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Abstract. This paper deals with some existence and uniqueness results for a class of problems for nonlinear
Caputo tempered implicit fractional differential equations in b-Metric spaces with initial condition and
infinite delay. The results are based on the ω−ψ-Geraghty type contraction, the F-contraction and the fixed
point theory. Furthermore, an two illustrations are presented to demonstrate the plausibility of our results.

1. Introduction

In recent years, fractional calculus has shown to be a very useful tool for tackling the complexity
structures seen in several disciplines of research. It is concerned with the extension of integer order differ-
entiation and integration of a function to non-integer order, and its theory and application are substantial.
We refer the reader to the monographs [1–3, 36, 39] and the papers [24, 25, 27, 31, 33, 37]. Many papers and
monographs have lately been published in which the authors studied a wide range of results for various
forms of fractional differential equations, inclusions with different types of conditions. One may see the
papers [1, 23, 32], and the references therein.

In [12, 13], Czerwik introduced the notion of b-metric. Following these early studies, the existence fixed
point for various classes of operators in the context of b-metric spaces has been intensively researched; see
[4–6, 11, 16, 17, 21, 30] for more details on the concept of b-metric and contractions.

Wardowski [38] has asserted a novel inequality using auxiliary functions to ensure the existence and
uniqueness of a particular mapping in the setting of standard metric space. This inequality is referred to as
F-contraction. For more details on the ω − ψ-Geraghty type contraction and the F-contraction, we refer the
reader to the recent papers [8, 9, 18, 20, 22].

Tempered fractional calculus can be considered as the extension of fractional calculus. Buschman’s
earlier work [10] was the first to disclose the definitions of fractional integration with weak singular and
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exponential kernels. See the papers [7, 15, 26, 28, 29, 34, 35] and references therein for more details and
results on the tempered fractional calculus.

In [21], the authors considered the following conformable impulsive problem:
T
ϑ
ζ ȷ
χ(ζ) = ℵ

(
ζ, χζ,T ϑ

ȷ χ(ζ)
)
, ζ ∈ Ω ȷ; ȷ = 0, 1, . . . , β,

∆χ|ζ=ζ ȷ = Υ ȷ(χζ−ȷ ), ȷ = 1, 2, . . . , β,
χ(ζ) = µ(ζ), ζ ∈ (−∞,κ],

where 0 ≤ κ = ζ0 < ζ1 < · · · < ζβ < ζβ+1 = κ̄ < ∞, T ϑ
ζ ȷ
χ(ζ) is the conformable fractional derivative

of order 0 < ϑ < 1, ℵ : Ω × Q × R → R is a given continuous function, Ω := [κ, κ̄], Ω0 := [κ, ζ1],
Ω ȷ := (ζ ȷ, ζ ȷ+1]; ȷ = 1, 2, . . . , β, µ : (−∞,κ] → R and Υ ȷ : Q → R are given continuous functions, and Q is
called a phase space.

Taking inspiration of the previous mentioned publications, in this paper, we study the existence and
uniqueness of solutions for the implicit problem with nonlinear fractional differential equation involving
the Caputo tempered fractional derivative:(

C
0D

ϑ,ℓ
ζ χ

)
(ζ) = ℵ

(
ζ, χζ,

(
C
0D

ϑ,ℓ
ζ χ

)
(ζ)

)
; ζ ∈ Ω := [0, κ], (1)

χ(ζ) = µ(ζ), ζ ∈ (−∞, 0], (2)

where 0 < ϑ < 1, ℓ ≥ 0, C
0D

ϑ,ℓ
ζ is the Caputo tempered fractional derivative, ℵ : Ω × Q × R → R and

µ : (−∞, 0]→ R are given functions where µ(0) = χ0. For any ζ ∈ Ω, we define χζ ∈ Q by

χζ(σ) = χ(ζ + σ); for σ ∈ (−∞, 0].

To the best of our knowledge, there are no existing publications in the literature that address the im-
plicit Caputo tempered fractional problems with infinite delay. The limited number of published works
on tempered fractional calculus highlights the need for further exploration and development. Therefore,
our objective is to advance the field by exploring various problems with novel conditions that have not
been previously studied. Furthermore, our study intends to incorporate different techniques such as the
F-contraction method, which distinguishes it from prior research such as [21].

The study of implicit differential equations using the Caputo tempered fractional derivative in b-metric
spaces is initiated in this paper. It is organized as follows: Section 2 introduces some preliminaries,
definitions, lemmas and auxiliary results about the tempered fractional derivative. In section 3, we give
some existence and uniqueness results for the problem (1)-(2) that are based on the ω − ψ-Geraghty type
contraction, F-contraction and the fixed point theory. Finally we present an example to show the validity
of our results.

2. Preliminaries

First, we give the definitions and the notations that we will use throughout this paper. We denote by
C(Ω,R) the Banach space of all continuous functions from Ω into R with the following norm

∥ℵ∥∞ = sup
ζ∈Ω
{|ℵ(ζ)|}.

As usual, AC(Ω) denotes the space of absolutely continuous functions from Ω into R. For any n ∈ N,
we denote by ACn(Ω) the space defined by

ACn(Ω) :=
{
ℵ : Ω→ R :

dn

dζnℵ(ζ) ∈ AC(Ω)
}
.
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Consider the space Xp
b(κ1, κ2), (b ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue measurable

functions f on [κ1, κ2] for which ∥ℵ∥Xp
b
< ∞, where the norm is defined by:

∥ℵ∥Xp
b
=

(∫ κ2

κ1

|ζb
ℵ(ζ)|p

dζ
ζ

) 1
p

, (1 ≤ p < ∞, b ∈ R).

Definition 2.1 (The Riemann-Liouville tempered fractional integral [15, 34, 35]). Suppose that the real func-
tion f is piecewise continuous on [κ1, κ2] and f ∈ Xp

b(κ1, κ2), ℓ > 0. Then, the Riemann-Liouville tempered fractional
integral of order ϑ is defined by

κ1 Iϑ,ℓζ ℵ(ζ) = e−ℓζ κ1 Iϑζ
(
eℓζℵ(ζ)

)
=

1
Γ(ϑ)

∫ ζ

κ1

e−ℓ(ζ−τ)
ℵ(τ)

(ζ − τ)1−ϑ
dτ, (3)

where κ1I
ϑ
ζ denotes the Riemann-Liouville fractional integral [19], defined by

κ1 Iϑζℵ(ζ) =
1
Γ(ϑ)

∫ ζ

κ1

ℵ(τ)
(ζ − τ)1−ϑ

dτ. (4)

Obviously, the tempered fractional integral (3) reduces to the Riemann-Liouville fractional integral (4) if ℓ = 0.

Definition 2.2 (The Riemann-Liouville tempered fractional derivative [15, 34]). For n− 1 < ϑ < n; n ∈N,
ℓ ≥ 0. The Riemann-Liouville tempered fractional derivative is defined by

κ1D
ϑ,ℓ
ζ ℵ(ζ) = e−ℓζκ1D

ϑ
ζ

(
eℓζℵ(ζ)

)
=

e−ℓζ

Γ(n − ϑ)
dn

dζn

∫ ζ

κ1

eℓτ f (τ)
(ζ − τ)ϑ−n+1

dζ,

where κ1D
ϑ
ζ denotes the Riemann-Liouville fractional derivative [19], given by

κ1D
ϑ
ζ

(
eℓζℵ(ζ)

)
=

dn

dζn

(
κ1I

n−ϑ
ζ

(
eℓζℵ(ζ)

))
=

1
Γ(n − ϑ)

dn

dζn

∫ ζ

κ1

(
eℓτℵ(τ)

)
(ζ − τ)ϑ−n+1

dτ.

Definition 2.3 (The Caputo tempered fractional derivative [15, 35]). For n − 1 < ϑ < n; n ∈ N+, ℓ ≥ 0. The
Caputo tempered fractional derivative is defined as

C
κ1
D
ϑ,ℓ
ζ ℵ(ζ) = e−ℓζ C

κ1
Dϑζ

(
eℓζℵ(ζ)

)
=

e−ℓζ

Γ(n − ϑ)

∫ ζ

κ1

1
(ζ − τ)ϑ−n+1

dn
(
eℓτℵ(τ)

)
dτn dτ,

where C
κ1
D
ϑ,ℓ
ζ denotes the Caputo fractional derivative [19], given by

C
κ1
Dϑζ

(
eℓζℵ(ζ)

)
=

1
Γ(n − ϑ)

∫ ζ

κ1

1
(ζ − τ)ϑ−n+1

dn
(
eℓτℵ(τ)

)
dτn dτ.

Lemma 2.4 ([15]). For a constant C,

κ1D
ϑ,ℓ
ζ C = Ce−ℓζκ1D

ϑ
ζ eℓζ, C

κ1
D
ϑ,ℓ
ζ C = Ce−ℓζ C

κ1
Dϑζ eℓζ.

Obviously, κ1D
ϑ,ℓ
ζ (C) , C

κ1
D
ϑ,ℓ
ζ (C). And, C

κ1
D
ϑ,ℓ
ζ (C) is no longer equal to zero, being different from C

κ1
Dϑζ (C) ≡ 0.

Lemma 2.5 ([15, 35]). Let f (ζ) ∈ ACn[κ1, κ2], ℓ ≥ 0 and n − 1 < ϑ < n. Then the Caputo tempered fractional
derivative and the Riemann-Liouville tempered fractional integral have the following composite properties:

κ1 Iϑ,ℓζ
[

C
κ1
D
ϑ,ℓ
ζ f (ζ)

]
= f (ζ) −

n−1∑
ȷ=0

e−ℓζ
(ζ − κ1) ȷ

ȷ!

 d ȷ
(
eℓζ f (ζ)

)
dζ ȷ

∣∣∣∣∣∣∣
ζ=κ1

 ,
and

C
κ1
D
ϑ,ℓ
ζ

[
aIϑ,ℓζ f (ζ)

]
= f (ζ), for ϑ ∈ (0, 1).
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Lemma 2.6. Let ℵ̄ ∈ L1(Ω) and 0 < ϑ ≤ 1. Then the initial value problem
(

C
0D

ϑ,ℓ
ζ χ

)
(ζ) = ℵ̄(ζ); ζ ∈ Ω := [0, κ],

χ(0) = χ0,
(5)

has a unique solution defined by

χ(ζ) = χ0e−ℓζ +
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ. (6)

Proof. Applying the Riemann-Liouville tempered fractional integral of order ϑ to(
C
0D

ϑ,ℓ
ζ χ

)
(ζ) = ℵ̄(ζ),

and by employing Lemma 2.5 and if ζ ∈ Ω, we obtain

χ(ζ) − χ(0)e−ℓζ =
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ.

From the initial conditions, we get

χ(ζ) = χ0e−ℓζ +
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ.

Conversely, by Lemma 2.4 and Lemma 2.5, we deduce that if χ verifies equation (6), then it satisfied the
problem (5).

As a consequence of Lemma 2.6, we give the following result.

Lemma 2.7. A function χ is a solution of problem (1)-(2) if and only if χ satisfies the following:

χ(ζ) =


χ0e−ℓζ +

1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ, ζ ∈ Ω,

µ(ζ), ζ ∈ (−∞, 0],

(7)

where ℵ̄ ∈ C(Ω) such that ℵ̄(ζ) = ℵ(ζ, χζ, ℵ̄(ζ)).

Definition 2.8 ([4]). Let L be a set and ε ≥ 1. A distance function ϖ : L × L→ (0,∞) is a b-metric if the following
requirements hold for all χ1, χ2, χ3 ∈ L:

(1) ϖ(χ1, χ2) = 0 if and only if χ1 = χ2,

(2) ϖ(χ1, χ2) = ϖ(χ2, χ1),

(3) ϖ(χ1, χ2) ≤ ε[ϖ(χ1, χ3) + ϖ(χ3, χ2)].

Then, (L, ϖ, ε) is called a b-metric space with parameter ε.

LetΛ be the set of all increasing and continuous function ψ : (0,∞)→ (0,∞) satisfying: ψ(εχ) ≤ εψ(χ) ≤
εχ, for ε > 1 and ψ(0) = 0. We denote by Θ the family of all nondecreasing functions η : (0,∞)→ [0, 1

ε2 ) for
some ε ≥ 1.
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Definition 2.9 ([4]). Let (L, ϖ, ε) be a b-metric space,S : L→ L is said to be a generalized ω-ψ-Geraghty mapping
whenever there exists ω : L × L→ (0,∞) such that

ω(χ1, χ2)ψ(ε3d(S(χ1),S(χ2)) ≤ η(ψ(ϖ(χ1, χ2))ψ(ϖ(χ1, χ2))),

for χ1, χ2 ∈ L, where η ∈ Θ.

Definition 2.10 ([4]). Let L be a non empty set, S : L → L and ω : L × L → (0,∞) be given mappings. The
operator S is orbital ω-admissible if for χ ∈ L, we have

ω(χ,S(χ)) ≥ 1⇒ ω(S(χ),S2(χ)) ≥ 1.

Definition 2.11 ([8]). A mapping Ψ : L → L is said to be a generalized nonlinear F−contraction if there exist the
functions F : (0,∞)→ R and ℘ : (0,∞)→ (0,∞) such that for all χ,ℑ ∈ L such thatΨχ , Ψℑ,

℘(ϖ(χ,ℑ)) + F(ωϖ(Ψχ,Ψℑ)) ≤ F(Aϵϖ(χ,ℑ)), (8)

where ω > 1, and

Aϵϖ(χ,ℑ) = max
{
ϖ(χ,ℑ), ϖ(χ,Ψχ), ϖ(ℑ,Ψℑ),

β

2ϵ
[ϖ(ℑ,Ψχ) + ϖ(χ,Ψℑ)]

}
, β ∈ [0, 1].

Theorem 2.12 ([4]). Let (L, ϖ) be a complete b-metric space andΨ : L→ L be a generalizedω-ψ-Geraghty mapping
where

(a) Ψ is ω-admissible;

(b) there exists χ0 ∈ L where ω(χ0,Ψ(χ0)) ≥ 1;

(c) If (χn)n∈N ⊂ L with χn → χ and ω(χn, χn+1) ≥ 1, then ω(χn, χ) ≥ 1.

ThenΨ has a fixed point. Moreover, if

(d) for all fixed points χ, χ′ ofΨ, either
ω(χ, χ′) ≥ 1 or ω(χ′, χ) ≥ 1,

thenΨ has a unique fixed point.

Theorem 2.13 ([8]). Let (L, ϖ, ϵ) be a complete b-metric space. A generalized nonlinear F-contractionΨ has a fixed
point if the following statements are true:

(1) F is strictly increasing, that is, if a < b, then F(a) < F(b), for all a, b ∈ (0,∞);

(2) β < 1;

(3) ε
ϑ < 1;

(4) lim infχ→ζ+ ℘(χ) > 0, for any ζ ≥ 0.

3. Main Results

In this section, we establish some existence results for problem (1)-(2).
Let (C(Ω), ϖ, 2) be the complete b-metric space with ε = 2, such that ϖ : C(Ω) × C(Ω) → (0,∞), is given

by:
ϖ(χ,ℑ) = ∥(χ − ℑ)2

∥∞ := sup
ζ∈Ω
|χ(ζ) − ℑ(ζ)|2.

Let the space (Q, ∥ · ∥Q) is a seminormed linear space of functions mapping (−∞, 0] intoR, and verifying
the following axioms which were derived from Hale and Kato’s originals [14]:
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(Ax1) If χ : (−∞, 0] → R, and χ0 ∈ Q, then there exist constants ξ1, ξ2, ξ3 > 0, such that for each ζ ∈ Ω; we
have:

(i) χζ is in Q,
(ii) ∥χζ∥Q ≤ ξ1∥χ1∥Q + ξ2 supζ∈[0,ζ] |χ(σ)|,

(iii) |χ(ζ)| ≤ ξ3∥χζ∥Q.

(Ax2) For the function χ(·) in (Ax1), yζ is a Q− valued continuous function on Ω.

(Ax3) The space Q is complete.

Consider the space
Θ = {χ : (−∞, κ]→ R, χ|(−∞,0] ∈ Q, χ|Ω ∈ C([0, κ],R)}.

The hypotheses:

(H1) There exist continuous functions p : Ω → (0,∞) and q : Ω → (0, 1) such that for each χ, χ1 ∈ Q,
ℑ,ℑ1 ∈ R and ζ ∈ Ω

|ℵ(ζ, χ,ℑ) − ℵ(ζ, χ1,ℑ1)| ≤ p(ζ)∥χ − χ1∥Q + q(ζ)|ℑ − ℑ1|

with ∥∥∥∥∥∥ 1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1) p(τ)

1 − q∗
dτ

∥∥∥∥∥∥
2

∞

≤ ψ(∥(χ − χ1)2
∥∞).

(H2) There exist ψ ∈ Λ and ℓ0 ∈ C(Ω) and a function ξ : R2
→ R, such that

ξ

(
ℓ0(ζ),

1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ
)
≥ 0

where ℵ̄ ∈ C(Ω) such that ℵ̄(ζ) = ℵ(ζ, ℓ0(ζ), ℵ̄(ζ)).

(H3) For each ζ ∈ Ω, and χ,ℑ ∈ C(Ω), we have that

ξ(χ(ζ),ℑ(ζ)) ≥ 0

implies

ξ

(
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ,
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄
′(τ)dτ

)
≥ 0,

where ℵ̄, ℵ̄′ ∈ C(Ω) such that
ℵ̄(ζ) = ℵ(ζ, χζ, ℵ̄(ζ))

and
ℵ̄
′(ζ) = ℵ(ζ,ℑζ, ℵ̄′(ζ)).

(H4) If (χn)n∈N ⊂ C(Ω) with χn → χ and ξ(χn(ζ), χn+1(ζ)) ≥ 1, then

ξ(χn(ζ), χ(ζ)) ≥ 1.

(H5) For all fixed solutions χ, χ′ of problem (1)-(2), either

ξ(χ(ζ), χ′(ζ)) ≥ 0,

or
ξ(χ′(ζ), χ(ζ)) ≥ 0.
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First, we prove the existence and uniqueness results by utilizing the ω-ψ-Geraghty type contraction and
the fixed point theory.

Theorem 3.1. Assume that the hypotheses (H1)-(H4) hold. Then the problem (1)-(2) has at least one solution defined
on Ω. Moreover, if (H5) holds, then we get a unique solution.

Proof. Consider the operatorΨ : Θ→ Θ defined by:

(Ψχ)(ζ) =

 µ(0)e−ℓζ +
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ, ζ ∈ Ω,

µ(ζ), ζ ∈ (−∞, 0],
(9)

where ℵ̄ ∈ C(Ω) such that ℵ̄(ζ) = ℵ(ζ, χζ, ℵ̄(ζ)).
Let w : (−∞, κ]→ R be a function given by

w(ζ) =
{
µ(ζ); ζ ∈ (−∞, 0],
µ(0)e−ℓζ ζ ∈ Ω.

Then w0 = µ. For each z ∈ C(Ω), with z(0) = 0, we denote by z the function defined by

z =
{

0, ζ ∈ (−∞, 0],
z(ζ), ζ ∈ Ω.

If χ(·) satisfies the integral equation

χ(ζ) = µ(0)e−ℓζ +
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ,

we can decompose χ(·) as χ(ζ) = z(ζ)+w(ζ); for ζ ∈ Ω, which implies that χζ = zζ +wζ for every ζ ∈ Ω, and
the function z(·) satisfies

z(ζ) =
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ,

where
ℵ̄(ζ) = ℵ(ζ, zζ + wζ, ℵ̄(ζ)); ζ ∈ Ω.

Set
D0 = {z ∈ C(Ω); z0 = 0},

and let ∥ · ∥κ be the norm inD0 defined by

∥z∥κ = ∥z0∥Q + sup
ζ∈Ω
|z(ζ)| = sup

ζ∈Ω
|z(ζ)|; z ∈ D0,

whereD0 is a Banach space with norm ∥ · ∥κ. Define the operatorW : D0 →D0 by

(Wz)(ζ) =
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

ℵ̄(τ)dτ, (10)

where
ℵ̄(ζ) = ℵ(ζ, zζ + wζ, ℵ̄(ζ)); ζ ∈ Ω.

The function ω : C(Ω) × C(Ω)→ (0,∞) is given by:{
ω(z, y) = 1; i f ξ(z(ζ), y(ζ)) ≥ 0, ζ ∈ Ω,
ω(z, y) = 0; else.
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First, we prove thatW is a generalized ω-ψ-Geraghty operator:
Let z, y ∈ D0. Then, for each ζ ∈ Ω, we have

|(Wz)(ζ) − (Wy)(ζ)| ≤
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

|ℵ̄(σ) − ℵ̄′(σ)|dτ,

where ℵ̄, ℵ̄′ ∈ C(Ω) such that

ℵ̄(ζ) = ℵ(ζ, zζ + wζ, ℵ̄(ζ)) and ℵ̄′(ζ) = ℵ(ζ, yζ + wζ, ℵ̄
′(ζ)).

From (H1) we have

∥ℵ̄ − ℵ̄
′
∥∞ ≤

p(ζ)
1 − q∗

∥(z − y)2
∥

1
2
∞,

where q∗ = supζ∈Ω |q(ζ)|. Next, we have

|(Wz)(ζ) − (Wy)(ζ)| ≤
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1) p(τ)

1 − q∗
∥(z − y)2

∥
1
2
∞dτ.

Thus,

ω(z, y)|(Wz)(ζ) − (Wy)(ζ)|2 ≤ ∥(z − y)2
∥∞ω(z, y)

∥∥∥∥∥∥ 1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1) p(τ)

1 − q∗
dτ

∥∥∥∥∥∥
2

∞

≤ ∥(z − y)2
∥∞ψ(∥(z − y)2

∥∞).

Hence,
ω(z, y)ψ(23d(W(z),W(y)) ≤ η(ψ(ϖ(z, y))ψ(ϖ(z, y)),

where η ∈ Θ, ψ ∈ Λ, with η(ζ) = 1
8ζ, and ψ(ζ) = ζ. So,W is generalized ω-ψ-Geraghty operator.

Let z, y ∈ C(Ω) such that
ω(z, y) ≥ 1.

Thus, for each ζ ∈ Ω, we have
ξ(κ2ζ,κ

′

2ζ) ≥ 0.

This implies from (H3) that
ξ(Wz(ζ),Wy(ζ)) ≥ 0,

which gives
ω(W(z),W(y)) ≥ 1.

Hence,W is a ω-admissible.
Now, by (H2), there exists ℓ0 ∈ C(Ω) such that

ω(ℓ0,W(ℓ0)) ≥ 1.

Thus, by (H4), if
(
ℓn

)
n∈N
⊂ Lwith ℓn → ℓ and ω(ℓn, ℓn+1) ≥ 1, then

ω(ℓn, ℓ) ≥ 1.

From an application of Theorem 2.12, we conclude thatW has a fixed point. Consequently, Ψ has a fixed
point which is the solution of problem.

Moreover, (H5) implies that if z and y are fixed points ofW, then either

ξ(z, y) ≥ 0 or ξ(y, z) ≥ 0.
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This implies that either
ω(z, y) ≥ 1 or ω(y, z) ≥ 1.

Hence, problem (1) has a unique solution.

Now, we prove an existence and uniqueness result by using the F-contraction fixed point theorem.

Theorem 3.2. Assume there exist constants λ, λ̂ > 0, where λ = λ(1 − λ̂) >
√

2 such that for each χζ, χ̂ζ ∈ Q,
ℑ, ℑ̂ ∈ R and ζ ∈ Ω

|ℵ(ζ, χζ,ℑ) − ℵ(ζ, χ̂ζ, ℑ̂)| ≤
Γ(ϑ)

2λκ(ϑ−1)
[
1 + supζ∈Ω |χ(ζ)| + supζ∈Ω |χ̂(ζ)|

] |χ(ζ) − χ̂(ζ)| + λ̂|ℑ − ℑ̂|. (11)

Then the problem (1)-(2) has a unique solution defined on Ω.

Proof. LetW : D0 →D0 defined as in (10), For any z, y ∈ D0. For each ζ ∈ Ωwe have

|(Wz)(ζ) − (Wy)(ζ)|2 ≤

{
1
Γ(ϑ)

∫ ζ

0
e−ℓ(ζ−τ)(ζ − τ)(ϑ−1)

|ℵ̄(τ) − ℵ̄′(τ)|dτ
}2

,

where ℵ̄, ℵ̄′ ∈ C(Ω) such that

ℵ̄(ζ) = ℵ(ζ, zζ + wζ, ℵ̄(ζ)) and ℵ̄′(ζ) = ℵ(ζ, yζ + wζ, ℵ̄
′(ζ)).

Since, for each ζ ∈ Ω, we have

∥ℵ̄(ζ) − ℵ̄′(ζ)∥ ≤
Γ(ϑ)

2(1 − λ̂)λκ(ϑ−1)
[
1 + supζ∈Ω |z(ζ)| + supζ∈Ω |y(ζ)|

] |z(ζ) − y(ζ)|.

Then, we get

|(Wz)(ζ) − (Wy)(ζ)|2 ≤

 1

λ
[
2 + 2 supζ∈Ω |z(ζ)| + 2 supζ∈Ω |y(ζ)|

] |z(ζ) − y(ζ)|


2

≤
1

λ
2 [

2 + 2 supζ∈Ω |z(ζ)| + 2 supζ∈Ω |y(ζ)|
]2

{√
|z(ζ) − y(ζ)|2

}2

≤
1

λ
2 [

2 + 2 supζ∈Ω |z(ζ)| + 2 supζ∈Ω |y(ζ)|
]2

√
sup
ζ∈Ω
|z(ζ) − y(ζ)|2


2

≤
1

λ
2 [

2 + supζ∈Ω |z(ζ) − y(ζ)|2
] √

sup
ζ∈Ω
|z(ζ) − y(ζ)|2


2

.

Consequently, we get

λ
2
ϖ(Wz,Wy) ≤

ϖ(z, y)
2 + ϖ(z, y)

.

Now, applying natural logarithm on the previous inequality, we obtain

ln(2 + ϖ(z, y)) + ln(λ
2
ϖ(Wz,Wy)) ≤ ln(ϖ(z, y)) ≤ ln(Aϵϖ(z, y)),
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where

Aϵϖ(z, y) = max
{
ϖ(z, y), ϖ(z,Wz), ϖ(y,Wy),

β

2ϵ
[
ϖ(y,Wz) + ϖ(z,Wy)

]}
, β <

1
2
.

If we choose F(ζ) = ln(ζ) and ℘(ζ) = ln(2 + ζ) we see that all the conditions of Theorem 2.13 are satisfied,
so that W has a unique fixed point. Consequently, Ψ has a unique fixed point which is the solution of
problem.

4. Some Examples

Example 4.1. Consider the following problem which is an example of problem (1)-(2):
(

C
0D

1
2 ,ℓ

ζ χ
)

(ζ) =
arctan(∥χζ∥Q)
380(1 + ∥χζ∥Q)

+
1

380
(
1 +

∣∣∣∣∣(C
0D

1
2 ,ℓ

ζ χ
)

(ζ)
∣∣∣∣∣) ; ζ ∈ Ω := [0, 1],

χ(ζ) = ζ + 1; ζ ∈ (−∞, 0].

(12)

Let γ be a positive real constant and

Bγ = {χ ∈ C((−∞, 1],R, ) : lim
τ→−∞

eγτχ(τ) exists in R}. (13)

The norm of Bγ is given by
∥χ∥γ = sup

τ∈(−∞,1]
eγτ|χ(τ)|.

Let χ : (−∞, 0]→ R be such that χ0 ∈ Bγ. Then

limτ→−∞ eγτχζ(τ) = limτ→−∞ eγτχ(ζ + τ − 1) = limτ→−∞ eγ(τ−ζ+1)χ(τ)

= eγ(−ζ+1) limτ→−∞ eγ(τ)χ1(τ) < ∞.

Hence χζ ∈ Bγ. Finally we prove that

∥χζ∥γ ≤ ξ1∥χ1∥γ + ξ2 sup
σ∈[0,ζ]

|χ(σ)|,

where ξ1 = ξ2 = 1 and ξ3 = 1. We have
|χζ(τ)| = |χ(ζ + τ)|.

If ζ + τ ≤ 1, we get
|χζ(ξ)| ≤ sup

σ∈(−∞,0]
|χ(σ)|.

For ζ + τ ≥ 0, then we have
|χζ(ξ)| ≤ sup

σ∈[0,ζ]
|χ(σ)|.

Thus for all ζ + τ ∈ Ω, we get
|χζ(ξ)| ≤ sup

σ∈(−∞,0]
|χ(σ)| + sup

σ∈[0,ζ]
|χ(σ)|.

Then
∥χζ∥γ ≤ ∥χ0∥γ + sup

σ∈[0,ζ]
|χ(σ)|.

It is clear that (Bγ, ∥ · ∥) is a Banach space. We can conclude that Bγ a phase space.
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Set
ℵ(ζ, χ,ℑ) =

arctan(∥χ∥Q)
380(1 + ∥χ∥Q)

+
1

380(1 + |ℑ|)
,

where ζ ∈ Ω, χ ∈ Q,ℑ ∈ R.
Let (C(Ω), ϖ, 2) be the complete b-metric space with ε = 2, such that ϖ : C(Ω) × C(Ω)→ (0,∞), is given by:

ϖ(χ,ℑ) = ∥(χ − ℑ)2
∥∞ := sup

ζ∈Ω
|χ(ζ) − ℑ(ζ)|2.

For any χ,ℑ ∈ Q, χ̄, ℑ̄ ∈ R and ζ ∈ Ω, we have

|ℵ(ζ, χ, χ̄) − ℵ(ζ,ℑ, ℑ̄)| ≤
∥χ − ℑ∥Q

380
+
|χ̄ − ℑ̄|

380
.

Thus, hypothesis (H1) is satisfied with

p(ζ) = q(ζ) =
1

380
.

Define the functions η(ζ) = 1
8ζ, ϕ(ζ) = ζ, ϑ : C(Ω) × C(Ω)→ R∗+ withϑ(χ,ℑ) = 1; i f ϖ(χ(ζ),ℑ(ζ)) ≥ 0, ζ ∈ Ω,

ϑ(χ,ℑ) = 0; else,

and ϖ : C(Ω) × C(Ω)→ R with ϖ(χ,ℑ) = ∥χ − ℑ∥∞.
Hypothesis (H2) is satisfied with ℓ0(ζ) = χ0. Also, (H3) holds from the definition of the function ϖ.

Simple computations show that all conditions of Theorem 3.1 are satisfied. Hence, we get the existence and the
uniqueness of solutions for problem (12).

Example 4.2. Next, consider the following problem:
(

C
0D

1
2 ,ℓ

ζ χ
)

(ζ) =
Γ( 1

2 )
4(1 + supζ∈Ω |χ(ζ)|)

+
1

20
(
1 +

∣∣∣∣∣(C
0D

1
2 ,ℓ

ζ χ
)

(ζ)
∣∣∣∣∣) ; ζ ∈ Ω,

χ(ζ) = 2ζ + 4; ζ ∈ (−∞, 0].

(14)

Set

ℵ(ζ, χζ,ℑ) =
Γ( 1

2 )
4(1 + supζ∈Ω |χ(ζ)|)

+
1

20(1 + |ℑ|)
,

where ζ ∈ Ω, χ ∈ C(Ω),ℑ ∈ R.
Let (C(Ω), ϖ, 2) be a complete b-metric space with ε = 2, such that ϖ : C(Ω) × C(Ω)→ (0,∞), is given by:

ϖ(χ,ℑ) = ∥(χ − ℑ)2
∥∞ := sup

ζ∈Ω
|χ(ζ) − ℑ(ζ)|2.

For any χ,ℑ ∈ C(Ω), χ̄, ℑ̄ ∈ R and ζ ∈ Ω, we have

|ℵ(ζ, χζ, χ̄) − ℵ(ζ,ℑζ, ℑ̄)| ≤
Γ( 1

2 )|χ(ζ) − ℑ(ζ)|
4(1 + supζ∈Ω |χ(ζ)| + supζ∈Ω |ℑ(ζ)|)

+
1

20
|χ̄ − ℑ̄|.

Then, hypothesis (11) is satisfied with

λ = 2, λ̂ =
1
20

and λ =
19
10

>
√

2.

Since all requirements of Theorem 2.13 are verified, we conclude the existence the uniqueness of solutions and for
problem (14).
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