2a1a2 − a2

2)x
= a1 + a2x
= a,

which implies that{
a2

1 = a1,
2a1a2 − a2

2 = a2.

Case I: a1 = 0, then

−a2
2 = a2 ⇒ a2 = 0 or a2 = −1.

So, a = 0 or a = −x.
Case II: a1 = 1, then

a2
2 = a2 ⇒ a2 = 0 or a2 = 1.

Hence a = 1 or a = 1 + x. By above, we have

E(Z[x]/(x2 + x)) = {0, 1,−x, 1 + x}.

Proposition 3.3. (Z[x]/(x2 + x))proj = {0, 1}.

Proof. By Lemmas 2.10 (3), 3.1 and 3.2, (Z[x]/(x2+x))proj = E(Z[x]/(x2+x))∩ (Z[x]/(x2+x))Her = {0, 1,−x, 1+
x} ∩Z = {0, 1}.

Theorem 3.4. (Z[x]/(x2 + x))re1 = {0, 1,−1, x,−x, 1 + x,−1 − x, 1 + 2x,−1 − 2x}.
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Proof. Let a = a1+a2x ∈ (Z[x]/(x2+x))re1, where a1, a2 ∈ Z. Then by (2), there exists b = b1+b2x ∈ Z[x]/(x2+x),
b1, b2 ∈ Z, such that a = aba. That is,

aba = a2b

= (a1 + a2x)2(b1 + b2x)

= ((a2
1 + (2a1a2 − a2

2)x)(b1 + b2x)

= a2
1b1 + (a2

1b2 + 2a1a2b1 − a2
2b1 − 2a1a2b2 + a2

2b2)x
= a1 + a2x
= a,

which shows that{
a2

1b1 = a1,
a2

1b2 + 2a1a2b1 − a2
2b1 − 2a1a2b2 + a2

2b2 = a2.
(5)

Case I: a1 = 0. Then

a2
2(b2 − b1) = a2.

If a2 = 0, then a = 0. It is obvious that 0 ∈ (Z[x]/(x2 + x))re1 and 0{1} = Z[x]/(x2 + x). If a2 , 0, then

a2(b2 − b1) = 1.

Since a2, b1, b2 ∈ Z, a2 = b2 − b1 = 1 or a2 = b2 − b1 = −1. In case a2 = b2 − b1 = 1, a = x and b = b1 + (1 + b1)x,
b1 ∈ Z, then

a2b = x2(b1 + (1 + b1)x)
= −x(b1 + (1 + b1)x)

= −b1x + (1 + b1)(−x2)
= −b1x + (1 + b1)x
= x
= a.

It follows that x ∈ (Z[x]/(x2 + x))re1 and x{1} = {k + (1 + k)x|k ∈ Z}. If a2 = b2 − b1 = −1, then a = −x and
b = b1 − (1 − b1)x, b1 ∈ Z. In this case,

a2b = (−x)2(b1 − (1 − b1)x)
= −x(b1 − (1 − b1)x)

= −b1x − (1 − b1)(−x2)
= −b1x − (1 − b1)x
= −x
= a,

which shows that −x ∈ (Z[x]/(x2 + x))re1 and −x{1} = {k − (1 − k)x|k ∈ Z}.
Case II: a1 , 0, then a1b1 = 1. Since a1, b1 ∈ Z, a1 = b1 = 1 or a1 = b1 = −1. If a1 = b1 = 1, then (5) becomes

b2 + 2a2 − a2
2 − 2a2b2 + a2

2b2 = a2,

i.e.,

b2(a2 − 1)2 = a2(a2 − 1).
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If a2 = 0, then a = 1. Obviously, 1 ∈ (Z[x]/(x2 + x))re1 and 1{1} = {1}. If a2 = 1, then a = 1 + x and b = 1 + b2x,
b2 ∈ Z. In this case,

a2b = (1 + x)2(1 + b2x)
= (1 + x)(1 + b2x)

= 1 + b2x + x + b2x2

= 1 + x
= a.

It follows that 1 + x ∈ (Z[x]/(x2 + x))re1 and 1 + x{1} = {1 + kx|k ∈ Z}. In case a2 , 0 and a2 , 1, then

b2(a2 − 1) = a2,

i.e.,

(a2 − 1)(b2 − 1) = 1.

Note that a2, b2 ∈ Z, so a2 − 1 = b2 − 1 = 1 or a2 − 1 = b2 − 1 = −1. When a2 = b2 = 2, then a = 1 + 2x ∈
(Z[x]/(x2 + x))re1 and 1 + 2x{1} = {1 + 2x}. In case a2 = b2 = 0, then a = 1, which we consider above.

If a1 = b1 = −1, then (5) becomes

b2 + 2a2 + a2
2 + 2a2b2 + a2

2b2 = a2,

i.e.,

b2(a2 + 1)2 = −a2(a2 + 1).

If a2 = 0, then a = 1, which we study before. If a2 = −1, then a = −1− x and b = −1+ b2x, b2 ∈ Z. In this case,

a2b = (−1 − x)2(−1 + b2x)
= (1 + x)(−1 + b2x)
= −1 − x
= a,

which shows that a = −1 − x ∈ (Z[x]/(x2 + x))re1 and −1 − x{1} = {−1 + kx|k ∈ Z}. In case a2 , 0 and a2 , −1,
then

b2(a2 + 1) = −a2,

i.e.,

(a2 + 1)(b2 + 1) = 1.

Notice that a2, b2 ∈ Z, so a2 + 1 = b2 + 1 = 1 or a2 + 1 = b2 + 1 = −1. When a2 = b2 = 0, then a =
−1 ∈ (Z[x]/(x2 + x))re1 and −1{1} = {−1}. In case a2 = b2 = −2, then a = −1 − 2x ∈ (Z[x]/(x2 + x))re1 and
−1 − 2x{1} = {−1 − 2x}. Summarizing the discussion above, we have

(Z[x]/(x2 + x))re1 = {0, 1,−1, x,−x, 1 + x,−1 − x, 1 + 2x,−1 − 2x},

and 0{1} = Z[x]/(x2 + x), 1{1} = {1}, −1{1}, x{1} = {k + (1 + k)x|k ∈ Z}, −x{1} = {k − (1 − k)x|k ∈ Z},
1 + x{1} = {1 + kx|k ∈ Z}, −1 − x{1} = {−1 + kx|k ∈ Z}, 1 + 2x{1} = {1 + 2x} and −1 − 2x{1} = {−1 − 2x}.

Corollary 3.5. U(Z[x]/(x2 + x)) = {1,−1, 1 + 2x,−1 − 2x}.
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Proof. By Lemma 2.10 (1), U(Z[x]/(x2 + x)) ⊆ (Z[x]/(x2 + x))re1, and one can easily prove that the element 0
is not invertible, and 1−1 = 1, −1−1 = −1, (1 + 2x)−1 = 1 + 2x and (−1 − 2x)−1 = −1 − 2x. Now, it remains to
show that x,−x, 1 + x,−1 − x < U(Z[x]/(x2 + x)). In fact, for any a = a1 + a2 ∈ Z[x]/(x2 + x), a1, a2 ∈ Z,

xa = x(a1 + a2x)

= a1x + a2x2

= (a1 − a2)x
, 1,

and

(1 + x)a = (1 + x)(a1 + a2x)

= a1 + a2x + a1x + a2x2

= a1 + a1x
= a1(1 + x)
, 1.

Hence x, 1 + x < U(Z[x]/(x2 + x)). Similarly, one can prove that −x,−1 − x < U(Z[x]/(x2 + x)).

Proposition 3.6. The followings hold:
(1) (Z[x]/(x2 + x))+ = {0, 1,−1, 1 + 2x,−1 − 2x}.
(2) (Z[x]/(x2 + x))# = {0, 1,−1, x,−x, 1 + x,−1 − x, 1 + 2x,−1 − 2x}.

Proof. We first show (2). Since Z[x]/(x2 + x) is commutative, (Z[x]/(x2 + x))# = (Z[x]/(x2 + x))re1. It is easy
to see that 0# = 0. By Lemma 2.10 (1), we have that for any a ∈ U(Z[x]/(x2 + x)) ⊆ (Z[x]/(x2 + x))re1, a# = a−1.
Next we consider x#, (−x)#, (1 + x)#, (−1 − x)#. First, we consider x#. By the proof of Theorem 3.4, we know
that x# has the form k + (1 + k)x, k ∈ Z. Then by a straightforward computation, we have

(k + (1 + k)x)x(k + (1 + k)x) = (kx + (1 + k)x2)(k + (1 + k)x)
= −x(k + (1 + k)x)
= −(−x)
= x.

Hence k+ (1+ k)x = x⇒ k = 0, i.e., x# = x. Similarly, one can prove that if a(−x)a = a, then a must be −x, i.e.,
(−x)# = −x. For 1 + x, we know that (1 + x)# has the form 1 + kx, k ∈ Z. By a direct computation,

(1 + kx)(1 + x)(1 + kx) = (1 + kx)2(1 + x)

= (1 + kx)2(1 + x)

= (1 + (2k − k2)x)(1 + x)

= 1 + x + (2k − k2)x + (2k − k2)x2

= 1 + x.

Hence 1+ kx = 1+ x⇒ k = 0, i.e., (1+ x)# = 1+ x. Similarly, one can check that if a(−1− x)a = a, then a must
be −1 − x, i.e., (−1 − x)# = −1 − x. Thus (2) follows.

Now we prove (1). By Lemma 2.10 (1), {1,−1, 1 + 2x,−1 − 2x} = U(Z[x]/(x2 + x)) ⊆ (Z[x]/(x2 + x))+.
It is obvious that 0+ = 0. By the proof of (2), we know that in order to prove that (Z[x]/(x2 + x))+ =
{0, 1,−1, 1 + 2x,−1 − 2x}, it is sufficient to show that (x2)∗ , x2 and ((1 + x)2)∗ , (1 + x)2. In fact,

(x2)∗ = (−x)∗ = 1 + x , −x = x2,

and
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((1 + x)2)∗ = (1 + x)∗ = −x , 1 + x = (1 + x)2.

Thus, the proof is finished.

Proposition 3.7. The following statements hold:
(1) (Z[x]/(x2 + x))EP = {0, 1,−1, 1 + 2x,−1 − 2x}.
(2) (Z[x]/(x2 + x))SEP = {0, 1,−1}.

Proof. (1) follows form Proposition 3.6. (2) follows from the fact that

(1 + 2x)+ = 1 + 2x , −1 − 2x = (1 + 2x)∗, (−1 − 2x)+ = −1 − 2x , 1 + 2x = (−1 − 2x)∗.

Corollary 3.8. Z[x]/(x2 + x) is an Abel ring.

Proof. It follows the fact that Z[x]/(x2 + x) is commutative and Lemma 2.10 (4).

Let R be a ring with unit 1 and

T(e)
2 (R) =

{
(

a b
0 a )|a, b ∈ R

}
,

where e ∈ E(R). For any

A =
(

a1 a2
0 a1

)
, B =

(
b1 b2
0 b1

)
∈ T(e)

2 (R),

where a1, a2, b1, b2 ∈ R, define the addition and multiplication of T(e)
2 (R) respectively given by

A + B =
(

a1 + b1 a2 + b2
0 a1 + b1

)
, AB =

(
a1b1 a1b2 + a2b1 − ea2b2

0 a1b1

)
.

Then we have the following results.

Theorem 3.9. e ∈ E(R) is central if and only if T(e)
2 (R) is a ring.

Proof. “⇒” Assume that e ∈ E(R) is central, then in order to show that T(e)
2 (R) is a ring, it is sufficient to

prove that for any A,B,C ∈ T(e)
2 (R), (AB)C = A(BC),A(B + C) = AB + AC, (B + C)A = BA + CA. Assume that

A =
(

a1 a2
0 a1

)
, B =

(
b1 b2
0 b1

)
, C =

(
c1 c2
0 c1

)
,

then by a straightforward computation, we have

(AB)C =
(

a1b1 a1b2 + a2b1 − ea2b2
0 a1b1

) (
c1 c2
0 c1

)
=

(
a1b1c1 a1b1c2 + (a1b2 + a2b1 − ea2b2)c1 − e(a1b2 + a2b1 − ea2b2)c2

0 a1b1c1

)
=

(
a1b1c1 a1b1c2 + a1b2c1 + a2b1c1 − ea2b2c1 − ea1b2c2 − ea2b1c2 + e2a2b2c2

0 a1b1c1

)
=

(
a1b1c1 a1b1c2 + a1b2c1 + a2b1c1 − ea2b2c1 − ea1b2c2 − ea2b1c2 + ea2b2c2

0 a1b1c1

)
,

(6)
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A(BC) =
(

a1 a2
0 a1

) (
b1c1 b1c2 + b2c1 − eb2c2

0 b1c1

)
=

(
a1b1c1 a1(b1c2 + b2c1 − eb2c2) + a2b1c1 − ea2(b1c2 + b2c1 − eb2c2)

0 a1b1c1

)
=

(
a1b1c1 a1b1c2 + a1b2c1 − ea1b2c2 + a2b1c1 − ea2b1c2 − ea2b2c1 + e2a2b2c2

0 a1b1c1

)
=

(
a1b1c1 a1b1c2 + a1b2c1 + a2b1c1 − ea2b2c1 − ea1b2c2 − ea2b1c2 + ea2b2c2

0 a1b1c1

)
,

(7)

A(B + C) =
(

a1 a2
0 a1

) (
b1 + c1 b2 + c2

0 b1 + c1

)
=

(
a1(b1 + c1) a1(b2 + c2) + a2(b1 + c1) − ea2(b2 + c2)

0 a1(b1 + c1)

)
=

(
a1b1 + a1c1 a1b2 + a1c2 + a2b1 + a2c1 − ea2b2 − ea2c2

0 a1b1 + a1c1

)
,

(8)

AB + AC =
(

a1b1 a1b2 + a2b1 − ea2b2
0 a1b1

)
+

(
a1c1 a1c2 + a2c1 − ea2c2

0 a1c1

)
=

(
a1b1 + a1c1 a1b2 + a1c2 + a2b1 + a2c1 − ea2b2 − ea2c2

0 a1b1 + a1c1

)
,

(9)

(B + C)A =
(

b1 + c1 b2 + c2
0 b1 + c1

) (
a1 a2
0 a1

)
=

(
(b1 + c1)a1 (b1 + c1)a2 + (b2 + c2)a1 − e(b2 + c2)a2

0 (b1 + c1)a1

)
=

(
b1a1 + c1a1 b1a2 + c1a2 + b2a1 + c2a1 − eb2a2 − ec2a2

0 b1a1 + c1a1

)
,

(10)

and

BA + CA =
(

b1a1 b1a2 + b2a1 − eb2a2
0 b1a1

)
+

(
c1a1 c1a2 + c2a1 − ec2a2

0 c1a1

)
=

(
b1a1 + c1a1 b1a2 + c1a2 + b2a1 + c2a1 − eb2a2 − ec2a2

0 b1a1 + c1a1

)
.

(11)

Then (AB)C = A(BC) by (6) and (7), A(B+C) = AB+AC by (8) and (9), (B+C)A = BA+CA by (10) and (11).
Hence T(e)

2 (R) is a ring.
“⇐” Assume that T(e)

2 (R) is a ring, then for any a ∈ R, let

A =
(

a 1
0 a

)
, B =

(
1 1
0 1

)
, C =

(
0 1
0 0

)
∈ T(e)

2 (R).

Then (AB)C = A(BC), that is(
0 a − ea
0 0

)
=

(
0 a − ae
0 0

)
.

Hence a − ea = a − ae, it follows that ae = ea. Hence e is central.
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Theorem 3.10. R is an Abel ring if and only if for each e ∈ E(R), T(e)
2 (R) is a ring.

Proof. It follows from Theorem 3.9.

Now let
(

a b
0 a

)
∈ T(e)

2 (R). Define

(
a b
0 a

)∗
=

(
a (−1 + 2e)b
0 a

)
, (12)

where a, b ∈ R. Then we have the following.

Theorem 3.11. Let R be a commutative ring and e ∈ E(R). Then T(e)
2 (R) is a ∗-ring, where ∗ is defined as in (12).

Proof. Assume that

A =
(

a1 a2
0 a1

)
, B =

(
b1 b2
0 b1

)
∈ T(e)

2 (R),

then by a straightforward computation, we have

(A∗)∗ =
(

a1 (−1 + 2e)a2
0 a1

)∗
=

(
a1 (−1 + 2e)2a2
0 a1

)
=

(
a1 a2
0 a1

)
= A,

(A + B)∗ =
(

a1 + b1 a2 + b2
0 a1 + b1

)∗
=

(
a1 + b1 (−1 + 2e)(a2 + b2)

0 a1 + b1

)
=

(
a1 (−1 + 2e)a2
0 a1

)
+

(
b1 (−1 + 2e)b2
0 b1

)
=

(
a1 a2
0 a1

)∗
+

(
b1 b2
0 b1

)∗
= A∗ + B∗,

(AB)∗ =
(

a1b1 a1b2 + a2b1 − ea2b2
0 a1b1

)∗
=

(
a1b1 (−1 + 2e)(a1b2 + a2b1 − ea2b2)

0 a1b1

)
=

(
a1b1 (−1 + 2e)(a1b2 + a2b1) − ea2b2

0 a1b1

)
,
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and

B∗A∗ =
(

b1 (−1 + 2e)b2
0 b1

) (
a1 (−1 + 2e)a2
0 a1

)
=

(
b1a1 b1(−1 + 2e)a2 + (−1 + 2e)b2a1 − e(−1 + 2e)2a2b2

0 b1a1

)
=

(
a1b1 (−1 + 2e)(a1b2 + a2b1) − ea2b2

0 a1b1

)
.

Thus, by (1), T(e)
2 (R) is a ∗-ring.

Theorem 3.12. Z[x]/(x2 + x) � T(1)
2 (Z).

Proof. Consider the map f : Z[x]/(x2 + x)→ T(1)
2 (Z),

1 7→
(

1 0
0 1

)
, x 7→

(
0 1
0 0

)
,

i.e.,

a1 + a2x 7→
(

a1 a2
0 a1

)
,

where a1, a2 ∈ Z. Then for any a1 + a2x, b1 + b2x ∈ Z[x]/(x2 + x), we have

f (a1 + a2x + b1 + b2x) = f (a1 + b1 + (a2 + b2)x)

=

(
a1 + b1 a2 + b2

0 a1 + b1

)
=

(
a1 a2
0 a1

)
+

(
b1 b2
0 b1

)
= f (a1 + a2x) + f (b1 + b2x),

and

f ((a1 + a2x)(b1 + b2x)) = f (a1b1 + (a1b2 + a2b1 − a2b2)x)

=

(
a1b1 a1b2 + a2b1 − a2b2

0 a1b1

)
=

(
a1 a2
0 a1

) (
b1 b2
0 b1

)
= f (a1 + a2x) f (b1 + b2x).

Thus, f is a ring homomorphism. It is easy to see that f is injective and surjective. This completes the
proof.
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