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Abstract. When performing important calculations in a finite topological space (FTS), matrix calculation
methods are more accurate and convenient than traditional methods. However, even when dealing with
relatively small subsets involved in the calculations, all elements of the entire space are necessary. This
leads to significant time and space waste in practical applications. Therefore, we introduce a modular
calculation method as a crucial improvement.

Our motivation is as follows: the topological space being processed is divided into modules, ensuring
that when any subset is involved in the calculations, only relevant modules are considered instead of the
entire space, while ensuring the same result. In addition, the subsets are further divided into smaller
subsets within the relevant modules for calculation, greatly reducing the calculation scope and improving
the computational efficiency and accuracy. Based on the modularization of the topological space, we
propose a modular matrix calculation method and conduct a detailed study of it. Finally, we provide some
examples to demonstrate the modular calculation method and modular matrix calculation method.

1. Introduction

The finite topological spaces (i.e., the topological spaces for which the underlying set is finite) have many
practical applications in various fields such as physics, graph theory, big data theory, etc. Characterizing
the interior, closure or boundary of a set is the main calculations in a topological space.

In reference[5], an ideal matrix calculation method has been introduced to compute the Kuratowski 14
sets of a given set in a finite topological space. The matrix method is more accurate and efficient because it
does not need logical analysis of related concepts, and thus it can be easily executed by computer programs.
However, all elements of the whole space X must be needed to apply this method, even if the subset of X that
is involved in calculations is very small, and this results in a huge waste of time and space in applications.
So we propose the modular calculation method and the modular matrix calculation method for finite the
topological spaces in this paper.

The first step is to modularize the topological space. Then, for a given subset involved in calculations, it
is unnecessary to consider the whole space but the related modules, and we need only to divide the subset
into smaller subsets within the related modules to perform the necessary calculations. Thus the advantages
of modularization are to narrow down the scope of involvement and guarantee the same results. Based on
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the modularization of the topological space, a module matrix calculation method is studied in detail, and
some examples are given to illustrate those calculation methods.

This paper is arranged as follows. Some basic knowledge is given in Section 2. In Section 3, the modular
method is formulated to calculate the Kuratowski 14 sets, and in Section 4, the modular matrix method is
proposed to further explore the Kuratowski 14 sets. We conclude the paper in Section 5.

2. Preliminaries

Before going further, we first recall some basic knowledge that will be used in the following sections.
Throughout this paper, finite topological space will be abbreviated as FTS for convenience.

Definition 2.1. [1, 2] Let (T, τ) be a topological space.

(1) If a collection θ ⊂ τ satisfies

∀t ∈ T,∀U ∈ τ[t ∈ U]⇒ ∃V ∈ θ[t ∈ V ⊂ U],

then θ is called a base for the topology τ.
(2) If a collection ϑ ⊂ τ satisfies that the family {A1 ∩ A2 · · · ∩ An : Ai ∈ ϑ, i = 1, 2, · · · ,n, n = 1, 2, · · · } is a

base for τ, then ϑ is called a subbase for the topology τ.

The next proposition is obvious.

Proposition 2.2. Let (T, τ) be an FTS and N(t) be the intersection of all open subsets of T containing t for each
t ∈ T, then N(t) is the smallest open set containing t and {N(t) : t ∈ T} is a base for the topology τ.

Definition 2.3. [3, 4] For each subset Y of a finite set T = {t1, t2, · · · , tn}, the characteristic vector of Y is
defined as ϕY = (y1, y2, · · · , yn)T, where

yi =

{
1, ti ∈ Y
0, ti < Y , i = 1, 2, · · · ,n,

and the vector (y1, y2, · · · , yn)T is the transpose of the vector (y1, y2, · · · , yn).

According to this proposition, we give the following definition.

Definition 2.4. [5] Let (T, τ) be an FTS, where T = {t1, t2, · · · , tn}. The n × n Boolean matrix B is called the
base matrix for the topology τ, if for each i = 1, 2, · · · ,n, the transpose of ith row of B is the characteristic
vector ϕN(ti) of N(ti).

Proposition 2.5. [5] Let (T, τ) be an FTS, where T = {t1, t2, · · · , tn}, and B = (bi j)n×n be the base matrix for τ. Then
the ith column of B is the characteristic vector ϕ

{ti}
for i = 1, 2, · · · ,n.

Definition 2.6. Let (T, τ) be an FTS, where T = {t1, t2, · · · , tn}, and ϑ = {A1,A2, · · · ,Ak} be a subbase for the
topology τ. Then the Boolean matrix D = (di j)n×k is called a matrix representation for ϑ if

di j =

{
1, ti ∈ A j
0, ti < A j

,

for i = 1, 2, · · · ,n and j = 1, 2, · · · , k.

Definition 2.7. [3, 4] The products P = (pi j)n×m = E · F, and Q = (qi j)n×m = E ∗ F of two Boolean matrices
E = (eik)n×k and F = ( fkj)k×m are defined as follows:

pi j = ∨
k
l=1( eil ∧ fl j ), qi j = ∧

k
l=1[(1 − eil) ∨ fl j]

for i = 1, 2, · · · ,n and j = 1, 2, · · · ,m, where the symbol ′∧′ denotes the operation ′min′ and the symbol ′∨′

denotes the operation ′max′, respectively.
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Proposition 2.8. [5] Let (T, τ) be an FTS, where T = {t1, t2, · · · , tn}. If ϑ = {A1,A2, · · · ,Ak} is a subbase for the
topology τ and D is a matrix representation for ϑ, then D ∗DT is a base matrix of the topology τ.

Proposition 2.9. [5] Suppose that (T, τ) and B are the same as those of Definition 2.4. Then for each subset Y ⊂ T,
the interior Y◦ and closure Y of Y can be computed as:

ϕY◦ = B ∗ ϕY, ϕY = B · ϕY.

Theorem 2.10. [1, 5] If Y is a subset of a topological space (T, τ), then performing any combination of the three
operations of complement (denoted by ”c”), closure (denoted by ”-”), and interior (denoted by ”◦”) on Y in any order
and any number of times results in at most 14 distinct sets. These 14 sets are known as the Kuratowski 14 sets, and
are given as follows:

Y, Yc, Y◦, Y◦c, Y◦, Y◦
c
, Y◦

◦

, Y◦
◦c
, Y, Y

c
, Y

◦

, Y
◦c
, Y

◦

, Y
◦

c
.

Moreover, if (T, τ) is an FTS, ϑ = {A1,A2, · · · ,Ak} is a subbase for the topology τ, D is the matrix representation
for ϑ and B = D ∗DT, then the Kuratowski 14 sets of a subset Y can be computed as follows:

ϕY, ϕY◦c = −B ∗ ϕY, ϕ
Y
◦ = B · [B ∗ (B · ϕY)],

χYc = −ϕY, ϕY
◦ = B ∗ (B · ϕY), ϕ

Y
◦

c = −B · [B ∗ (B · ϕY)],
ϕY = B · ϕY, ϕY

◦c = −B ∗ (B · ϕY), ϕY◦
◦ = B ∗ [B · (B ∗ ϕY)],

ϕY
c = −B · ϕY, ϕY◦ = B · (B ∗ ϕY), ϕY◦

◦c = −B ∗ [B · (B ∗ ϕY)],
ϕY◦ = B ∗ ϕY, ϕY◦

c = −B · (B ∗ ϕY),

where −B = (1 − bi j)n×n for B = (bi j)n×n.

According to Theorem 2.10, one can divide the above 14 sets into 7 pairs:

(Y,Yc), (Y◦, Y◦c), (Y◦, Y◦
c
), (Y◦

◦

, Y◦
◦c

), (Y, Y
c
), (Y

◦

, Y
◦c

), (Y
◦

, Y
◦

c
).

The two sets of each pair are complementary.

3. Modularity of finite topological spaces

Definition 3.1. [1] Let (T, τ) be a topological space and A and B be two subsets of T. If A ∩ B = ∅ and
B∩A = ∅, then A and B are called separated. If a subset C of T is not the union of two non-empty separated
subsets, then C is called a connected subset of T. A maximal connected subset of T is called a component
of T.

Proposition 3.2. [1] Let (T, τ) be a topological space. Then

(1) the closure of a connected subset of T is also connected;
(2) for a family of connected subsets {Aλ : λ ∈ Λ} of T in which no two members are separated, their union ∪λ∈ΛAλ

is also connected;
(3) each component is closed and every two distinct components are separated.

Based on this, we can easily obtain the following results in an FTS (T, τ). First of all, we specify some
terminologies. For each t ∈ T, M(t) denotes {t}. For each A ⊂ T, N(A) is the smallest open set containing
A and M(A) is the smallest closed set containing A. One can easily check that N(A) and M(A) can be
formulated by the following formulas respectively.

N(A) = {y : ∃t ∈ A, y ∈ N(t)} =
⋃
t∈A

N(t), M(A) = {y : ∃t ∈ A, y ∈M(t)} =
⋃
t∈A

M(t).
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Proposition 3.3. Let (T, τ) be an FTS. Then

(1) there are finite many components;
(2) a subset of T is a component if and only if it is both open and closed;
(3) for each t ∈ T, both N(t) and M(t) are connected subsets;
(4) for each t ∈ T, the family F (t) defined by

{N(t), M(t), N(M(t)), M(N(t)), N(M(N(t))), M(N(M(t))), · · · }

contains only finite many different elements. Morover, each element of F (t) is connected.
(5) if Y is a component and t ∈ Y, then each element of F (t) is contained in Y.

Proposition 3.4. Let (T, τ) be an FTS. Then for each t ∈ T, the maximal element in F (t) is a component. In other
words, there exists a component A ∈ F (t) such that A = N(A) =M(A).

Theorem 3.5. Let (T, τ) be an FTS. If T1,T2, · · · ,Tk are all disjoint non-empty components, then for each Y ⊂ T, we
have the modularized computations as follows

Y◦ = (Y ∩ T1)◦ ∪ (Y ∩ T2)◦ ∪ · · · (Y ∩ Tk)◦, Y = Y ∩ T1 ∪ Y ∩ T2 ∪ · · ·Y ∩ Tk.

Proof. Because Ti is both open and closed, all Y◦ ∩ Ti, i = 1, 2, · · · , k are open, and thus Y◦ ∩ Ti is the biggest
open subset contained in Y ∩ Ti, so it is equal to (Y ∩ Ti)◦. Hence,

Y◦ = ∪k
i=1(Y◦ ∩ Ti) = ∪k

i=1(Y ∩ Ti)◦.

Similarly, all Y ∩ Ti, i = 1, 2, · · · , k are closed, and thus Y ∩ Ti is the smallest closed subset containing Y ∩ Ti,
so it is equal to Y ∩ Ti. Hence,

Y = ∪k
i=1(Y ∩ Ti) = ∪k

i=1Y ∩ Ti.

The proof is completed.

Remark 3.6. In fact, if some T j in Theorem 3.5 is replaced by several components whose union is T j, then
Theorem 3.5 is also correct. But we hope each T j is small enough, so in this paper, we use the case of that
all T j (1 ≤ j ≤ k) are components which constitute a partition of T. Thus T is modularized.

If X is a subspace of T and X is not a component of T, then for any subset Y ⊂ X, the interior of Y in the
subspace X generally does not equal the interior of Y in T. Dually, the closure of Y in X generally does not
equal the closure of Y in T. Please see the following example.

Example 3.7. Let (T, τ) be an FTS with a subbase ϑ for the topology τ, where T = {t1, t2, · · · , t26} and ϑ is
given by 

{t1, t8}, {t8}, {t10}, {t3, t10}, {t16}, {t10}, {t5, t20}, {t2, t4},
{t12, t15}, {t13, t15}, {t7, t11}, {t11}{t2}, {t13}, {t6, t21}, {t21},
{t22, t23}, {t25, t26}, {t26}, {t9, t14, t16}, {t2, t4, t12, t13, t15, t18},
{t7, t9, t11, t14, t16, t19}, {t6, t21, t22, t23, t24, t25, t26}, {t1, t3, t5, t8, t10, t17, t20}.


The smallest open sets are enumerated as follows:

N(t1) = {t1, t8}, N(t2) = {t2}, N(t3) = {t3, t10}, N(t4) = {t2, t4},
N(t5) = {t5, t20}, N(t6) = {t6, t21}, N(t7) = {t7, t11}, N(t8) = {t8},
N(t9) = {t9, t14, t16}, N(t10) = {t10}, N(t11) = {t11}, N(t12) = {t12, t15},
N(t13) = {t13}, N(t14) = {t9, t14, t16}, N(t15) = {t15}, N(t16)) = {t16},

N(t17) = {t1, t3, t5, t8, t10, t17, t20}, N(t18) = {t2, t4, t12, t13, t15, t18},
N(t19) = {t7, t9, t11, t14, t16, t19}, N(t20) = {t5, t20},
N(t21) = {t21}, N(t22) = {t22, t23},
N(t23) = {t22, t23}, N(t24) = {t6, t21, t22, t23, t24, t25, t26},
N(t25) = {t25, t26}, N(t26) = {t26}.
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For the subspace T1 = {t1, t3, t5, t8, t10, t17, t20} and X = {t1, t2, t3, t4, t5, t6, t7, t8, t9} of T, we consider a subset
Y = {t3, t5, t8}. The interiors and closures of Y in subspaces T1 and X are respectively enumerated as follows:

(Y|T1 )◦ = {t8} = Y◦, Y|T1 = {t1, t3, t5, t8, t17, t20} = Y,
(Y|X)◦ = {t3, t5, t8} , Y◦, Y|X = {t1, t3, t5, t8} , Y.

Here we can obtain the modular computations of Kuratowski 14 sets.

Theorem 3.8. Let (T, τ) be an FTS and {Ti : i = 1, 2, · · · , k} be all the components of T. Then the Kuratowski 14 sets
of Y can be computed by the modularization technique:

Y = ∪k
i=1(Y ∩ Ti), Y◦ = ∪k

i=1(Y ∩ Ti)◦, Y◦ = ∪k
i=1(Y ∩ Ti)◦,

Y◦
◦

= ∪k
i=1(Y ∩ Ti)◦

◦

, Y = ∪k
i=1Y ∩ Ti, Y

◦

= ∪k
i=1Y ∩ Ti

◦

,

Y
◦

= ∪k
i=1Y ∩ Ti

◦

, Yc = ∪k
i=1(Ti − Y ∩ Ti), Y◦c = ∪k

i=1(Ti − (Y ∩ Ti)◦),
Y◦

c
= ∪k

i=1(Ti − (Y ∩ Ti)◦), Y◦
◦c
= ∪k

i=1(Ti − (Y ∩ Ti)◦
◦

), Y
c
= ∪k

i=1(Ti − Y ∩ Ti),

Y
◦c
= ∪k

i=1(Ti − Y ∩ Ti
◦

), Y
◦

c
= ∪k

i=1(Ti − Y ∩ Ti
◦

).

If we compute the Kuratowski 14 sets of a subset Y of an FTS (T, τ), we only need to consider components
which intersect with Y instead of the whole space T. On this basis, Y is partitioned into disjoint parts within
related components to compute separately. When the subset Y is very small relative to whole T, this
method greatly reduces the range involved. So the modular method is relatively simpler, more efficient
and accurate.

Definition 3.9. In an FTS (T, τ), if the order of all elements is fixed as T = {t1, t2, · · · , tn}, and if Y is a subset
of T, then the first element of Y is denoted by fs(Y), i.e.,

fs(Y) = tk, k = min{i : ti ∈ Y}.

In the following, an algorithm for modularizing a topological space is proposed.

Algorithm 1: Modularity of the finite topological space
Input: T = {t1, t2, · · · , tn}

1 Let Y = T, i = 1;
2 while Y , ∅ do
3 A = N( fs(Y)), B =M(A);
4 while B , A do
5 A = N(B), B =M(A) and return to step 4;
6 end

Output: Ti = B;
7 Update: Y = Y − Ti, i = i + 1 and return to step 2;
8 end

Output: all modules {Ti} of T.

The following example demonstrates the process of modularizing a topological space using this algo-
rithm.

Example 3.10. Let (T, τ) be the topological space defined in Example 3.7. In the following, we show how
to modularize the topological space T in accordance with Algorithm 1.

• Input: T = {ti : 1 ≤ i ≤ 26} and let Y = T, i = 1.
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Since Y , ∅ and fs(Y) = t1, we set

A = N( fs(Y)) = N(t1) = {t1, t8}, B =M(A) = {t1, t8, t17}.

Since B , A, update:

A = N(B) = {t1, t3, t5, t8, t10, t17, t20}, B =M(A) = {t1, t3, t5, t8, t10, t17, t20}.

∗ There is A = B, then output: T1 = {t1, t3, t5, t8, t10, t17, t20}.

• Then update: i = 2,

Y = Y − T1 = {t2, t4, t6, t7, t9, t11, t12, t13, t14, t15, t16, t18, t19, t21, t22, t23, t24, t25, t26}.

Since Y , ∅ and fs(Y) = t2, let A = N({t2}) = {t2}, B =M(A) = {t2, t4, t18}.
Since B , A, update:

A = N(B) = {t2, t4, t12, t13, t15, t18}, B =M(A) = {t2, t4, t12, t13, t15, t18}.

∗ Since A = B, output: T2 = {t2, t4, t12, t13, t15, t18}.

• Update: i = 3, Y = Y − T2 = {t6, t7, t9, t11, t14, t16, t19, t21, t22, t23, t24, t25, t26}.
Because Y , ∅ and fs(Y) = t6, we set

A = N(t6) = {t6, t21}, B =M(A) = {t6, t21, t24}.

Since B , A, update:

A = N(B) = {t6, t21, t22, t23, t24, t25, t26}, B =M(A) = {t6, t21, t22, t23, t24, t25, t26}.

∗ Since A = B, output: T3 = {t6, t21, t22, t23, t24, t25, t26}.

• Update: i = 4, Y = Y − T3 = {t7, t9, t11, t14, t16, t19}.
Since Y , ∅ and fs(Y) = t7, let A = N({t7}) = {t7, t11}, B =M(A) = {t7, t11, t19}.
Since B , A, update:

A = N(B) = {t7, t9, t11, t14, t16, t19}, B =M(A) = {t7, t9, t11, t14, t16, t19}.

∗ Since A = B, output: T4 = {t7, t9, t11, t14, t16, t19}.

∗∗ Update: Y = Y − T4, and since Y = ∅, stop and output: all modules {T1,T2,T3,T4}.

The following example demonstrates the modular method of computing Kuratowski 14 sets.

Example 3.11. Let (T, τ) be the topological space defined in Example 3.10. Then all modules of T are

T1 = {t1, t3, t5, t8, t10, t17, t20}, T2 = {t2, t4, t12, t13, t15, t18},
T3 = {t6, t21, t22, t23, t24, t25, t26}, T4 = {t7, t9, t11, t14, t16, t19}.

For a subset Y = {t2, t3, t5, t8, t12}, we enumerate all the Kuratowski 14 sets of Y as follows. Since Y ∩ T3 =
Y ∩ T4 = ∅, we need only to consider the modules T1 and T2. As Y ∩ T1 = {t3, t5, t8}, Y ∩ T2 = {t2, t12}, we
have that
Y = (Y ∩ T1) ∪ (Y ∩ T2) = {t3, t5, t8} ∩ {t2, t12} = {t2, t3, t5, t8, t12},
Y◦ = (Y ∩ T1)◦ ∪ (Y ∩ T2)◦ = {t8} ∪ {t2} = {t2, t8},
Y◦ = (Y ∩ T1)◦ ∪ (Y ∩ T2)◦ = {t1, t8, t17} ∪ {t2, t4, t18} = {t1, t2, t4, t8, t17, t18},

Y◦
◦

= (Y ∩ T1)◦
◦

∪ (Y ∩ T2)◦
◦

= {t1, t8} ∪ {t2, t4} = {t1, t2, t4, t8},
Y = Y ∩ T1 ∪ Y ∩ T2 = {t1, t3, t5, t8, t17, t20} ∪ {t2, t4, t12, t18} = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20},
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Y
◦

= Y ∩ T1
◦

∪ Y ∩ T2
◦

= {t1, t5, t8, t20} ∪ {t2, t4} = {t1, t2, t4, t5, t8, t20},

Y
◦

= Y ∩ T1
◦

∪ Y ∩ T2
◦

= {t1, t5, t8, t17, t20} ∪ {t2, t4, t18} = {t1, t2, t4, t5, t8, t17, t18, t20},
Yc = ∪4

i=1(Ti − Y ∩ Ti) = {t1, t4, t6, t7, t9, t10, t11, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23,t24, t25, t26},
Y◦c = ∪4

i=1(Ti − (Y ∩ Ti)◦)
= {t1, t3, t4, t5, t6, t7, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26},

Y◦
c
= ∪4

i=1(Ti − (Y ∩ Ti)◦) = {t3, t5, t6, t7, t9, t10, t11, t12, t13, t14, t15, t16, t19, t20, t21, t22, t23, t24, t25, t26},

Y◦
◦c
= ∪4

i=1(Ti − (Y ∩ Ti)◦
◦

)
= {t3, t5, t6, t7, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26},

Y
c
= ∪4

i=1(Ti − Y ∩ Ti) = {t6, t7, t9, t10, t11, t13, t14, t15, t16, t19, t21, t22, t23, t24, t25, t26},

Y
◦c
= ∪k

i=1(Ti − Y ∩ Ti
◦

) = {t3, t6, t7, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t21, t22, t23, t24, t25, t26},

Y
◦

c
= ∪k

i=1(Ti − Y ∩ Ti
◦

) = {t3, t6, t7, t9, t10, t11, t12, t13, t14, t15, t16, t19, t21, t22, t23, t24, t25, t26}.

4. The modular matrix computation method

The matrix method for computing the Kuratowski 14 sets in Theorem 3.8 was proved in paper [5], which
is simpler and more efficient than the traditional way because it does not need logical analysis. However,
when the space is very large, the orders of corresponding matrices will also be very large, and a great
number of calculations will lead to the waste of time and space. If the matrix can be divided into smaller
matrices for computations, then time and space will be saved to a greater extent, and accuracy will be
improved. Therefore, we will explore the modular matrix computation method.

Definition 4.1. Let (T, τ) be an FTS in which the order of elements is given as T = {t1, t2, · · · , tn}, and
Ti (1 ≤ i ≤ k) be all components of T where Ti = {ti1 , ti2 , · · · , tiki

} (ki = |Ti|) and the order of elements in Ti is
the same as that in T. Then the characteristic vector of a subset Y ⊂ Ti is defined as

ϕi(Y) = (a1, a2, · · · , aki )
T,

where

a j =

{
1, ti j ∈ Y
0, ti j < Y , j = 1, 2, · · · , ki.

It is evident that the set Y can be uniquely determined by its characteristic vector ϕi(Y). In fact, Y = {ti j :
a j = 1}. Thus, the inverse map of ϕi is defined as (ϕi)−1[(a1, a2, · · · , aki )

T] = Y for i = 1, 2, · · · , k.
For each i = 1, 2, · · · , k, the modular base matrix Bi are defined as follows:

the jth row α j of Bi is α j = (ϕi(N(ti j )))
T, j = 1, 2, · · · , ki.

The next proposition follows directly from this definition and Proposition 3.3.

Proposition 4.2. Suppose that (T, τ) and Ti (1 ≤ i ≤ k) are the same as those of Definition 4.1, and Bi =
(β1, β2, · · · , βki ) for i = 1, 2, · · · , k. Then

(ϕi)−1[β j] = {ti j }, j = 1, 2, · · · , ki, i = 1, 2, · · · , k.

We then give an Algorithm 2 based on the modular matrices to compute the 14 sets of a subset Y in a
topological space (T, τ).

Then we use Algorithm 2 to compute the 14 sets of a subset.

Example 4.3. Let (T, τ) be the same as that of Example 3.11. For a subset Y = {t2, t3, t5, t8, t12}, we use
Algorithm 2 to compute the Kuratowski 14 sets of Y.

Input Y and k = 4 and all modules {T1,T2,T3,T4} of T, where

T1 = {t1, t3, t5, t8, t10, t17, t20}, T2 = {t2, t4, t12, t13, t15, t18},
T3 = {t6, t21, t22, t23, t24, t25, t26}, T4 = {t7, t9, t11, t14, t16, t19}.
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Algorithm 2: Modular matrix computations of Kuratowski 14 sets
Input: Y,T

1 Use Algorithm 1 Output: T1,T2, · · · ,Tk
2 Use Definition 8 Output: B1,B2, · · · ,Bk
3 Let i = 1;
4 while i , (k + 1) do
5 Yi = Y ∩ Ti;
6 if Yi , ∅ then

Output: αi
1 = ϕ

i(Yi), αi
2 = Bi ∗ ϕi(Yi), αi

3 = Bi · (Bi ∗ ϕi(Yi)), αi
4 = Bi ∗ [Bi · (Bi ∗ ϕi(Yi))],

αi
5 = Bi · ϕi(Yi), αi

6 = Bi ∗ (Bi · ϕi(Yi)), αi
7 = Bi · [Bi ∗ (Bi · ϕi(Yi))].

7 Update: i = i + 1, and return to step 4.
8 else
9 i = i + 1, and return to step 4.

10 end
11 end
12 Let j = 1, i = 1, X = ∅;
13 while j , 8, i , (k + 1) do
14 Yi( j) = (ϕi)−1[αi

j];
15 Update: Y( j) = X ∪ Yi( j), X = Y( j), i = i + 1 and return to step 13;

Output: Y( j), T − Y( j)
16 Update: j = j + 1, and return to step 13.
17 end

Output: Kuratowski 14 sets Y( j), Y( j + 7) = T − Y( j) ( j = 1, 2, · · · , 7) of Y.

Obviously, the modular matrices of modules are

B1 =



1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 1 1 1 1 1 1
0 0 1 0 0 0 1


, B2 =



1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 1 0
1 1 1 1 1 1


,

B3 =



1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
1 1 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1


, B4 =



1 0 1 0 0 0
0 1 0 1 1 0
0 0 1 0 0 0
0 1 0 1 1 0
0 0 0 0 1 0
1 1 1 1 1 1


.

i = 1. Since i , 5, let Y1 = Y ∩ T1 = {t3, t5, x8}. We have Y1 , ∅, then output:

α1
1 = ϕ

1(Y1) = (0, 1, 1, 1, 0, 0, 0, 0)T, α1
3 = B1 · (B1 ∗ ϕ1(Y1)) = (1, 0, 0, 1, 0, 1, 0)T,

α1
2 = B1 ∗ ϕ1(Y1) = (0, 0, 0, 1, 0, 0, 0)T, α1

4 = B1 ∗ [B1 · (B1 ∗ ϕ1(Y1))] = (1, 0, 0, 1, 0, 0, 0)T,
α1

5 = B1 · ϕ1(Y1) = (1, 1, 1, 1, 0, 1, 1)T, α1
6 = B1 ∗ (B1 · ϕ1(Y1)) = (1, 0, 1, 1, 0, 0, 1)T,
α1

7 = B1 · [B1 ∗ (B1 · ϕ1(Y1))] = (1, 0, 1, 1, 0, 1, 1)T.
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i = 2. Since i , 5, let Y2 = Y ∩ T2 = {t2, t12}. We have Y2 , ∅, then output:

α2
1 = ϕ

2(Y2) = (1, 0, 1, 0, 0, 0)T, α2
3 = B2 · (B2 ∗ ϕ2(Y2)) = (1, 1, 0, 0, 0, 1)T,

α2
2 = B2 ∗ ϕ2(Y2) = (0, 1, 0, 0, 0, 0)T, α2

4 = B2 ∗ [B2 · (B2 ∗ ϕ2(Y2))] = (1, 1, 0, 0, 0, 0)T,
α2

5 = B2 · ϕ2(Y2) = (1, 1, 1, 0, 1, 1)T, α2
6 = B2 ∗ (B2 · ϕ2(Y2)) = (1, 1, 1, 0, 0, 1)T

α2
7 = B2 · [B2 ∗ (B2 · ϕ2(Y2))] = (1, 1, 1, 0, 1, 1)T.

i = 3. Since i , 5, let Y3 = Y ∩ T3 = ∅.
i = 4. Since i , 5, let Y4 = Y ∩ T4 = ∅.
i = 5, end.

Let j = 1, i = 1,X = ∅.

Since j , 8, i , 5, Y1(1) = (ϕ1)−1[α1
1] = {t3, t5, t8},

Update: Y(1) = X ∪ Y1(1) = {t3, t5, t8}, X = {t3, t5, t8}.

i = 2. Since i , 5, Y2(1) = (ϕ2)−1[α2
1] = {t2, t12},

Update: Y(1) = X ∪ Y2(1) = {t2, t3, t5, t8, t12},X = {t2, t3, t5, t8, t12}.

i = 3. Since i , 5, Y3(1) = (ϕ3)−1[α3
1] = ∅,

Update: Y(1) = X ∪ Y3(1) = {t2, t3, t5, t8, t12},X = {t2, t3, t5, t8, t12}.

i = 4. Since i , 5, Y4(1) = (ϕ4)−1[α4
1] = ∅,

Update: Y(1) = X ∪ Y4(1) = {t2, t3, t5, t8, t12},X = {t2, t3, t5, t8, t12}.

i = 5, end.

j = 2, i = 1. Since j , 8, i , 5, Y1(2) = (ϕ2)−1[α1
2] = {t8},

Update: Y(2) = X ∪ Y1(2) = {t8}, X = {t8}.

i = 2. Since i , 5, Y2(2) = (ϕ2)−1[α2
2] = {t2},

Update: Y(2) = X ∪ Y2(2) = {t2, t8}, X = {t2, t8}.

i = 3. Since i , 5, Y3(2) = (ϕ3)−1[α3
2] = ∅,

Update: Y(2) = X ∪ Y3(2) = {t2, t8}, X = {t2, t8}.

i = 4. Since i , 5, Y4(2) = (ϕ4)−1[α4
2] = ∅,

Update: Y(2) = X ∪ Y4(2) = {t2, t8}, X = {t2, t8}.

i = 5, end.

j = 3, i = 1. Since j , 8, i , 5, Y1(3) = (ϕ3)−1[α1
3] = {t1, t8, t17},

Update: Y(3) = X ∪ Y1(3) = {t1, t8, t17}, X = {t1, t8, t17}.

i = 2. Since i , 5, Y2(3) = (ϕ2)−1[α2
3] = {t2, t4, t18},

Update: Y(3) = X ∪ Y2(3) = {t1, t2, t4, t8, t17, t18}, X = {t1, t2, t4, t8, t17, t18}.

i = 3. Since i , 5, Y3(3) = (ϕ3)−1[α3
3] = ∅,

Update: Y(3) = X ∪ Y3(3) = {t1, t2, t4, t8, t17, t18}, X = {t1, t2, t4, t8, t17, t18}.

i = 4. Since i , 5, Y4(3) = (ϕ4)−1[α4
3] = ∅,

Update: Y(3) = X ∪ Y4(3) = {t1, t2, t4, t8, t17, t18}, X = {t1, t2, t4, t8, t17, t18}.
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i = 5, end.

j = 4, i = 1. Since j , 8, i , 5, Y1(4) = (ϕ4)−1[α1
4] = {t1, t8},

Update : Y(4) = X ∪ Y1(4) = {t1, t8}, X = {t1, t8}.

i = 2. Since i , 5, Y2(4) = (ϕ2)−1[α2
4] = {t2, t4},

Update: Y(4) = X ∪ Y2(4) = {t1, t2, t4, t8}, X = {t1, t2, t4, t8}.

i = 3. Sincei , 5, Y3(4) = (ϕ3)−1[α3
4] = ∅,

Update: Y(4) = X ∪ Y3(4) = {t1, t2, t4, t8}, X = {t1, t2, t4, t8}.

i = 4. Since i , 5, Y4(4) = (ϕ4)−1[α4
4] = ∅,

Update: Y(4) = X ∪ Y4(4) = {t1, t2, t4, t8}, X = {t1, t2, t4, t8}.

i = 5, end.

j = 5, i = 1. Since j , 8, i , 5, Y1(5) = (ϕ5)−1[α1
5] = {t1, t3, t5, t8, t17, t20},

Update : Y(5) = X ∪ Y1(5) = {t1, t3, t5, t8, t17, t20}, X = {t1, t3, t5, t8, t17, t20}.

i = 2. Since i , 5, Y2(5) = (ϕ2)−1[α2
5] = {t2, t4, t12, t18},

Update: Y(5) = X ∪ Y2(5) = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20},

X = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20}.

i = 3. Since i , 5, Y3(5) = (ϕ3)−1[α3
5] = ∅,

Update: Y(5) = X ∪ Y3(5) = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20},

X = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20}.

i = 4. Since i , 5, Y4(5) = (ϕ5)−1[α4
5] = ∅,

Update: Y(5) = X ∪ Y4(5) = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20},

X = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20}.

i = 5, end.

j = 6, i = 1.Since j , 8, i , 5, Y1(6) = (ϕ6)−1[α1
6] = {t1, t5, t8, t20},

Update: Y(6) = X ∪ Y1(6) = {t1, t5, t8, t20}, X = {t1, t5, t8, t20}.

i = 2. Since i , 5, Y2(6) = (ϕ2)−1[α2
6] = {t2, t4},

Update: Y(6) = X ∪ Y2(6) = {t1, t2, t4, t5, t8, t20},

X = {t1, t2, t4, t5, t8, t20}.

i = 3. Since i , 5, Y3(6) = (ϕ3)−1[α3
6] = ∅,

Update: Y(6) = X ∪ Y3(6) = {t1, t2, t4, t5, t8, t20},

X = {t1, t2, t4, t5, t8, t20}.

i = 4. Since i , 5, Y4(6) = (ϕ6)−1[α4
6] = ∅,

Update : Y(6) = X ∪ Y4(6) = {t1, t2, t4, t5, t8, t20},

X = {t1, t2, t4, t5, t8, t20}.

i = 5, end.

j = 7, i = 1.Since j , 8, i , 5, Y1(7) = (ϕ7)−1[α1
7] = {t1, t5, t8, t17, t20},
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Update: Y(7) = X ∪ Y1(7) = {t1, t5, t8, t17, t20}, X = {t1, t5, t8, t17, t20}.

i = 2. Since i , 5, Y2(7) = (ϕ2)−1[α2
7] = {t2, t4, t18},

Update: Y(7) = X ∪ Y2(7) = {t1, t2, t4, t5, t8, t17, t18, t20},

X = {t1, t2, t4, t5, t8, t17, t18, t20}.

i = 3. Since i , 5, Y3(7) = (ϕ3)−1[α3
7] = ∅,

Update: Y(7) = X ∪ Y3(7) = {t1, t2, t4, t5, t8, t17, t18, t20},

X = {t1, t2, t4, t5, t8, t17, t18, t20}.

i = 4. Since i , 5, Y4(7) = (ϕ7)−1[α4
7] = ∅,

Update: Y(7) = X ∪ Y4(7) = {t1, t2, t4, t5, t8, t17, t18, t20},

X = {t1, t2, t4, t5, t8, t17, t18, t20}.

i = 5, end.

j = 8, end.

Output: all 14 sets
Y(1) = {t2, t3, t5, t8, t12}, Y(8) = T − Y(1),
Y(2) = {t2, t8}, Y(9) = T − Y(2),
Y(3) = {t1, t2, t4, t8, t17, t18}, Y(10) = T − Y(3),
Y(4) = {t1, t2, t4, t8}, Y(11) = T − Y(4),
Y(5) = {t1, t2, t3, t4, t5, t8, t12, t17, t18, t20}, Y(12) = T − Y(5),
Y(6) = {t1, t2, t4, t5, t8, t20}, Y(13) = T − Y(6),
Y(7) = {t1, t2, t4, t5, t8, t17, t18, t20}, Y(14) = T − Y(7).

5. Conclusions

In this paper, the modular computation method is formulated in the finite topological spaces. After
the modularization of a given space, computation process will be smoother and more efficient. We have
also given the algorithms that how to modularize a topological space and how to use the modular matrix
method to compute the Kuratowski 14 sets in a subspace of a finite topological space.
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